
ISSN 0348-467x
ISBN 978-91-7178-838-2
TRITA-MEK 2007:07

KTH
 2007

SIM
SO

N
M aT T I a S C H e va l I e r , P H I l I P P S C H l aT T e r ,

a N d e r S l u N d b l a d H a N d d a N S . H e N N I N g S O N

KTH Mechanics
KTH, SE-100 44 Stockholm

www.kth.se

SIMSON

Technical Report
Stockholm, Sweden 2007

A Pseudo-Spectral Solver for
Incompressible Boundary Layer Flows

SIMSON
A Pseudo-Spectral Solver for

IncoMpreSsible BOuNdary Layer Flows

Mattias Chevalier, Philipp Schlatter,
Anders Lundbladh and Dan S. Henningson

KTH Mechanics

TRITA-MEK 2007:07

This is software which is distributed freely on a limited basis; it comes with no guarantees
whatsoever. Problems can be reported to henning@mech.kth.se, but no action is promised.
If results obtained by using the programs included in the Simson distribution are published
the authors would like an acknowledgment, e.g. in the form of referencing this code manual.

The front page image is a visualization of laminar-turbulent transition induced by ambient
free-stream turbulence convected above a flat plate, i.e. so-called bypass transition (Brandt
et al., 2004). The large-eddy simulation used to generate the image (Schlatter et al., 2006)
is performed with Simson using the ADM-RT subgrid-scale model (Schlatter et al., 2004),
further postprocessed using the program lambda2 and rendered using OpenDX. Low and
high speed streaks are visualized with blue and red isocontours, respectively; green and
yellow isocontours indicate the λ2 vortex identification criterion (Jeong & Hussain, 1995).
The flow is from lower left to upper right.

This user guide is compiled from revision 1047.

ISBN 978-91-7178-838-2

Contents

1 Introduction 1

1.1 Contributions . 1

1.2 Release notes . 2

1.2.1 Version 4.0.0 . 2

1.3 Published results . 2

1.3.1 Channel and Couette flow studies 2

1.3.2 Boundary layer flow studies . 3

2 Installation 5

2.1 Prerequisites . 5

2.1.1 Requirements . 5

2.1.2 Optional requirements . 5

2.2 Directory structure . 5

2.3 Building Simson . 6

2.3.1 Configuring . 6

2.3.2 Compiling . 8

2.3.3 Compiling for parallel runs . 9

2.3.4 Installing . 9

3 Operation 11

3.1 Preprocessing . 11

3.1.1 Generating initial velocity fields with fsc and bls 11

3.1.2 Generating non-similarity base flows 12

3.2 Running bla . 12

3.2.1 Running in serial . 12

3.2.2 Running in parallel with OpenMP 13

3.2.3 Running in parallel with MPI 13

3.2.4 Memory requirements . 13

3.2.5 Performance tuning . 14

3.3 Postprocessing . 14

3.3.1 Postprocessing velocity files with rit 14

3.3.2 Postprocessing velocity files with cmp 14

3.3.3 Postprocessing plane files with rps 14

3.3.4 Postprocessing velocity files with fou 15

3.3.5 Postprocessing amplitude files with pamp1, pamp2, pampw,
pampw2 and pext1 . 15

3.3.6 Postprocessing xy-statistics files with pxyst 15

iii

TRITA-MEK 2007:07

4 Theory 17

4.1 Derivation of the velocity–vorticity formulation 17

4.2 Forcing . 18

4.2.1 Temporal simulations . 18

4.2.2 Spatial simulations . 19

4.3 Boundary conditions . 21

4.3.1 Poiseuille flow . 21

4.3.2 Couette flow . 21

4.3.3 Boundary layer flow . 21

4.3.4 Asymptotic suction boundary layer flow 22

4.3.5 Surface roughness . 23

4.3.6 Jet in crossflow . 23

4.4 Initial conditions . 23

4.5 Disturbance formulation and linearized solver 25

4.6 Pressure solver . 25

4.7 Passive scalar . 26

4.8 Selective frequency damping . 26

4.9 Large-eddy simulation . 27

4.9.1 Dynamic Smagorinsky model 27

4.9.2 High-pass filtered Smagorinsky model 28

4.9.3 Relaxation-term model (ADM-RT) 28

4.10 Magneto-Hydrodynamics (MHD) . 29

5 Numerical method 31

5.1 Temporal discretization . 31

5.2 Horizontal discretization – Fourier expansions 33

5.2.1 Normal velocity and normal vorticity equations 34

5.2.2 Horizontal velocities and wavenumber zero 34

5.2.3 Solution procedure with boundary conditions 35

5.3 Normal discretization – Chebyshev expansion 37

5.3.1 Chebyshev tau method – CTM 38

5.3.2 Chebyshev integration method – CIM 39

5.3.3 Integration correction . 40

6 Implementation 43

6.1 Program structure of bla . 43

6.1.1 Step 1, Initialization . 43

6.1.2 Step 2, Computations in physical space 44

6.1.3 Step 3, Computations in Fourier–Chebyshev space 45

6.1.4 Step 4, Output . 45

6.2 Data structure . 45

6.2.1 Complex numbers and FFTs . 46

6.2.2 Main storage, boxes, drawers, and planes 46

6.2.3 Naming conventions . 46

iv

TRITA-MEK 2007:07

6.2.4 The oddball wavenumbers . 47

6.3 Parallelization . 47

6.3.1 OpenMP . 47

6.3.2 MPI . 48

7 File formats 51

7.1 Compile time parameter file par.f . 51

7.2 Runtime parameter file fsc.i . 52

7.3 Runtime parameter file bls.i . 53

7.4 Runtime parameter file bla.i . 55

7.5 Runtime LES parameter file sgs.i . 62

7.6 Velocity file . 63

7.7 Pressure file . 64

7.8 Amplitude file . 64

7.9 Wave amplitude file . 64

7.10 Extremum file . 65

7.11 Plane velocity file . 65

7.12 xy-statistics file . 65

7.13 Two-point correlation file . 67

7.14 Time-series file . 68

7.15 Free-stream velocity table file . 68

7.16 Forced wave file wave.dat . 68

7.17 Base flow profile file fsc.dat . 68

7.18 Surface-roughness file . 68

Bibliography 71

A Examples 77

A.1 Temporal channel and Blasius boundary layer flow 77

A.2 Temporal turbulent channel flow at Reτ = 180 77

A.3 Temporal Couette flow with turbulent spots 77

A.4 Temporal Falkner–Skan–Cooke boundary layer flow 78

A.5 Asymptotic suction boundary layer flow 78

A.6 Spatial Blasius boundary layer flow . 78

A.7 Spatial Falkner–Skan–Cooke boundary layer flow 79

B Scaling of variables 81

C Subversion quickstart 83

C.1 Introduction . 83

C.2 Getting started . 83

C.2.1 Creating a working copy root directory 83

C.2.2 The most commonly used Subversion subcommands 83

C.2.3 Other useful subcommands . 86

C.2.4 Manually merging a conflict . 87

v

TRITA-MEK 2007:07

C.2.5 Branches . 88

C.2.6 Private configuration file . 88

C.3 Examples . 88

vi

1Introduction

This report is a part of Simson version 4.0.0, a software package that implements
an efficient spectral integration technique to solve the Navier–Stokes equations for
incompressible channel and boundary layer flows. The report describes how to con-
figure, compile and install the software. Additionally, an introduction to the theory
and the numerical details of the implementation is given.

The solver is implemented in Fortran 77/90. The original algorithm reported in
Lundbladh et al. (1992a) solved the incompressible Navier–Stokes equations in a
channel flow geometry. That algorithm has been reimplemented in a boundary layer
version of the code reported in Lundbladh et al. (1999). That allowed simulations of
the flow over a flat plate. To do this an artificial free-stream boundary condition was
introduced, and for spatial simulations a fringe region technique similar to that of
Bertolotti et al. (1992) was implemented. In Simson the channel and boundary layer
solvers have been combined together with many different features developed over the
years.

