Spectral Simulations of Wall-bounded Flows on
Massively-parallel Computers

Qiang Li, Philipp Schlatter and Dan Henningson

1 Introduction

As the super computer develops rapidly since the last several decades, highly
resolved time-dependent numerical simulation, i.e. direct numerical simula-
tion (DNS) and large-eddy simulation (LES), has become an important tool
for transition and turbulence research (Moin and Mahesh, 1998).

The super computers can be classified into two groups with respect to
the architecture of the processor, i.e. vector processor and scalar processor.
A vector processor, or array processor, is designed that it has registers as
a vector quantity and is able to operate on multiple data elements simul-
taneously, thus the operations are done in parallel. In contrast, a scalar
processor has registers for data as a scalar quantity and only processes one
data element at a time. Vector processors were widely used to form the
basis of most super computers in the 1980s and 1990s, but nearly disap-
pear in the super computers we have nowadays. Another classification of
the super computers is according to the memory configuration. The shared
and distributed memory are the two memory configurations. In the former
case, all the processors share the same memory while in the latter case, each
processor has its own memory so that data has to be sent and received if
used by another processor. According to the categories above, there are four
different combinations as the types of the super computers as shown in Table
1. Throughout this report, only the first combination, i.e. scalar processors
with distributed memory, is focused on and discussed. The term “processor”
means central processing unit (CPU) and alternatively be termed “core”.

distributed memory | shared memory
scalar processor 1 2
vector processor 3 4

Table 1: The four combinations of the types for the super computers.

A typical distributed memory computer system, e.g. a computer cluster,
consists of a group of computers which are connected by network so that
they can work together and can be viewed as a single computer. A computer
cluster has usually about 200 to 300 processors in total. However, in order
to obtain higher performances and to solve larger size problems, a massively
parallel computer system has to be used. A massively parallel computer

system is a single computer with a very large number of processors, usually
more than 1000 processors. Each single processor has a lower performance
compared to a processor of a cluster, but this is compensated by the huge
amount of processors. All the processors are connected via a high speed
interconnection. Therefore, the overall performance is better than a common
cluster.

Once equipped with a morden super computer, to have an efficient nu-
merical code for simulating the turbulent flow becomes more important. An
efficient numerical code (SIMSON) to solve the Navier-Stokes equations
for incompressible channel and boundary layer flows has been developed at
KTH Mechanics for the last years, see the reports by Lundbladh et al. (1992),
Lundbladh et al. (1999) and Chevalier et al. (2007). The numerical method is
based on a standard Fourier/Chebyshev fully spectral discretization, leading
to high numerical accuracy and efficiency. The nonlinear convective terms
are evaluated pseudo-spectrally in physical space to avoid the evaluation of
convolution sums using fast Fourier transforms (FFT) and afterwards trans-
formed into Chebyshev space. The dealiasing errors are removed by using
the 3/2-rule. The evolution equations are then solved and the prescribed
boundary conditions are applied in Fourier/Chebyshev space. Time integra-
tion is done by a mixed third order Runge-Kutta/Crank—Nicolson method.
The code could be run in either temporal mode or spatial mode. It also
support disturbance formulation and linearised formulation. Multiple pas-
sive scalars, e.g. temperature field, could also be solved together with the
velocity field. For boundary layer flows, the fringe region technique has to
be used to fulfil the periodic boundary condition in the wall parallel plane.

2 Parallelization

The numerical code is written in FORTRAN 77 and the coarse structure
can be divided into four steps. In the first step, initialization of the flow
solver is done, e.g. reading in the input files, setting the initial parameter
values, opening the output files, etc. In the second step, the time integration
loop is started and the computations in physical space are executed. In step
three, the whole evolution equations are solved in Fourier /Chebyshev space
and the time stepping parameters are recalculated for the next time step.
In the last step, the output files are written after the time integration loop
is finished.

2.1 1D parallelization

The major computational effort of the code is in the subroutines nonlinbl
and linearbl where we calculate the nonlinear terms in physical space and
solve the equations and evaluate the boundary conditions in Fourier /Chebyshev
space. The main structure of the code is shown in Figure 1.

,,,,, getpxz
y nonlinbl |
putpxz

Main Storage

it=it+1

Figure 1: The main structure of the code for the 1D parallelization.

The computations are done plane by plane, i.e. in an xy-plane in lin-
earbl and an zz-plane in nonlinbl. Outside these subroutines, we loop over
the third direction, i.e. z for linearbl and y for nonlinbl. This means that
the calculation in each plane is independent of(on) any other one. If one
processor calculates one plane at each time, we could use as many processors
as there are planes running in parallel. As one can see from Figure 1, in
order to get the data from the main storage onto planes, we call the sub-
routines getpxz for nonlinbl and getpxy for linearbl. The corresponding
subroutines for putting data back to the main storage after the calculations
in nonlinbl and linearbl are putpxz and putpxy, respectively.

z

Figure 2: Data distribution among all the processors.