The code can be run either as a solver for direct numerical simulation (DNS) in which
all length and time scales are resolved, or in large-eddy simulation (LES) mode where
a number of different subgrid-scale models are available. The evolution of multiple
passive scalars can also be computed. The code can be run with distributed or
with shared memory parallelization through the Message Passing Interface (MPI) or
OpenMP, respectively. The wall-parallel directions are discretized using Fourier series
and the wall-normal direction using Chebyshev series. Time integration is performed
using a third order Runge–Kutta method for the advective and forcing terms and
a Crank–Nicolson method for the viscous terms. The basic numerical method is
similar to the Fourier–Chebyshev method used by Kim et al. (1987). Further details
about spectral discretizations and additional references are given in e.g. Canuto et al.
(1988).

1.1 Contributions

The following people, in alphabetical order, have all made contributions during the
development of the Simson code: Krister Alvelius, Shervin Bagheri, Stellan Berlin,
Luca Brandt, Mattias Chevalier, Jaisig Choi, Dan Henningson, Astrid Herbst, Casper
Hildings, Markus Högberg, Arne Johansson, John Kim, Ori Levin, Qiang Li, An-
ders Lundbladh, Linus Marstorp, Antonios Monokrousos, Philipp Schlatter, Lars-Uve
Schrader, Martin Skote, Petra Wikström and Espen Åkervik.

1

TRITA-MEK 2007:07

1.2 Release notes

1.2.1 Version 4.0.0

The most prominent features of the Simson package are listed below.

• Fully spectral discretization with high accuracy

• Support for many different flow cases

– Blasius boundary layer flow

– The family of Falkner–Skan-Cooke boundary layer flows

– Poiseuille flow

– Couette flow

– Asymptotic suction boundary layer flow

• Spatial and temporal flows

• Disturbance formulation and linearized equations

• Support for MPI and OpenMP parallelization

• Multiple passive scalars

• Selective frequency damping

• Low magnetic Reynolds number approximation (MHD)

• Various initial, inflow and boundary condition types

1.3 Published results

The channel and boundary layer codes have been used in a number of investigations.
A selection of these publications are listed, chronologically, below. Note that some
studies listed in the boundary layer section include also channel flow results.

1.3.1 Channel and Couette flow studies

1. Optimal secondary energy growth in a plane channel flow (Cossu et al. (2007)
and some additional derivations in Chevalier (2004))

2. State estimation in wall-bounded flow systems, Part 1. Laminar flows (Hœpffner
et al., 2005)

3. Optimal control of bypass transition (Högberg et al., 2000)

4. On stability of streamwise streaks and transition thresholds in plane channel
flows (Reddy et al., 1998)

5. Bypass transition and linear growth mechanisms (Henningson, 1995)

6. Ribbon induced oblique transition in plane Poiseuille flow (Elofsson & Lund-
bladh, 1994)

7. Bounds for threshold amplitudes in subcritical shear flows (Kreiss et al., 1994)

8. Threshold amplitudes for transition in channel flows (Lundbladh et al., 1994a)

9. Spatial evolution of disturbances in plane Poiseuille flow (Schmid et al., 1994)

10. Growth of a localized disturbance in inviscidly stable shear flow (Lundbladh,
1993)

11. A mechanism for bypass transition from localized disturbances in wall-bounded
shear flows (Henningson et al., 1993)

12. Numerical simulation of spatial disturbance development in rotating channel
flow (Lundbladh & Henningson, 1993)

2

TRITA-MEK 2007:07

13. Nonlinear energy density transfer during oblique transition in plane Poiseuille
flow (Schmid & Henningson, 1993)

14. A new mechanism for rapid transition involving a pair of oblique waves (Schmid
& Henningson, 1992)

15. Direct simulation of turbulent spots in plane Couette flow (Lundbladh & Jo-
hansson, 1991)

16. On the evolution of localized disturbances in laminar shear flows (Henningson
et al., 1990)

17. Subcritical transition in plane Poiseuille flow (Lu & Henningson, 1990)

1.3.2 Boundary layer flow studies

1. Linear feedback control and estimation applied to instabilities in spatially de-
veloping boundary layers (Chevalier et al., 2007)

2. Turbulent spots in the asymptotic suction boundary layer (Levin & Henning-
son, 2007)

3. Large-eddy simulation of bypass transition (Schlatter et al., 2006)

4. Early turbulent evolution of the Blasius wall jet (Levin et al., 2006)

5. Periodic excitation of a turbulent separation bubble (Herbst & Henningson,
2006)

6. Transition thresholds in the asymptotic suction boundary layer (Levin et al.,
2005b)

7. A study of the Blasius wall jet (Levin et al., 2005a)

8. Transition in boundary layers subject to free-stream turbulence (Brandt et al.,
2004)

9. Linear compensator control of a pointsource induced perturbation in a Falkner–
Skan–Cooke boundary layer (Högberg et al., 2003)

10. On the convectively unstable nature of optimal streaks in boundary layers
(Brandt et al., 2003)

11. Varicose instabilities in turbulent boundary layers (Skote et al., 2002)

12. Transition of streamwise streaks in zero-pressure-gradient boundary layers (Brandt
& Henningson, 2002)

13. Direct numerical simulation of a separated turbulent boundary layer (Skote &
Henningson, 2002)

14. Linear optimal control applied to instabilities in spatially developing boundary
layers (Högberg & Henningson, 2002)

15. Linear and nonlinear optimal control in spatial boundary layers (Chevalier
et al., 2002)

16. Optimal control of wall bounded flows (Högberg et al., 2001)

17. A study of boundary layer receptivity to disturbances in the free stream (Berlin
& Henningson, 1999)

18. Numerical and experimental investigation of oblique boundary layer transition
(Berlin et al., 1999)

19. The fringe region technique and the Fourier method used in the direct numerical
simulation of spatially evolving viscous flows (Nordström et al., 1999)

20. Secondary instability of cross-flow vortices in Falkner–Skan–Cooke boundary
layers (Högberg & Henningson, 1998)

21. Linear and nonlinear development of localized disturbances in zero and adverse
pressure gradient boundary-layers (Bech et al., 1998)

22. Control of oblique transition by flow oscillations (Berlin et al., 1998)

3

TRITA-MEK 2007:07

23. Direct numerical simulation of self-similar turbulent boundary layers in adverse
pressure gradients (Skote et al., 1998)

24. Simulations of laminar and transitional separation bubbles (Hildings, 1997)

25. Transition thresholds in boundary layer and channel flow (Schmid et al., 1996)

26. Evaluation of Turbulence Models from Direct Numerical Simulations of Tur-
bulent Boundary Layers (Lundbladh & Henningson, 1995)

27. Simulation of bypass transition in spatially evolving flows (Lundbladh et al.,
1994b)

28. Transition in Falkner–Skan–Cooke flow (Henningson & Lundbladh, 1994)

29. Spatial simulations of oblique transition (Berlin et al., 1994)

30. A mechanism for bypass transition from localized disturbances in wall-bounded
shear flows (Henningson et al., 1993)

31. Simulation of the breakdown of localized disturbances in boundary layers (Lund-
bladh et al., 1992b)

4

2Installation

2.1 Prerequisites

2.1.1 Requirements

To compile and install Simson the following tools are required:

• A Unix-like platform (e.g. Linux, OSF1, Irix, AIX and Tru64).

• A Fortran 90 compiler (e.g. Intel ifort 10, Lahey f95 and PGI).