The code supports parallelization with both shared memory (OpenMP)
and distributed memory (MPT). Here we will stick to the distributed memory
machines, thus only MPI will be discussed. The main storage is distributed
in the z direction only, i.e. 1D parallelization. A sketch of the distribution
of the main storage is shown in Figure 2. The data in the horizontal plane,
i.e. xz-plane, is saved in the Fourier space while the data in the wall-normal

plane is saved in physical space. We denote nproc to be the total number
of the processors. In the sketch we choose nproc = 4 for an example. Then
the amount of data saved on each processor is memnx X memny X memnz
where memnx = 5f, memny = nyp and memnz = n;:oc' nx, nyp and nz
are the number of grid points in the streamwise, wall-normal and spanwise
direction, respectively. By distributing data in this way, the calculations
in the subroutine linearbl are easily done in parallel since each processor
has full access to the data on one xy-plane in each z loop. Note that the
subroutines getpxy and putpxy are called by all the processors at the
same time and they operate on nproc consecutive wall-normal planes in
each z loop without involving communication between any two processors.
However, when doing the calculations in the subroutine nonlinbl, in order to
obtain full access of the data on each zz-plane, each processor has to collect
data from all the other processors. The data collection is accomplished by
calling subroutines getpxz and putpxz. This global data transfer gives rise
to a significant amount of communication among all the processors. Actually
a vast majority of the total communication among the processors happens
in the subroutine nonlinbl, more precisely in the subroutines getpxz and
putpxz. As the same for subroutines getpxy and putpxy, the subroutines
getpxz and putpxz are also called by all the processors at the same time
but they operate on nproc consecutive wall-parallel planes in each y loop.
The data distribution after the global communication is shown in Figure 3.
After the global communication in getpxz, each processor has full access to
data in one xz-plane and is able to perform the 2D FFTs on this zz-plane to
transform the data from spectral space to physical space. Since the cost of
the communication is relatively high for parallel computers with distributed
memory, the best way to implement the 2D FFTs is to perform the FFTs
by each processor. Thus we have to perform 1D FFTs twice in the two
directions on each zz-plane. Following the FFTs, all the data is stored in
physical space and then the nonlinear terms can be evaluated. To remove
the aliazing errors from the evaluation of the nonlinear terms, the 3/2 rule
has been used (Canuto et al., 1988). Once the calculation of the nonlinear
terms are finished, inverse FF'Ts have to be performed to transform the data
back to spectral space. Last, another the global communication has to be
done in putpxz to put the data back to the storage location as shown in
Figure 2. Then the calculations in linearbl can be easily done. It turns out
that the 2D FFTs are the main computational effort of the whole code.
Considering the global communication needed in the subroutines getpxz
and putpxz, two different ways are implemented. On the one hand, a hand-
written version which is based on the explicit point to point communication
using MPI commands MPI_ISEND, MPI_WAIT and MPI_RECYV is
available. For more details about this implementation, see Alvelius and
Skote (2000). On the other hand, an alternative version by adopting the
standard collective communication command MPI_ALLTOALL can be

z

Figure 3: Data distribution after the global communication.

used. The standard MPI command MPI_ALLTOALL transfers data from

A0 | A1 | A2 | A3 AO | BO | CO | DO
MPI_alltoall

BO | B1 | B2 | B3 Al | B1| C1| D1

co|c1|cz2|c3 A2 | B2 | C2 | D2

DO | D1 | D2 | D3 A3 | B3 | C3 | D3

ip=0 ip=1 ip=2 ip=3 ip=0 ip=1 ip=2 ip=3

Figure 4: The MPI_ALLTOALL command illustrated for a group of four
processors ip = 0,1, 2, 3.

all members to all members within a group. Each processor sends distinct
data to each of the other processor. How the data is transfered is illustrated
in Figure 4. As one can see from the figure, what the MPI_ALLTOALL does
is nothing but a global transpose the data of all the members in the group.

Both versions of implementation for the global communication essentially
perform approximately the same in terms of speed and memory requirement.
However, if the collective communication version is used, the amount of data
saved on each processors is a slightly more and thus the amount of communi-
cation compared to the hand-written version. This is because that memny
has to be (int(nﬁ’; =) + 1) x nproc instead of nyp to fulfil the requirement
of the MPI_ALLTOALL command. The operation int means taking only
the integer part. Another issue concerning the collective communication ver-
sion is that user defined data types involving the MPI.TYPE_STRUCTURE
and MPI_UB have to be used in order to fit the data structure of the code.
These user defined data types used in the subroutines getpxz and putpxz
are realgl and realg2. realgl has memnz blocks, memnx elements in each

block and memnz x memny elements between start of each block. And
upper-bound of memnz has to be added to the data type realgl to give the
correct displacement between cosecutive elements. The upper-bound data
type can be considered as a “pseudo-data type” which extends the upper
bound of a data type. It does not have any effects on the content or the
size of the data type and does not influence the message defined by the data
type. What it changes is the spatial extent of the data type in the memo-
rys. The data type realg2 has also memnz blocks, memnax elements in each
block, but (*3% + 1) elements between start of each block where nxp = %nw
And upper-bound of (“32 4 1) x memnz has also to be added to the data
type realg2. Note that the two data types realgl and realg2 have exactly
the same size, i.e. they contain the same amount of real numbers. Different
blocks of the same data type or different data types can be constructed as a
general data type by using MPI command MPI_.TYPE_STRUCTURE. For
more about the user defined data type, one could refer to MPI standard
documentation.

2.2 2D parallelization

The distribution of the main storage in only the spanwise direction intro-
duced in the previous section naturally imposes the restriction of the code,
i.e. the upper limit of the maximum possible number of processors to be nz.
For typical flow cases, we choose nz to be not larger than 256. Nowadays, as
the super computers become more powerful with more and more processors
available, a new way to parallelize the code is strongly needed in such a way
that we can use more processors than just nz processors.

On a distributed memory machine, there are potentially three possible
spatial directions which can be distributed among the different processors.
The number of grid points in y, discretized by Chebyshev expansion, is
often not even and thus not evenly divisible by the number of processors.
So choosing y (the wall-normal) direction is out of consideration. Either z
(the streamwise) or z (the spanwise) direction can be easily chosen as the
direction to parallelize over since the number of the grid points in these
two directions are naturally even and can be chosen to be divisible by the
number of processors. The grid points in the streamwise direction is usually
more than that in the spanwise direction. If we choose the streamwise
direction to be the direction to parallize over, we could use more processors.
However, there exists a similar problem as only parallelized in the z direction.
Therefore, in order to fully exploit massively parallel computer systems with
large amounts of processors and without being limited by the number of grid
points in either z or z direction, parallellizing in both x and z directions,
i.e. a 2D parallelization operating on a number of pencils, becomes a natural
choice.

Hence the whole field (velocity, pressure or scalar) is distributed in both

x and z direction among the different processors. A sketch of the data
distribution is shown in Figure 5.

12 13 14 15
8 9 10 11
4 5 6 7
0 1 2 3
Y
z
x

Figure 5: Initial data distribution among all the processors.

Main Storage

it=it+1

Figure 6: The main structure of the code for the 2D parallelization. Note
that there exists FFTs between the subroutines getpxz_z and getpxz_x
and inverse FFTs between putpxz_z and putpxz_x

The main structure of the code for the 2D parallelization is shown in
Figure 6. It looks quite similar to the structure of the 1D parallelization
given in Figure 1. As seen from Figure 6, in order to get the data from
the main storage onto part of the planes, subroutines getpxz_z in nonlinbl
and getpxy in linearbl have to be called. The corresponding subroutines
for putting data back to the main storage after calculations are putpxz_z
for nonlinbl and putpxy for linearbl. As the same procedure in the
1D parallelization, FFTs in both directions in each xz-plane have to be
performed by each processor. However, due to the data distribution on
each zz-plane we have now, only the 1D FFT in the spanwise direction is

available. Thus in order to perform the 1D FFT in the streamwise direction,
another global data communication has to be performed. This is done by
calling subroutine getpxz_x and the corresponding one before putting data
back to the tempory storage is putpxz_x. The details about both global
data communications will be explained in later section. Note that, the
global communication will inherently not scale linearly with the number
of processors that are involved in the communication. This will pose a
challenge for using large number of processors. Again, most of the total
communication of the code is in nonlinbl and the main computational effort
is the FFTs.

Due to the 2D parallelization, none of the processor has full access to
the data on any whole xz-plane. When carrying out the calculations, the
processors are divided into different groups. These groups are different from
the default MPI communication group, i.e. MPI_.COMM_WORLD, which
contains all the processors. At each time, only a certain fraction of the
total number of the processors will be involved in each group to do the
communication in each plane and different groups take care of the different
planes. In this way all the processors then run in parallel. Again, similarly as
for the 1D parallelization, the subroutines getpxz_z, getpxz_x, putpxz_z
and putpxz_x in nonlinbl are called by all the processors at the same
time and nprocz consecutive wall-parallel planes are treated in each y loop.
Remember that in the 1D parallelization, nproc = nprocx x nprocz wall-
parallel planes are treated simutaneously. The subroutines getpxy and
putpxy in linearbl are called by all the processors at the same time as well
and nprocz consecutive wall-normal planes are treated in each z loop. See
the definitions of nprocr and nprocz in later section.

A short description of how the data is transferred in nonlinbl is given
now. As depicted in Figure 5, initially the field is equally distributed among
all the processors, here we use 16 processors as an example. We denote
nproc, nprocr and nprocz to be the number of the total processors, the
processors in the z and z direction, respectively. Thus in this case nproc =
16 and nprocx = nprocz = 4. Note that with the present implementation of
the 2D parallelization, it is required that the number of processors should be
equally distributed along both the x and z directions, i.e. nprocx = nprocz =

nx

y/nproc. The size of the domain is % in x direction, nz in z direction and

nyp in y direction where nx, nyp and nz are the same as defined in the 1D
parallelization. Note that the size of the domain in the x direction is %°
rather than nz. This is due to the fact that we save the real and imaginary
parts of the complex numbers seperately. Then the amount of data stored