• sh (Bourne Shell)

• GNU make 3.79.1 or later
(freely available at http://www.gnu.org/software/make/make.html)

2.1.2 Optional requirements

The following tools are optional:

• An MPI implementation (e.g. LAM, MPICH). Required to take advantage
of the distributed-memory parallelization.

• An OpenMP compiler. Required to take advantage of shared-memory multi-
processor computers.

• Matlab for various scripts, plotting and postprocessing.

• X-Windows to use some of the postprocessing tools.

• OpenDX data format is supported for three-dimensional visualization.

• EnSight Gold data format is supported (e.g. EnSight and ParaView).

• HDF4 data format is supported (e.g. Matlab).

• Subversion is used as the version control system for the development of Sim-
son.

2.2 Directory structure

The Simson source code is usually supplied as a compressed tar file. This file should
be uncompressed and unpacked in a chosen installation directory, for instance using
the following Unix command:

gunzip simson-v4.0.0.tar.gz | tar xf -

After unpacking the Simson tarfile, the files and directories given in table 2.1 and
2.2 should have appeared.

5

TRITA-MEK 2007:07

File Contents
config.mk Parameter file read by all Makefiles
configure Script that configures the system and stores it in config.mk

COPYRIGHT Copyright and contact information document
par.f Compile time parameter file regarding resolution etc.
README How to configure, compile and install Simson
rules.mk Generic Makefile build rules read by all Makefiles
todo.txt A text file including things to correct/add/delete etc.

Table 2.1: Root directory files.

Directory Contents
bla Main program
bls Program to generate initial velocity fields
cmp Program to subtract and compare velocity fields
common Common subroutines not shared by bla
config Configure files
doc Documentation
examples Complete examples for different flow configurations
fou Program to Fourier transform velocity fields in time
lambda2 Three-dimensional visualisation with OpenDX
matlab Matlab scripts
pamp Programs to plot amplitude data from amplitude files
pext1 Program to plot components from an extremum file
pxyst Program to plot xy-statistics
rit Program to plot solutions from complete velocity fields
rps Program to plot planes
xys add Program to add xy-statistics

Table 2.2: Root directory contents.

2.3 Building Simson

The installation procedure given here is also found in the README file in the root di-
rectory. Building Simson requires three steps: configuring, compiling and installing.

2.3.1 Configuring

The main Makefile and the Makefile.config in the subdirectories should not be edited.
They all fetch information from the config.mk located in the root directory. The
configure script configure, located in the root directory, updates the information in the
config.mk file based on analysis of the system and on information from a configuration
file. Note that there exists a default config.mk file which can be directly edited which
means that, for experienced users, it is not necessary to run the configure script. In
each subdirectory there is also a Makefile that only uses locally defined parameters
which could be useful, for example, when testing different compiler options.

The configure script requires Bourne shell to run. If Bourne shell is not in the default
location (/bin/sh) the script will fail. In this case you should run

sh configure

instead of

./configure

6

TRITA-MEK 2007:07

The following sections describe the command-line options that can be given to con-
figure.

2.3.1.1 --help

Type

./configure --help

for a complete listing of available options.

2.3.1.2 --config

The --config option determines from which file in the config directory the compiler
and Makefile environment for your build should be fetched; e.g. to use the settings in
config/config.i686, type

./configure --config=i686

If you give no --config option the default value is taken from the environment
variable MACHINE. If MACHINE is not defined or empty the output of uname -m is
used.

If there is no suitable file in config for your platform you may need to create a new
config file. Use one of the existing files in config as template and save the file (e.g.
as config/config.custom). Then configure with --config=custom. See the comments
inside the config files for more details.

2.3.1.3 --prefix

The configure script also determines where Simson will be installed. This can be
changed through the --prefix option; e.g. to put the Simson binaries in $HOME/bin
type

./configure --prefix=\$HOME --config=i686

If you give no --prefix option the default path is the build directory itself where a
directory based on the environment variable MACHINE will be created. If MACHINE
is empty the result from uname -m is used instead.

2.3.1.4 --program-suffix

This option adds a suffix to all executable files. This may be convenient when in-
stalling several versions of Simson to the same location; e.g. to install a debug version
with program suffix debug type:

./configure --config=i686_debug --program-suffix=_debug

where the config file config.i686 debug contains the additional compiler flags required.

7

TRITA-MEK 2007:07

2.3.2 Compiling

Before starting to compile the code the resolution and some other compile-time pa-
rameters, specific for each flow case, have to be chosen. These parameters are all
stored in the par.f file and examples of it reside in the root and examples directory.
The root directory version of par.f is automatically distributed when typing make

all. A detailed description of each parameter in par.f is found in section 7.1.

Note that the programs that depend on the resolution of the problem require a local
copy of par.f and need to be recompiled for each change in par.f. The par.f in the
root directory is easily distributed to these directories by writing

make dist

Now the Simson package can be compiled simply by writing

make

from the root directory. To ensure that all object files are compiled with the same
flags and the same par.f file type

make all

which corresponds to

make clean
make dist
make

To compile the most commonly used programs (bla, bls, rit, pxyst) type

make allred

If you only want to build a single directory you can run make in that directory

cd rit
make -f Makefile.config

or

make rit.all

in the root directory. Note that in each subdirectory two makefiles exist, Makefile
and Makefile.config which both can be used to compile the code in that subdirectory.
The difference is that Makefile.config fetches compiling options from the config.mk
file in the root directory whereas Makefile has local definitions of all options.

To only build a single Fortran file filename.f write

make filename.o

To remove all built object files and executable files, do

make clean

8

TRITA-MEK 2007:07

2.3.3 Compiling for parallel runs

After the appropriate changes in par.f (i.e. setting the variables nproc and/or nthread
to the desired values), the flow solver bla can be compiled using

make mpi=yes

for MPI parallelization and using

make omp=yes

to activate the OpenMP directives. An experimental combination of both MPI and
OpenMP is implemented (however requiring MPI2). The output from bla indicates
whether OpenMP/MPI was used to compile. Note that only bla allows parallel runs.
Therefore it is important to change the nproc and/or nthread parameters only in
the bla/par.f file.

2.3.4 Installing

If the compilation finished without errors Simson can be installed with the command

make install

The binaries will be installed into the directory specified with the --prefix option
to the configure script. To only install the contents of a subdirectory you may run

make install

in that directory. You can also compile and install a specific directory by writing

make bla.all
make bla.install

from the root directory. Alternatively, the executable files (e.g. bla, bls etc.) can be
copied directly to another directory and run.

There is an examples directory located which contains parameter files for many of the
different base flows and features that are available in the Simson. More information
about the different cases can be found in appendix A.

9

3Operation

The program bla reads a velocity field and necessary input files, steps the solution to
a selected final time while producing log information on standard output and writes
the final velocities to file. During the simulation bla may also output various velocity,
pressure and scalar statistics, a file of the amplitude of specific wavenumbers, a file
of extremum amplitudes, files with velocities in two dimensional planes at regular
intervals in time and files containing complete 3D velocity fields at selected times.
The simulation can be run with the pressure solver switched on to generate pressure
fields corresponding to each velocity field that is written to file.

The program bls may be used to produce initial velocity fields including different
types of disturbances.

The program rit performs postprocessing of 3D velocity fields into Tektronix or
Postscript compatible graphics. Linear combinations (for example difference) of one
or more 3D velocity fields can be computed with cmp, which can also calculate rms
and maximum norm amplitudes of the result. This is useful when doing, for example,
convergence checks. A set of complete velocity fields can also be analyzed through
fou where they can be Fourier transformed in time. Three-dimensional visualization
including the computation of the λ2 vortex-identification criterion (Jeong & Hussain,
1995) is performed by lambda2.

Postprocessing of two dimensional planes is done by the program rps in a way similar
to rit. Plots of amplitude files are generated by the programs pamp1 and pamp2,
which handle one and multiple amplitude files respectively. Wave amplitude files
are plotted by the program pampw and pampw2 and extremum amplitude files by
pext1.

Statistics from simulations can be analyzed through pxyst, and to add statistical
data sets of different runs xys add can be used.

These programs along with the Fourier transform library cvecfft acc and the plot
library plot1 form a completely self contained and portable system written in Fortran
77/90. Note that most of the main routines are written in Fortran 77 but that some
Fortran 90 features have been used to ease the readability and flexibility of the code.

A set of example cases, for various base flows, is included in the examples directory.
The examples are briefly explained in appendix A.

3.1 Preprocessing

3.1.1 Generating initial velocity fields with fsc and bls

An initial velocity field consists of a header and an array with the three components
of velocity in Fourier space fulfilling the equation of continuity. The format of the
file is described in section 7.6. The program bls may be used to generate an initial
velocity field, consisting of a basic laminar flow and a range of different disturbances,
for example, localized disturbance, waves and random noise. Different disturbances

11

TRITA-MEK 2007:07

can also be combined. The program bls can also generate passive scalar fields if
needed.

The initial velocity field file has the same format as files generated by subsequent
execution of the bla program so that it is possible to feed the initial velocity field to
the postprocessing tools directly for examination.

For some flow types the laminar base flow profile is not given analytically (e.g. Blasius
profile). For these cases, a velocity profile file must first be generated. The program
fsc computes velocity profiles from the Blasius/Falkner–Skan/Falkner–Skan–Cooke
family for both velocity and scalars and it requires an input parameter file fsc.i.
The output file fsc.dat is needed by bls and bla and is described in section 7.17.
It contains similarity boundary layer profiles computed from the laminar boundary
layer flow equations for flow over a flat plate or a wedge. The program bls generates
a temporal/spatial or parallel/non-parallel velocity field depending on the flow type
parameter fltype. It is intended for batch execution and has no interactive input.
The input comes from the file bls.i. The format of this file is given in section 7.3.

3.1.2 Generating non-similarity base flows

In boundary-layer cases where the streamwise free-stream velocity is not a power of
the downstream distance, the boundary layer equations do not have a self similar
solution. To generate a base flow for this situation bls is first used to generate a
similarity flow field (without disturbances) which is a good approximation to the
sought flow around the inflow boundary, e.g. a flow such that the boundary layer
thickness and the acceleration are correct around the inflow boundary. Then this
flow field can be advanced in time with bla to find a steady state using a streamwise
free-stream velocity given in tabular form as a function of the downstream distance
(see sections 7.4 and 7.15). The generated steady flow field can be input to bls and
disturbances superimposed. The same flow field can be used to specify the baseflow
to bla for subsequent simulations.

3.2 Running bla

The program is intended to be used in batch mode and so has no interactive input.
The main configuration is done at compile time through changes in the file par.f (see
section 7.1) and at runtime in bla.i (see section 7.4). Depending on choices made
in bla.i other input files might be needed. An initial velocity field, which can be
produced by the program bls, is always needed to start execution.

By default bla generates a number of output files depending on the base flow type
and choices made in the file bla.i. A list of the most common input and output files
can be found in table 3.1.

When the simulation has finished information about how much time that has been
spent in different subroutines and in total can be found in the step.out file. During
the simulation it contains information about how much time each time step takes.

A simulation can always be stopped by creating a file stop.now in the running direc-
tory. This will cause the time integration to stop at the end of the current time step.
An output file and the statistics (if active) are written to file.

3.2.1 Running in serial

For a simple simulation, without any particular forcing added, only an initial velocity
field and a runtime parameter file bla.i is needed. The generation of initial velocity
fields is described in section 3.1 and how to construct a suitable bla.i is described in
section 7.4. For a serial run, the par.f variables nproc and nthread need to be set
to 1.

After compiling (see section 2.3.2) the simulation is started by typing

12

TRITA-MEK 2007:07

File I /O Contents
bla.i I Input parameter file for bla
bls.i I Input parameter file for bls
fsc.dat I Similarity solutions f , f ′, f ′′, g and g′ (+ θ, θ′ and θ′′)
fsc.i I Input parameter file for fsc
history.out O Time history data
nodes.out O Information about how many nodes that were used
sgs.i I Input parameter file for LES mode
step.out O Timing information
.amp O Amplitude data for different wave number pairs
.p O Pressure fields
.stat O Statistics
.u I /O Velocity fields (+ θ)

Table 3.1: Files generated or required by bla, bls and fsc. This information is given in
column two where I stands for input and O for output. Note that the scalar fields θ are
included only if the option passive scalar is active.

./bla

where runtime information will be written to standard output.

3.2.2 Running in parallel with OpenMP

OpenMP is a parallelization strategy that works on shared memory machines. To
run the code in OpenMP mode the code needs to be compiled for the maximum
number of threads that are to be used (variable nthread, see section 2.3.3). It is also
necessary to set the environmental variable OMP NUM THREADS to the number of
threads in order to allocate them. Note that one can always use less threads than
compiled for via the variable nthread.

A simulation that is compiled for four threads is thus started (on a system using
bash) by typing

export OMP_NUM_THREADS=4
./bla

3.2.3 Running in parallel with MPI

MPI, on the other hand, is a parallelization method that works on distributed memory
machines. To run the code in MPI mode the code needs to be compiled for the number
of processors that are to be used (variable nproc, see section 2.3.3). How to start
MPI simulations can vary depending on, for example, architecture, operating system
and queuing system. On a Linux cluster, using a standard MPI implementation one
can start a 16 processor simulation with

mpirun -np 16 ./bla

The -np flag value must match the nproc parameter in the par.f file.

3.2.4 Memory requirements

The memory requirement depends on the resolution of the simulation, whether addi-
tional features are included (pressure solver, passive scalars etc.), whether dealiasing
in the y-direction is used and whether MPI parallelization is used.

13

TRITA-MEK 2007:07

The three dimensional storage is (7+pressure+3×scalar)×nx×ny×nz double pre-
cision numbers (i.e. 8 bytes), multiply by a factor of 3/2 for dealiasing in the y-
direction and by 1/2 if z-symmetry is used. Most of the memory-consuming two-
dimensional working arrays are allocated in the main program (i.e. bla.f) and passed
to the respective subroutines. Some features can be turned off manually in bla.f at
compile time to save memory (e.g. iiles, iisfd).

3.2.5 Performance tuning

The code itself has been written for maximum speed on vectorizing computers using
a highly optimizing compiler.

The basic vector length is nxp/2×(mby−1)+nx/2 in most of step 2 (where nxp is
equal to nx without x-dealiasing and nx×3/2 with x-dealiasing, and nz×mby in the
x-transform, multiply the latter by 3/2 for z-dealiasing. The vector length in step 3 is
nx/2×mbz. If these values are lower than what is needed to get a good performance,
mby and mbz can be increased. Note however that in the present implementation
mby and mbz are set to 1, which does not pose a serious problem on (super-)scalar
architectures. It is however likely that support for general mby and mbz is included
in later releases.

Both the OpenMP and MPI parallelization exploit coarse-grain parallelization. Step
2 and step 3 can each be divided on as many processors as there are boxes to process;
typically this is no limitation. The code has been run in parallel mode on the Alliant
FX-80 and FX-2800, the SGI Powerstation, Challenge and Power Challenge, the
CRAY-2, J90, DEC alpha, Cray C90, IBM SP-3/4, IBM BlueGene, SGI Origin/Altix,
and various Linux clusters. The typical speed-up is 3.5 – 3.8 for four processors using
OpenMP. With MPI the parallel performance is heavily dependent on the speed of
the interconnect.