: _ nr
on each processor 18 memnx X memny X memnz where memnxz = Inprocz ’
nyp nz

memny = (int(; %) + 1) x nprocz and memnz = =
For the 2D parallelization, the global communication is implemented
only using the standard collective MPI command MPI_ALLTOALL, so memny

needs to be (int(;%2-) + 1) x nprocz. To make the transfer of data more
efficient, again user defined data type rather than the default ones provided
by the MPI library have to be used. The data types used in the subroutines
getpxz_z and putpxz_z are realgl and realg2. realgl has memnz blocks,
memnx elements in each block and memnx X memny elements between
start of each block. As detailed previously, an upper-bound of memna has
to be added to the data type realgl. The data type realg2 has memnz
blocks, memnx elements in each block and memnax elements between start
of each block. Note that no upper-bound element is needed here. In the
subroutines getpxz_x and putpxz_x, the data types used are realg3 and
realg4. The data type realg3 has ngffc ~ blocks, memnx elements in each
block and memnx elements between start of each block while realg4 has
s blocks, memna elements in each block and (“3% + 1) elements be-
tween the beginning of each block, again a upper-bound of size memnz has
to be used for realg4. Similar to the 1D parallelization, realgl and realg2
have the exactly the same size and it is also true for realgd and realg4. nxp
and nzp are defined later.

Before we calculate the nonlinear terms, we have to do the FFTs in both
x and z direction to transform the data from spectral space to physical space
as mentioned before. Due to the data storage after getpxz_z, this can be
done in only z direction. Thus we have to transfer the data among different
processors once more such that every processor can do the FFTs in the x

direction.

2)13 e) s
8 /9 /w0 /) u
a /s /6 7

0 1 3

X

Figure 7: The configuration of the groups for the first transpose.

So first, we separate the processors into nprocx groups and each group
contains nprocz processors. The creation of groups is shown in Figure 7.
Then we use the standard MPI command MPI_ALLTOALL to transpose the
data within each group. This is done by calling the subroutine getpxz_z.
We end up with the data storage configuration shown in Figure 8. For
convenience we only show the first consecutive nprocz planes in wall-normal
direction. The layout of the other wall-parallel planes are just a repetition of

12 13 14 15
8 9 10 11
Y
4 5 6 7
z
0 1 2 3
x

Figure 8: The data distribution after getpxz_z.

the first nprocz planes. The creation of groups and the data storage for the
second global data transpose are shown in Figure 9 and Figure 10 and will
be discussed later. Here we have to consider aliasing errors which are caused
by representing a higher wavenumber data at a lower wavenumber. When
calculating the nonlinear terms, these errors will be introduced. In order to
eliminate the aliasing errors, the 3/2-rule which is to expand the original grid
and pad some part with zeros has to be used. The original grid , as shown
in Figure 11 (a), is therefore expanded to a finer grid which has a dimension
of & in the x direction and nzp in the z direction where nzp = %nz, see
Figure 11 (b). If nzp is not divisibleb by nprocz, the dealizing grid needs to
be (52~ + min(1, mod(nzp, nprocz))) x nprocz, where the operation min
is to take the minimum and mod is the modulo operation. Then part of
the data denoted by the “slashed area” are moved to the upper part of the
fine grid and the middle part are padded with zeros denoted by the (). The
oddball mode are also set to zero which is denoted by the gridded lines, see
Figure 11. For more details about the oddball mode, refer to Chevalier et al.
(2007). At the end of this step, each processor can perform the backward
FFT in the z direction on the fine grid.

In a second step, we create nprocz new groups and each group contains
nprocx processors. This is to prepare for the FFTs in the x direction to
be performed. The newly created groups are sketched in Figure 9. Then
another transpose of the data in each group by using the MPI command
MPI_ALLTOALL can be executed. This second data transpose is done by
calling subroutine getpxz_x. After the data transpose, the data storage
configuration on each processor is shown in Figure 10. The grid is expanded
in the z direction this time in order to account for the 3/2-rule and the

dimension of the dealising grid is "3 + 1 in the 2 direction and still nzp
in z direction where nzp = %nw This is shown in Figure 11 (¢). The

additional point in streamwise direction is due to requirement of the FFT.
For a complex to real FF'T. Two more points, i.e. two zeros for the imaginary

10

2 | 13 | 14 | 15
8 9 | 10 | 1
Y
4 | s 6 7
z
0| 1 2 3
€T

Figure 9: The configuration of the groups for the second transpose.

15

14
13 11

12 10

X

Figure 10: The data distribution after getpxz_x.

parts, are added. One for the zero frequency component and the other for the
Nyquist frequency component. Since the real and imaginary parts are saved
seperatly, only one more point is added in the = direction. The right-hand
part is padded with zeros and the oddball mode is set to zero. Last, the FFT
in the x direction on each processor are performed. After the FFTs, all the
data is in physical space and the nonlinear terms can be calculated . Once
finishing calculating the nonlinear terms, all the data has to be transfered
back to the spectral space to match the configuration shown in Figure 5.
This will be exactly a reverse process of the steps mentioned above.

In the subroutine linearbl, the data is put onto zy-planes by calling the
subroutine getpxy. As shown in Figure 12, each processor only calculates
a portion of one xy-plane at each time, therefore the computation is carried
out in parallel and there is no communication involved between any two
processors. After the calculation, the data is put back to the main memory

11

nz

= nz2+1
nx/2

nx/2

nx/2+1

nxp/2+1

Figure 11: The dealizing grid and the odd ball location in a zz-plane.