3.3 Postprocessing

3.3.1 Postprocessing velocity files with rit

The program rit generates various graphs from a velocity field. The graphs can be
generated in either Tektronix 4014 format or Postscript. When executed, rit prompts
for an input file name. The file is read and the program offers a choice of various
types of graphs. It is mainly intended for interactive execution and should be self
explanatory.

It is possible to use rit in a batch environment by compiling it into an input program.
This is run interactively to produce a file ritin, which is subsequently read by the batch
code to produce the desired plots. Note that if plots in batch mode are produced to
the screen the resulting Tektronix graphic characters will be written to the log file.
To compile a batch program, set imode to 2 in the rit.f file and compile a second
time with imode = 3 to get an input program. To get an interactive program imode
should be left at 1.

3.3.2 Postprocessing velocity files with cmp

The program cmp is used for constructing linear combinations of velocity fields which
is often used when comparing data. The program can also raise a velocity field to a
given power.

3.3.3 Postprocessing plane files with rps

Planes saved during a simulation can be examined with the program rps.

14

TRITA-MEK 2007:07

3.3.4 Postprocessing velocity files with fou

When a number of velocity fields has been saved during a simulation, the program
fou can be used to make Fourier transforms in both space and time.

3.3.5 Postprocessing amplitude files with pamp1, pamp2, pampw,
pampw2 and pext1

The programs pamp1 and pamp2 can be used to produce plots of the time history
of various amplitudes from the amplitude files written by bla. The program pamp1
works on one file and pamp2 can plot one quantity from multiple files. The program
pext1 makes plots of time histories of extremum values (i.e. minimum and maxi-
mum values) of velocities and vorticities and the location of extrema. The programs
pampw and pampw2 similarly plot amplitudes of wave components (streamwise–
spanwise Fourier mode) from one or multiple wave-amplitude files. The programs are
intended to be self explanatory and prompt for input file names. Since the amplitude
files are formatted and normally relatively small, no batch versions of these programs
are available. The files contain no headers so that files from sequential runs of one
flow case can be concatenated and then plotted to show the complete evolution of
the amplitudes.

3.3.6 Postprocessing xy-statistics files with pxyst

To get good statistics of space developing flows with one homogeneous direction
(spanwise), the data needs to be averaged in time. The plotting of time and spanwise
averaged data saved to file is performed by pxyst. Note that these files have headers,
and thus if statistical data need to be concatenated it has to be done with the program
xys add. The format of the statistics files is given in section 7.12.

The program pxyst generates plots both of the raw statistical data and of a number
of derived quantities. It is also possible to generate various special plots of the mean
flow, such as boundary layer thicknesses and skin friction.

There is an initial option to filter data, which applies to the raw data, before comput-
ing other quantities. There is also an option to filter data prior to producing plots,
the filter is then applied to the derived quantity. The results of the two filtering
processes may differ. In both cases the filter is applied in the streamwise direction.

15

4Theory

4.1 Derivation of the velocity–vorticity formulation

The starting point for the theoretical aspects and derivations are the non-dimen-
sionalized incompressible Navier–Stokes equations in a rotating reference frame, here
written in tensor notation,

∂ui
∂t

= − ∂p

∂xi
+ εijkuj(ωk + 2Ωk)− ∂

∂xi

(
1

2
ujuj

)
+

1

Re
∇2ui + Fi , (4.1)

∂ui
∂xi

= 0 , (4.2)

with different initial and boundary conditions depending on the flow geometry.

The first equation represents conservation of momentum and the second equation
represents the incompressibility of the fluid. Here (x1, x2, x3) = (x, y, z) denotes the
streamwise, normal and spanwise coordinates, (u1, u2, u3) = (u, v, w) the respective
velocities, (ω1, ω2, ω3) = (χ, ω, ϑ) the corresponding vorticities, and p the pressure.
The streamwise and spanwise directions will alternatively be termed horizontal di-
rections. The angular velocity of the coordinate frame around axis k is denoted Ωk.
In practice the most often used case is rotation around the spanwise axis, thus let
Ω = Ω3 be the rotation number. The body force F = (F1, F2, F3) is used for numeri-
cal purposes that will be further discussed in sections 4.2.1 and 4.2.2. It can also be
used to introduce disturbances in the flow. The definition of the Reynolds number
varies with the flow type. For boundary layer flows it is defined as

Rebl =
U∞δ

∗

ν
, (4.3)

where U∞ is the undisturbed streamwise free-stream velocity at x = 0 and t = 0, δ∗

is the displacement thickness of the undisturbed streamwise velocity at x = 0 and
t = 0, and ν is the kinematic viscosity. For channel flow the Reynolds number is
defined as

Recl =
UclyL

2ν
, (4.4)

where Ucl is the (laminar) centerline velocity. For Couette flow the Reynolds number
is defined as

Reco =
UcoyL

2ν
, (4.5)

where Uco is defined as half of the velocity difference between the walls.

The size of the solution domain in physical space is xL, yL and zL in the streamwise,
normal and spanwise directions respectively. For channel and Couette flow yL = 2h =
2 with h being the channel half-width.

A Poisson equation for the pressure can be obtained by taking the divergence of the
momentum equations,

∇2p =
∂Hi
∂xi
−∇2(

1

2
ujuj) , (4.6)

17

TRITA-MEK 2007:07

where

Hi = εijkuj(ωk + 2Ωk) + Fi . (4.7)

Application of the Laplace operator to the momentum equations for the normal ve-
locity yields an equation for that component through the use of equations (4.2) and
(4.6). One finds

∂∇2v

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
+

1

Re
∇4v . (4.8)

This equation can, for numerical purposes, be written as a system of two second order
equations

∂φ

∂t
= hv +

1

Re
∇2φ ,

∇2v = φ ,

(4.9)

where

hv =

(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
. (4.10)

An equation for the normal vorticity can be found by taking the curl of the momentum
equations. The second component of that equation reads

∂ω

∂t
= hω +

1

Re
∇2ω , (4.11)

where

hω =
∂H1

∂z
− ∂H3

∂x
. (4.12)

Note that the equations for φ, v and ω have similar form, and can thus be solved
using the same numerical routine. Once the normal velocity v and the normal vor-
ticity ω have been calculated the other velocity components can be found from the
incompressibility constraint and the definition of the normal vorticity.

4.2 Forcing

4.2.1 Temporal simulations

4.2.1.1 Channel flow

Laminar and turbulent flow between two plates with periodic boundary conditions
in both wall-parallel directions is constantly loosing kinetic energy due to friction at
the walls. Consequently, a forcing needs to be employed in order to keep the flow
from decelerating. Two possibilities are implemented: Fixed mass-flow rate and fixed
pressure gradient. In the latter case, a constant pressure gradient is imposed in the
streamwise (x) direction to exactly balance the mean shear stress at the wall,

F1 = −dpw
dx

= τw =
1

Recl

dU

dy

∣∣∣∣
wall

. (4.13)

Note that dimensional quantities are omitted and the non-dimensionalization is based
on equation (4.4), i.e. the channel half-width and the laminar centerline velocity. The
corresponding friction Reynolds number Reτ based on the friction velocity uτ is then
given by

Reτ = Recl

√
−dpw

dx
. (4.14)

On the other hand, with a fixed mass-flow rate the above pressure gradient is adapted
at every time step in order to keep the bulk velocity ub constant,

1

2h

∫ h

−h
U(y)dy =

1

2

∫ 1

−1

(1− y2)dy =
2

3
= ub . (4.15)

18

TRITA-MEK 2007:07

The laminar centerline Reynolds number Recl and the bulk Reynolds number Reb
are thus related through Recl = (3/2)Reb. The following relations are useful:

laminar channel flow Reτ =
√

2Recl =
√

3Reb , (4.16)

turbulent channel flow Reτ ≈ 0.116Re0.88
cl ≈ 0.166Re0.88

b . (4.17)

4.2.1.2 Boundary-layer flow

A localized disturbance or wave of relatively short wavelength which travels down-
stream in a slowly growing boundary layer is surrounded by a boundary layer of
almost constant thickness which grows slowly in time. This forms the basis of the
temporal simulation technique.