2,/ 13,/ 14/ 15

| 1 []

8 9 /10 /1
L[|
4/ 5 6 7
| 1 []
o /1 2 3
)]
— z

x

Figure 12: The data distribution in linearbl.

12

through subroutine putpxy.

2.3 Amount of communication
2.3.1 1D parallelization

The main communication between the processors is in the nonlinear part,
i.e. subroutine nonlinbl. Assume that we only consider a velocity field, i.e.
without pressure or scalar fields. Then for each call to nonlinbl, five vari-
ables (three velocity componets and two vorticity components) are collected
from the main memory by calling subroutine getpxz and three variables
(three vorticity components) are put back to the main memory by calling
subroutine putpxz for the 1D parallelization. Thus a total of eight variables
have to be communicated which is independent on the implementation of the
global communication we choose. Here we only consider the version using
collective communication, i.e. using standard command MPI_ALLTOALL.
For the hand written version, one can find more details in Alvelius and Skote
(2000).

Each processor performs calculation on approximately (int(nzggc) +1)
xz-planes. The data types of the message we use are the user defined data
types, i.e. reagl and realg2. Both of them have a size of memnxz X memnz
or % x -2 g0 in total the amount of data that one processor collects for
one xz-plane is

2 nproc’

ne nz
2 x nproc x (— X
2 nproc

) =nx Xnz. (1)

Note that each processor collects data not only from the other processors
but also from itself, and both the real and imaginary part gives a factor of
2 for the total amount of data which has to be communicated. This gives
that for one variable each processor needs to collect

nyp
nproc

(int()+ 1) X nx X nz (2)
real numbers from all the processors at each Runge-Kutta substep. Since
each message has double precision, i.e. 8 bytes for each real number, the
total amount of data needs to be communicated for a single processor for
all 8 variables and one iteration (Runge-Kutta substep) is

nyp
nproc

8 x 8 x (int()+ 1) X nz xnz (3)

bytes. The amount of data that each processor has to send at the same time
is as large as the amount that has to be received.

13

2.3.2 2D parallelization

For the new 2D parallelization, the situation is slightly different than that
for the 1D case. As explained earlier, we have to transpose the data twice
in order to perform the FFTs. For each call to nonlinbl, five variables
(three velocity componets and two vorticity components) are collected from
the main memory with getpxz_z and later three variables (three vortic-
ity componets) are put back to the main memory with putpxz_z within
nonlinbl. Six variables (three velocity componets and three vorticity com-
ponents) are collected from the temporary storage via getpxz_x and only
three variables (three vorticity components) are put back with putpxz_x
to the temporary storage. In the 2D case, each processor performs calcula-
tions on approximately (ngfj’(fjc - + 1) xz-planes. The data types used for the
message are realgl and realg? in getpxz_z and putpxz_z while realg3 and
realg4 in getpxz_x and putpxz_x. Both realgl and realg2 have a size of
Sriprocs X mprocz and the size of realg3 and realgd is 57— X ngf(f’c —. Follow-
ing the same steps as for the 1D parallelization, the total amount of data
which has to be collected for one processor for each Runge-Kutta substep
and all 17 variables is then

P)+ 1) x (8% X nz+9 X nx x
nprocz nproce nprocz

nzp

8 x (int((4)
bytes. Again the same amount of data has to be sent by each processor at
the same time.

3 Performance Analysis

For the parallel computing, the maximum speed-up one can obtain of a code

is
1

T F+(1-F)/N (5)

where F' is the fraction of a calculation that is sequential, i.e. the part that
cannot benefit from parallelization, and thus (1 — F') is the fraction that can
be parallelized where N is the number of processors used for the calculation.
This is usually referred as the Amdahl’s law. Ideally, if the whole code can
run in parallel, a maximum of speed up of N can be obtained, i.e. the so-
called linear speed up. However, a code always has some part which cannot
be parallellized in practice. This will lead to a maximum speed-up by % for
large N. Therefore, a lot of effort is devoted to reducing F to a value as
small as possible. Additionally, even the parallel parts of a code will usually
not scale linearly, but rather at a reduced rate.

A benchmark has been performed on a BlueGene/L machine manufac-
tured by IBM. The building block of the BlueGene/L system is the compute
card consisting of 1 node. On each node there are two processors (cores)

speed — up

14

with up to 1024 Mbytes of memory. Each processor is an embedded 32-bit
PowerPC 440 with a clock frequency of 700 MHz. The system-on-a-chip de-
sign contains three interconnections: Gbit Ethernet, global tree (collective
communication) and 3D Torus. Two execution modes are available for each
node. One is the co-processor mode (CO), i.e. only one MPI process per
node with maximum 1024 Mbytes of memory per process. In this mode, one
processor is dedicated to communication and the other to general processing.
The other mode is the virtual-node mode (VN), i.e. two MPI processes per
node with maximum 512 Mbytes of memory per process. In this case, each
processors uses half of the resources and works as an independent processor.
A detailed description about the BlueGene/L machine can be found in the
manual.

3.1 Code Performance

Two cases of different sizes are tested for both 1D and 2D parallelizations.
The smaller case has the resolution of 1024 x 129 x 128 (runl) while the
resolution of the bigger one is 512 x 513 x 512 (run2). Only the velocity
field, i.e. without pressure and scalar fields, is simulated for periodic channel
flow, and the code has been run in virtual-node mode (VN). As mentioned
before, most of the execution time is spent in the linear and nonlinear parts,
i.e. in subroutines linearbl and nonlinbl, and the main computational effort
is the FFTs in nonlinbl. So the speed-up plot shown later are only based
on the execution times from these two subroutines. The time we choose to
calculate the speed-up is the execution time per time step, i.e. four Runge-
Kutta substeps.

1/time
1/time

Figure 13: Performance of the two parallelizations for the small case (runl).
- - -Linear speed up, O linearbl, o nonlinbl. Left: 1D parallelization,
Right: 2D parallelization.

In Figure 13 the two parallelizations are compared for the smaller case
(runl). Due to the requirement of the 2D parallelization, i.e. the processors
should be equally distributed along both directions, the first data point
corresponds to 2 nodes or 4 processors. We clearly see that the linear part

15

has a linear behaviour, even a slightly super-linear behaviour for the 2D
parallelization. However, the speed-up curves of the nonlinear part for both
parallelizations deviate from the linear speed up curve further and further
as more and more processors are used.

10° 0
Nodes (2 processors per node) Nodes (2 processors per node)

Figure 14: Performance of the two parallelizations for the large case (run2).
- - -Linear speed up, O linearbl, o nonlinbl. Left : 1D parallelization,
Right : 2D parallelization.

In Figure 14 the large test case (run2) is shown for the two paralleliza-
tions. Note that due to the larger memory requirements, a minimum number
of nodes of 16 has to be used for the 1D parallelization and 32 for the 2D
parallelization. Similarly to the smaller case, the linear parts of both paral-
lelizations still have linear performance. But for the nonlinear parts, a clear
difference can be observed for the two parallelizations. As seen from the
plots, the 1D parallelization shows a similar behaviour as for the smaller
case reaching a saturation of the performance at 256 node, and the 2D par-
allelization has almost linear performance up to 512 nodes.

As we know from the previous section, in the nonlinear part, i.e. subrou-
tine nonlinbl, the speed up curve will inherently not scale linearly with the
number of processors we used since we perform the global data transpose.
However, there is another important fact which leads to this suboptimal
behaviour, i.e. the odd number of discretization points in the wall-normal
direction. Since we use the Chebyshev representation in the wall-normal
direction, the spectral modes in y direction is not divisible by the number
of processors, i.e. % for the 1D parallelization or 22— for the 2D paral-
lelization is not an integer. Therefore, for the last y loop outside subroutine
nonlinbl, not all the processors are active. So the last loop is not com-
pletely parallelized. If nproc or nprocz is of the same order of magnitude
as nyp, this will have very big effect on the performance. This is what we
have observed from the smaller test case for both parallelizations and the
bigger case for the 1D parallelization. If nproc or nprocz is relatively small
compared to nyp, the effect form this last y loop is much smaller. This is
shown by the bigger case for the new 2D parallelization. In general, for the

16

2D parallelization, since nprocz is only the square root of nproc, the effect
of the last y loop should be smaller than the 1D parallelization. However, if
we increase the number of processors for the 2D parallelization even more,
at some point we will have the same problem.

To investigate the behaviour of subroutine nonlinbl more in detail, we
split the total execution time spent in subroutine nonlinbl into two parts:
one part only involves communication (¢.om), the other part is the compu-
tation (fser), e.g. FETs. Hence we have the relation t,oniins = teom + tser-
In Figure 15 the time of communication and computation in subroutine

7 /E/EF/ £
er// 10° v //D

10 pd - -7 - =
g e = g 7 S
S e < -

R
10 L =
=
107
2 101 1 3
10 10 10 10 10 10 10°
Nodes (2 processors per node) Nodes (2 processors per node)
10°
P 1) -z
P A - e

10 - - b e _

£ Ba L e
/ Ea
10 - 10°
10 10° 10
Nodes (2 processors per node) Nodes (2 processors per node)
Figure 15: Performance of .y, and ts., in nonlinbl. - - - Linear speed up,

O teom, © tser. Top : Small case, Bottom : Big case. Left : 1D parallelization,
Right : 2D parallelization.

nonlinbl are compared for both parallelizations. As we expected, for both
parallelizations the speed up curves for the communication part do have
suboptimal behaviours. It is clear by comparing the computational part for
the two parallelizations that the effect of the last y loop has a smaller effect
for the 2D parallelization. Remember that the main computational effort is
the FFTs which indicates that the time spent by the computation should
be larger than that by the communication and this is also observable from
the plots. Note that since we plot tirlne’ the lower the position the large
the execution time is. As we increase the number of processors, more and
more communication will happen which means that ¢..,, will take larger and
larger portion of the total time spent in nonlinbl. For the 2D paralleliza-

tion, since we have twice(??) more communication, the growth of .o, is

17

even faster. As one can see from the plots, teom could be larger than tge,
even at small number of processors, e.g. 32 nodes (64 processors).