Following the ideas of Spalart & Yang (1987) we assume that the boundary layer
streamwise velocity is U(x, y) and introduce a reference point xr = x0 + ct at which
we evaluate the mean flow and where c is a reference speed. We now assume that
the undisturbed boundary layer in the vicinity of the disturbance has the velocity
distribution {U(y, t) = U(xr, y), V (y, t) = 0,W (y)}. Since the boundary layer is now
parallel (as there is no dependence on x), it is possible to apply periodic boundary
conditions in the horizontal directions. However, whereas U(x, y) (with the corre-
sponding V given by continuity) is a solution to the Navier–Stokes equations or at
least the boundary layer equations, this is not true for {U(y, t), V (y, t)}. Thus to
ensure the correct development of the boundary layer profile over extended periods
of time it is necessary to add a (weak since 1/Re when c = 0) forcing to balance the
streamwise and spanwise momentum equations,

F1 =
∂U(y, t)

∂t
− 1

Re

∂2U(y, t)

∂y2
= c

∂U(x, y)

∂x
− 1

Re

∂2U(x, y)

∂y2
,

F2 = 0 ,

F3 = − 1

Re

W∞
U∞

∂2W (y)

∂y2
,

(4.18)

where the right hand side should be evaluated at the reference coordinate xr and U∞
and W∞ represent the streamwise and spanwise freestream velocity components. The
reference speed should be chosen as the group speed of the wave or the propagation
speed of the localized disturbance for best agreement with a spatially developing flow.
To fully justify the periodic boundary conditions in the case of a wave train, the wave
itself should be slowly developing.

4.2.2 Spatial simulations

The best numerical model of a physical boundary layer, which is usually developing
in the downstream direction rather than in time, is a spatial formulation. To retain
periodic boundary conditions, which is necessary for the Fourier discretization, a
fringe region is added downstream of the physical domain, similar to that described
by Bertolotti et al. (1992). In the fringe region disturbances are damped and the
flow returned to the desired inflow condition. This is accomplished by the addition
of a volume force which only increases the execution time of the algorithm by a few
percent.

The forcing has the form

F = λ(x)(U − u) , (4.19)

where λ(x) is a non-negative fringe function which is significantly non-zero only within
the fringe region. The flow field U = {U ,V,W} is the same flow field used for the
boundary conditions, which also contains the desired flow solution in the fringe. The
streamwise velocity component is calculated as

U(x, y) = U(x, y) + (U(x+ xL, y)− U(x, y))S

(
x− xblend

∆blend

)
, (4.20)

19

TRITA-MEK 2007:07

where U(x, y) is normally a solution to the boundary layer equations. Here xblend

and ∆blend are chosen so that the prescribed flow, within the fringe region, smoothly
changes from the outflow velocity of the physical domain to the desired inflow velocity,
i.e. a blending between inflow and outflow. The step function S is given in (4.22).
The wall-normal component V is then calculated from the equation of continuity,
and the spanwise velocityW is set to zero for simulations where the mean flow is two
dimensional. For three dimensional boundary layersW is computed from a boundary
layer solution in fashion analogous to that for U . This choice of U ensures that for the
undisturbed laminar boundary layer the decrease in thickness is completely confined
to the fringe region, thus minimizing the upstream influence. A forced disturbance
to the laminar flow can be given as inflow condition if that disturbance is included
in U .

A convenient form of the fringe function λ is as follows

λ(x) = λmax

[
S

(
x− xstart

∆rise

)
− S

(
x− xend

∆fall
+ 1

)]
. (4.21)

Here λmax is the maximum strength of the damping, xstart to xend the spatial extent
of the region where the damping function is non-zero and ∆rise and ∆fall the rise and
fall distance of the damping function. The smooth “step” function S(x) rises from
zero for negative x to one for x ≥ 1. We have used the following form for S, which
has the advantage of having continuous derivatives of all orders,

S(x) =

0 , x ≤ 0 ,

1/
(

1 + e(1/(x−1)+1/x)
)
, 0 < x < 1 ,

1 , x ≥ 1 .

(4.22)

An example of a fringe function is depicted in figure 4.1.

λ

rise
︸ ︷︷ ︸

fall
︸ ︷︷ ︸

Figure 4.1: Schematic picture of the fringe region. For this fringe the sum of the rise and
fall is the same as the total length.

To achieve maximum damping both the total length of the fringe and λmax have to be
tuned. The actual shape of λ(x) is less important for the damping but it should have
its maximum closer to xend than to xstart. The damping is also strongly influenced
by the resolution of the disturbance that should be damped.

In summary the main parameters determining the damping properties of the fringe
forcing are

• Length of fringe (L)

• Strength of fringe (λ)

• Shape of fringe

• Resolution of simulation

• Influence of blending (for boundary layer flows)

An investigation on how the fringe parameters effect the disturbance in the fringe
can be found in Lundbladh et al. (1999) and example cases can be found in the
examples directory. Generally however one usually has to try a few different sets of

20

TRITA-MEK 2007:07

fringe parameters when setting up a new flow case and make sure that the critical
disturbances are damped out satisfactory.

For maximum computational efficiency the simulated flow has to be considered when
the fringe parameters are tuned. Assuming that the achieved damping is sufficient, a
short fringe reduces the box length and therefore the required CPU time per iteration.
However, if the flow gradients introduced in the fringe region are larger than those in
the physical domain that may decrease the time step and consequently increase the
necessary number of iterations. Note that the boundary layer growth causes outflow
through the free-stream boundary. The streamwise periodicity requires that all that
fluid reenters in the fringe region.

Analysis of the Navier–Stokes equations with a fringe forcing term yields an additional
part of the disturbance associated with the pressure with a decay independent of λ.
For a boundary layer, this solution decays appreciably over a downstream distance
equal to the boundary layer thickness, and thus the fringe region must be some factor
(say 10 to 30) times this thickness to get a large decay factor, see Nordström et al.
(1999).

4.3 Boundary conditions

The boundary conditions in the horizontal directions are periodic which hold for
all flows implemented. The wall-normal boundary conditions however may differ
between the different flow types; additionally, inhomogeneous boundary conditions
may be specified (e.g. wall blowing and suction).

4.3.1 Poiseuille flow

The natural no-slip boundary conditions on both walls, located at y = ±1, read

v|wall = 0 ,
∂v

∂y

∣∣∣∣
wall

= 0 , ω|wall = 0 . (4.23)

For disturbance generation and control by blowing and suction through the wall, an
arbitrary time dependent velocity distribution,

v|y=1 = vBSu(x, z, t) ,

v|y=−1 = vBSl(x, z, t) ,
(4.24)

can be used. Several types of control signals are available.

4.3.2 Couette flow

The boundary conditions for Couette flow impose constant streamwise velocity, pos-
itive on the upper wall and negative on the lower wall, and zero wall-normal and
spanwise velocity components.

4.3.3 Boundary layer flow

The boundary conditions in the horizontal directions are periodic but one needs to
specify boundary conditions at the wall and in the free-stream, to solve equations
(4.9) and (4.11).

For disturbance generation and control by blowing and suction through the wall, an
arbitrary time dependent velocity distribution,

v|y=0 = vBS(x, z, t) , (4.25)

can be used.

21

TRITA-MEK 2007:07

The flow is assumed to extend to an infinite distance perpendicular to the wall. How-
ever, the discretization discussed below can only handle a finite domain. Therefore,
the flow domain is truncated and an artificial boundary condition is applied in the
free-stream at a wall-normal position yL.