To eliminate the last y loop effect on the performance, we multiply a
factor k with each sampled data from nonlinbl. This correction is just to
help us to develop the model of the whole performance of the code. Since
the effect for the 2D parallelization is much smaller than that for the 1D
parallelization, we only do this correction for the 1D parallelization. The
correction factor k is only a function of the number of processors that has
been used and is defined as

k:

nyp (6)
(int("2L) + 1) X nproc

nproc

1/time

10
Nodes (2 processors per node)

Figure 16: Performance of the 1D parallelization after correction.
- - -Linear speed up, O linearbl, o nonlinbl. Left : Small case, Right :
Big case.

1/ tim
8
1/ time
\
N
N

10"
Nodes (2 processors per node) Nodes (2 processors per node)

Figure 17: Performance of t.o, and ts., in nonlinbl after correction for the
1D parallelization. - - - Linear speed up, O teom, © tser. Left : Small case,
Right : Big case.

After the correction, the total time spent in subroutines linearbl and
nonlinbl are shown in Figure 16 and the communication and computation
parts within nonlinbl are shown in Figure 17, respectively. Now except the

18

communication part, all the other parts, i.e. linear part and computation
part, have linear speed up performance. And this is also true for the 2D
parallelization.

In order to roughly estimate the performance on BlueGene/L without
running a simulation, we have developed the performance model for the code
of both 1D and 2D parallelizations. From the previous section we know that
after eliminating the effects from the last y loop, only the communication
part which is supposed not to scale linearly does not have a linear speed
up behaviour. Therefore this part needs to be modelled. In the models,
we only consider the latency and bandwidth to be the most important fac-
tors and neglect all the other influences, e.g. the distance between the two
communicating processors, whether they are in the same node card or not.

Then for the MPI_ALLTOALL version of the 1D parallelization, the
model of the execution time of communication te.; for one Runge-Kutta
iteration and one variable can be built up as following steps: First, each
processor performs calculation on approximately (int(7;;% C) + 1) xz-planes.
Second, each processor needs to collect

2 x (int(;25:) + 1) x nproc x 5 x 2

messages (real numbers) from all the processors for one variable at each
Runge-Kutta iteration. The associated count for latency of one processor
for collecting all these data is

2 x 2 x (int(-2) 4+ 1) x nproc

nproc

times. Note that the first factor of 2 is from the real and imaginary part of
the data needs to be collected and the second one is from the fact that each
processor has to send and receive data at the same time.

So the execution time of communication t.., of one processor for one
time step, i.e. 4 Runge-Kutta iterations, all the 8 variables is approximately
given by

nyp nz

teom = 4 x 8 x 2 x (int(
np

)+1)-nproc~(2~a+8~@~ B~H (7)

roC 2 nproc .
where « is the latency [us] and 3 is the bandwidth [Mbytes/s]. The number
of messages has been multiplied by a factor of 8 to convert unit to bytes, since
we use double precision, i.e. 8 bytes for each message. The corresponding
model for the hand-written version of the 1D parallelization is also given
here,

nyp nz

teom =4 X 8 X 2 x ~(nproc—1)-(2-a—|—8-% B7H . (8)
c

2 nproc '

There is only very little difference when comparing these two models given
by equations (7) and (8). Following the same steps, we could develop model

19

of the execution time of communication t.., for the 2D parallelization. For
one time step, i.e. 4 Runge-Kutta iterations, all the 17 variables, execution
time of communication t..,, is approximately given by

n
yp)+ 1)

nprocz
nT 9 nx nzp

teom = 4 x17x2 x (int(

(2 a+8x (> x 571)(9)

17 2 -nprocx et 17 2 nprocz '
for the 2D parallelization.

Once we have the model for the communication part, the model for the
total execution time could be easily developed since all the other parts have
a linear behaviour after some correction. We have already mentioned that
most of the time of the code is spent in subroutines linearbl and nonlinbl,
so we will use the sum of the execution time from these two subroutines to
represent the total time for the code. Hence the total execution time (¢.2)
for the 1D parallelization can be expressed as

1D
ttotal = tlinearbl T tnonlinbl = liinearbl + teom + tser

and tinearbls tsers tcom are calculated as

1

nproc
tiinearbl = tllinearbl :
nproc
1 1
_ teer NPTOC
tser = :
k nproc
*
t — tcﬂ
com —
k

where all the terms with a superscript 1 are the first available measurement
data from a simulation. Because it is not always possible to get the data
from a serial version of the code, e.g. due to the memory requirement. k is
correction factor defined in equation (6) and t,,,, is the value calculated from
equation (7) or (8) depending on which version of the global communication
is used. The total execution time (t2L) for the 2D parallelization can be

expressed in the same way as

2D
ttotal = tlinearbl T tnonlinbl = liinearbl + tecom + tser

and tinearbls tser, tecom can be expressed similarly as

1

o nproc
tiinearbl = tlinearb - “nproc
. 1 nproct
ser T bser T pmroc

teom = t:am

20

where again all the terms with a superscript 1 are the first available mea-
surement data from a simulation. ¢}, is the value calculated from equation
(9). Remember that we do not do the correction for the last y loop of the
2D parallelization, so there is no correction factor in the model.