The Dirichlet boundary condition, defined as

uy=yL = Uy=yL , (4.26)

is the simplest one, where U(x, y) is a base flow that is normally chosen as a Falkner–
Skan–Cooke (FSC) flow. An arbitrary pressure gradient, to for instance create a
separation bubble, can be imposed by choosing U accordingly.

The desired flow solution generally contains a disturbance and that will be forced
to zero by the Dirichlet condition. This introduces an error compared to the exact
solution for which the boundary condition is applied at an infinite distance from the
wall. The error may result in increased damping for disturbances in the boundary
layer.

Some improvement can be achieved by using a Neumann condition,

∂u

∂y

∣∣∣∣
y=yL

=
∂U
∂y

∣∣∣∣
y=yL

. (4.27)

This condition can be shown to be stable if there is outflow at the boundary or the
inflow is weaker than O(1/Re). This restriction is usually fulfilled if the boundary is
placed on a sufficiently large distance from the wall, so that the disturbance velocity
is small.

A generalization of the boundary condition used by Malik et al. (1985) allows the
boundary to be placed closer to the wall. It is an asymptotic condition that decreases
the error further and it reads(

∂û

∂y
+ |k|û

)∣∣∣∣
y=yL

=

(
∂Û
∂y

+ |k|Û
)∣∣∣∣∣

y=yL

, (4.28)

where (̂·) denotes the horizontal Fourier transform with respect to the horizontal
coordinates, k2 = α2 +β2 and α and β are the horizontal wavenumbers (see equation
(5.10)). Thus this condition is most easily applied in Fourier space. The boundary
condition exactly represents a potential flow solution decaying away from the wall. It
is essentially equivalent to requiring that the vorticity is zero at the boundary. Thus,
it can be applied immediately outside the vortical part of the flow.

4.3.4 Asymptotic suction boundary layer flow

The asymptotic suction boundary layer (ASBL) is an analytical solution to the
Navier–Stokes equations when uniform wall-normal suction, with velocity −vs, is
applied at the wall. It can be written as

U = (1− e−y,−vs, 0) . (4.29)

The analytical solution allows the displacement thickness to be calculated exactly,
δ∗ = ν/v∗s and the Reynolds number to be expressed as the velocity ratio, Reasbl =
U∞/v

∗
s , where −v∗s is the dimensional suction velocity.

The constant suction requirement at the wall is removed by subtracting the Navier–
Stokes equations by vs which gives the following modified form of equation 4.7

H1 = (v − vs)ϑ− wω , H3 = uω − (v − vs)χ , (4.30)

where (χ, ω, ϑ) denotes the vorticity vector. Note that no additional forcing is needed
to keep the base flow parallel. More details about the ASBL and its implementation
in Simson can be found in Levin et al. (2005b).

22

TRITA-MEK 2007:07

4.3.5 Surface roughness

The spectral framework of bla requires uniform boundaries. Thus, roughness ele-
ments on the surface of the plate cannot be included in terms of grid geometry, but
they need to be modeled by modified boundary conditions. A projection method
is employed here, as originally proposed in Choudhari & Streett (1992) and Crouch
(1992). A Taylor expansion of fourth order is used to project the no-slip conditions
along the desired bump contour onto the lowest grid plane y = 0, where y is the
wall-normal coordinate,

vi|y=0 ≈ vi(h)︸ ︷︷ ︸
≡0

− h
∂vi
∂y

∣∣∣∣
y=0

− ... − h4

4!

∂4vi
∂y4

∣∣∣∣
y=0

, i = 1, 2, 3 (4.31)

where h = h(x, z) denotes the contour function of the bump and vi can be either
the base-flow profile or the instantaneous velocity. In the present implementation the
bump function h is localized in the chordwise direction x (step function, equation
(4.22)) and periodic along the span z.

The wall-normal velocity derivatives in equation (4.31) are obtained from the base-
flow profiles. The representation of the no-slip conditions along the desired roughness
contour can be improved by updating the bump conditions regularly. Then, the
velocity derivatives of equation (4.31) are taken from the current flow field.

4.3.6 Jet in crossflow

To model a jet discharging normal to a crossflow either a top-hat jet profile or a
parabolic jet profile can be imposed. The former boundary condition models fluid
ejected from a turbulent pipe, whereas the latter models a laminar pipe flow. The
main parameters (set in bla.f) are the position of the jet orifice (xjet, zjet), the jet
diameter Djet and the ratio

Rjet =
v̄j
U∞

(4.32)

of the bulk velocity v̄j from the jet orifice to the cross-flow velocity.

The first boundary condition is a top-hat profile given by,

vj(r) =
1

2
[1− tanh(5(r − 1/r))] , (4.33)

where r = 2
√
x2 + z2/(αDjet). In this case, the diameter of the jet is defined by the

bulk velocity, by choosing α = 0.9919 such that the bulk velocity equals the maximum
velocity, v̄j = vj,max. The second boundary condition is a parabolic profile multiplied
with a Gaussian function,

vj(r) = (1− r2)e(−(r/0.7)4) . (4.34)

For this boundary condition the relation between the bulk and the maximum velocity
is v̄j ≈ vj,max/3.

Furthermore, for the actual implementation in the numerical code, the net mass flux
is set to zero via an artificial uniform suction applied at the lower wall, i.e. the ((0, 0)-
mode of the v-component. This uniform suction velocity can however be subtracted
from the velocity fields and statistics.

4.4 Initial conditions

To start a temporal or spatial simulation a laminar initial flow field is required. For
boundary layer flows it is constructed from similarity solutions of the boundary layer
equations and for Poiseuille and Couette flows it can be given analytically.

In the boundary layer flow favorable and adverse pressure gradients can be accounted
for as well as the effect of a sweep. To obtain the family of FSC similarity solutions it

23

TRITA-MEK 2007:07

is assumed that the chordwise outer-streamline velocity obeys the power law U∗∞ =
U∗0 (x∗/x∗0)m and that the spanwise velocity W ∗∞ is constant. Here U∗0 is the free-
stream velocity at the beginning of the computational box and the asterisks (∗)
denote dimensional quantities. Note that the Blasius profile is a special case of FSC
with zero cross flow component and pressure gradient. If the similarity variable η is
chosen as

η(y∗) = y∗
√
m+ 1

2

U∗∞
2νx∗

one can derive the following self-similar boundary layer profiles,

f ′′′ + ff ′′ + βh(1− f ′2) = 0 ,

g′′ + fg′ = 0 ,

where the Hartree parameter βh relates to the power law exponent m as βh =
2m/(m+ 1). The accompanying boundary conditions are

f = f ′ = g = 0 for η = 0 ,

f ′ → 1 , g → 1 as η →∞ .

The complete derivation can be found in e.g. Schlichting (1979) and Cooke (1950).
From the FSC similarity solutions, one constructs the nondimensional velocity profiles

U(y) = f ′(η(y)) , (4.35a)

W (y) =
W∞
U∞

g(η(y)) , (4.35b)

for a fixed x and where y = y∗/δ∗. The velocity profiles (4.35a) and (4.35b) are then
used when constructing the base flow.

The initial similarity solution for the passive scalar is found from solving

θ′′ = −Pr f θ′ + Pr m1(2− βh)f ′θ ,

subject to the boundary conditions

θ = 1 for η = 0 , θ = 0 as η →∞ .

Here, Pr is the Prandtl (or Schmidt) number, and m1 is the power-law exponent for
the scalar distribution along the streamwise direction. Note that m1 = 0 defines a
constant scalar value at the wall (i.e. θ = 1), whereas m1 = 1/2 leads to a similarity
solution with constant wall-normal derivative (i.e. isoflux boundary condition).