The predicted total execution time as well as the one from the simulation
measurements for one time step of both parallelizations are shown in Figure
18 and 19. In general, both models predict the behaviours of the code for
all the cases very well. The values for the latency « and bandwidth beta are
obtained by doing a least square fit based on the measurements from the
simulation. Based on these values, we then tune the values such that they
fit for both the smaller and the bigger case.

time
\
\
htim

2
10
Nodes (2 processors per node) Nodes (2 cores per node)

Figure 18: Model prediction versus the measurements for the 1D paralleliza-
tion. O Model, o Measurements. Left : Small case with a = 20 [us] and
= 85 [Mbytes/s], Right : Big case with a = 20 [us] and 8 = 50 [Mbytes/s].

1/time
15
.
\\
1/time
R
5

10° 10°
Nodes (2 processors per node) Nodes (2 cores per node)

Figure 19: Model prediction versus the measurements for the 2D paralleliza-
tion. O Model, o Measurements. Left : Small case with o = 15 [us] and 5 =
175 [Mbytes/s], Right : Big case with o = 15 [us] and 8 = 120 [Mbytes/s].

As one may notice that the value of the bandwidth that we use in the
model is quite different from the theoretical value given by the manual of
the BlueGene/L machine which are 175 [Mbytes/s| for 3D Torus and 350
[Mbytes/s| for global tree which is used for the collective communication.

21

Some reasons are explained below. It is a well-known fact that once the
size of the data which is sent is below a certain level, the bandwidth or the
data transfer speed will decrease considerablely from the maximum values.
As the number of processors increases, the size of the data decreases and
consequently the bandwidth for each individual processor also decreases.
However, according to Alvelius and Skote (2000), although the bandwidth
of each processor decreases, the effective time of the message passing should
decrease since the amount of data needs to be sent becomes smaller. Another
reason is that the value given by the BlueGene/L manual is for point-to-
point communication, i.e. each processor is either sending data or waiting
for receiving data at one time. However, in our test cases, all the processors
are both sending and receiving data at the same time. So for each processor,
the maximum data transfer speed of either sending or receiving data is only
half of the bandwidth. Thus the theoretical value should be divided by a
factor of 2 to compare with our test case. For the big case, due to more
processors that we use, a factor of 3 should be used. If comparing with the
half (for the small case) and one third (for the big case) of the theoretical
values of the bandwidth, it agrees very well with our values predicted by
the models. The latency is about twice as big as from the theoretical value
which is no more than 10 us, this might be due to the models themselves
which are not correct. However, as long as we send large pieces of messages,
the influences from the latency are always small enough to be neglected.

4 Conclusion

An efficient pseudo-spectral code (SIMSON) for solving incompressible
Navier—Stokes equations of channel and boundary layer geometry has been
developed during the last years. The parallelization of the code is only in
spanwise direction. Due to the limitation of the parallelization, the total
number of processors that can be used is at most 256. This is definitely not
suitable for the massively parallelled supercomputers. Therefore, a new 2D
parallelization has been implemented. This gives us the possibility to run a
simulation with more than 1000 cores (processors).

By looking into the details about the performance of different parts of
the code, we find that suboptimal performance is due to the fact that for
the last y loop the code is not fully parallelled, i.e. some processors are
doing noting but just waiting. This problem can not be eliminated due to
the algorithm we use now, but the effect of the problem can be reduced to
some extent. Nevertheless, the code can scales efficiently with the number
of processors and therefore a high performance can be achieved. Moreover,
this will greatly shorten the time for waiting in the queue.

The associated performance models for both parallelizations are devel-
oped and they predict the behaviours of the code very well. The only part

22

needs modelling is the communication, the other parts have linear behaviour
after some simple modification. The benchmark has been done on a Blue-
Gene/L machine. So the performance models we obtained do not imply that
they will also work for another machine. They might not even work at all
on another machine. Some tunings of the code is always necessary.

Acknowledgements

The computer time was provided by the Center for Parallel Computers
(PDC) at the Royal Institute of Technology (KTH) and the National Su-
percomputer Center in Sweden (NSC) at Linképing University.

References

K. Alvelius and M. Skote. The performance of a spectral simulation code
for turbulence on parallel computers with distributed memory. Technical
Report TRITA-MEK 2000:17, Royal Institute of Technology, Stockholm,
2000.

C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods
in Fluid Dynamics. Springer, Berlin, Germany, 1988.

M. Chevalier, P. Schlatter, A. Lundbladh, and D. S. Henningson. A pseudo-
spectral solver for incompressible boundary layer flows. Technical Report
TRITA-MEK 2007:07, Royal Institute of Technology, Stockholm, 2007.

A. Lundbladh, D. S. Henningson, and A. V. Johansson. An efficient spec-
tral integration method for the solution of the navier—stokes equations.
Technical Report FFA-TN 1992-28, Aeronautical Research Institute of
Sweden, Bromma, 1992.

A. Lundbladh, S. Berlin, M. Skote, C. Hildings, J. Choi, J. Kim, and D. S.
Henningson. An efficient spectral method for simulation of incompressible
flow over a flat plate. Technical Report TRITA-MEK 1999:11, Royal
Institute of Technology, Stockholm, 1999.

P. Moin and K. Mahesh. Direct numerical simulation: A tool in turbulence
research. Annu. Rev. Fluid Mech., 30:539-578, 1998.

23