Type Description
−2 Temporal Falkner–Skan–Cooke BL
−1 Temporal Falkner–Skan BL

0 No base flow (currently not in use)
1 Temporal Poiseuille
2 Temporal Couette
3 Temporal Blasius BL
4 Spatial Poiseuille
5 Spatial Couette
6 Spatial Blasius BL
7 Spatial Falkner–Skan BL
8 Spatial Falkner–Skan–Cooke BL
9 Parallel Blasius/Falkner–Skan/Falkner–Skan–Cooke BL with fringe

Table 4.1: Available base flow types.

24

TRITA-MEK 2007:07

4.5 Disturbance formulation and linearized solver

Introducing a decomposition of the flow variables into a base flow and a disturbance
part, ui = Ui + u′i leads to an evolution equation for u′i due to equation (4.1)

∂u′i
∂t

=− ∂p′

∂xi
+ εijk(u′jω

′
k + Ujω

′
k + u′jWk)

− ∂

∂xi

(
1

2
u′ju
′
j + Uju

′
j

)
+

1

Re
∇2u′i + Fi −Gi .

(4.36)

Here, the rotation rate Ωk is neglected; Wk denotes the vorticity field corresponding
to the base flow Ui. The base flow is assumed to satisfy the stationary Navier–Stokes
equations,

0 = − ∂P
∂xi

+ εijkUjWk −
∂

∂xi

(
1

2
UjUj

)
+

1

Re
∇2Ui +Gi . (4.37)

Additionally, both Ui and u′i are supposed to satisfy the continuity constraint. Gi can
be considered the residual of the base flow when put into the Navier–Stokes equations
(4.1), and it will include the fringe force λ(Ui − Ui) for spatial simulations. It also
includes additional (unknown) contributions if the base flow does not satisfy the
Navier–Stokes equations, e.g. when using the boundary-layer equations to compute
Ui. For simulations using the disturbance formulation it is therefore suggested to
always use a converged solution of the Navier–Stokes equations (i.e. the converged
steady result of a simulation) as a base flow.

For spatial simulations, the terms Fi and Gi are given by the fringe forcing (4.19).
Then, Gi = λ(Ui − Ui) and Fi = λ(Ui − ui) and thus the combined forcing is simply
damping the disturbance velocity to zero in the fringe region,

Fi −Gi = λ(x)u′i . (4.38)

The linearized Navier–Stokes equations are obtained from equation (4.36) by neglect-
ing the nonlinear terms u′jω

′
k and u′ju

′
j .

4.6 Pressure solver

By expressing the Navier–Stokes equations in the form of equations (4.8) and (4.11),
the pressure does not need to be taken into account. However, it might be of interest
to solve for this quantity as well as the velocity components. The pressure can, for
example, be used for detecting regions of rapid motion in a turbulent boundary layer.

The Poisson equation for the pressure, equation (4.6), can be written as

∇2(p+ E) =
∂Hi
∂xi

, (4.39)

where E = 1
2
uiui and Hi as defined in (4.7). Note that the term Fi does not contain

any disturbances in the fringe region for the spatial simulations and is zero for the
temporal boundary layer. This equation has a similar form as the equations for φ, v
and ω and can thus be solved using the same numerical routine.

The boundary conditions at the wall (y = 0) and at the upper boundary (y = yL) are
derived from the normal component of the Navier–Stokes equations. The boundary
condition with non-zero wall velocities becomes

∂

∂y
(p+ E)

∣∣∣∣
y=0

=

(
1

Re
∇2v + εijkuj(ωk + 2Ωk)− ∂v

∂t

) ∣∣∣∣
y=0

. (4.40)

The term ∂v/∂t is included for the case of flow control like blowing/suction from the
wall and is approximated with first-order backward differences. For a wall with zero
velocities the boundary condition becomes

∂

∂y
(p+ E)

∣∣∣∣
y=0

=
1

Re

∂2v

∂y2

∣∣∣∣
y=0

. (4.41)

25

TRITA-MEK 2007:07

At y = yL, for boundary layer flows, the boundary condition becomes

∂

∂y
(p+ E)

∣∣∣∣
y=yL

=

(
1

Re
∇2v + εijkuj(ωk + 2Ωk) + λ(x)(V − v)− ∂v

∂t

) ∣∣∣∣
y=yL

, (4.42)

where λ(x) is the fringe function described in section 4.2.2.

For wavenumber zero the boundary condition (4.42) is automatically fulfilled if bound-
ary condition (4.40) is fulfilled. It is required by the compatibility condition∫ yL

0

dH2

dy
dy =

∂

∂y
(p+ E)|y=yL −

∂

∂y
(p+ E)|y=0 , (4.43)

which comes from the integration of equation (4.39). A second boundary condition
for p itself is needed at y = 0 and this is chosen to be p = 0. The mean pressure at
the wall cannot be determined and p = 0 at the wall is a reference pressure. It is
not reasonable to choose p = 0 at y = yL because the location of the free-stream is
arbitrary chosen for numerical purposes.

It might seem to be a better approach to rewrite equation (4.6) as

∇2p = − ∂ui
∂xj

∂uj
∂xi

+
∂

∂xi
(2εijkujΩk) +

∂Fi
∂xi

, (4.44)

and solve for the pressure directly. The solution to equation (4.44) turns out to be
sensitive to the values of the velocities at the upper boundary. When using different
boundary conditions for the velocities, the solutions are slightly different, hence the
pressure will be different. The sensitivity comes from the fact that the derivation in
the normal direction in Chebyshev space is dependent on the coefficients in all the
collocation points. These coefficients change when transforming back and forth to
physical space. Thus the derivations must be, for consistency, performed at the same
time, with no transformations between them. These problems are avoided by solving
for the pressure plus energy as in equation (4.39).

If turbulent statistics involving pressure are being calculated during a simulation, the
pressure is calculated in those time steps where the sampling occurs.

Note that at the moment the pressure calculation is only possible if the full Navier–
Stokes equations are solved, i.e. evaluating the pressure in disturbance formulation
(see previous section 4.5) is not supported.

4.7 Passive scalar

The equation to solve for a passive scalar is

∂θ

∂t
= −ui

∂θ

∂xi
+

1

Re Pr
∇2θ (4.45)

subject to appropriate boundary conditions. The molecular Prandtl number (fluid
dependent) is denoted Pr and the combination Pe = Re Pr is the Péclet number.
The various terms in equation (4.45) are advanced in time in a similar manner as
the corresponding terms in the Navier–Stokes equations (see chapter 5). Boundary
conditions for θ need to be given at both the lower wall and the upper boundary
(free-stream or wall).

4.8 Selective frequency damping

The selective frequency damping method (SFD) can be used to obtain steady solutions
of the Navier–Stokes equations by time marching. This is possible, even for unstable
flow configurations, due to an additional forcing term on the right-hand side which

26

TRITA-MEK 2007:07

damps all temporally fluctuating parts of the solutions. Further details are given in
Åkervik et al. (2006). The forcing term reads

− χ(ui − ui) , (4.46)

where ui is the velocity and ui a corresponding temporally low-pass filtered flow field.
The filtered field is obtained using the differential form of an exponential filter leading
to an evolution equation

∂ui
∂t

=
ui − ui

∆
, (4.47)

with the filter width ∆. If SFD is enabled, the forcing term (4.46) is explicitely added
to the governing equations (4.1), and the evolution equation for the filtered solution
(4.47) is solved via the same explicit Runge-Kutta scheme.

4.9 Large-eddy simulation

In large-eddy simulation (LES), the filtered Navier–Stokes equations are solved. The
application of the primary LES filter is denoted by an overbar, i.e. ui, p and θ for
the filtered velocities, pressure and scalar, respectively. Note that this primary LES
filter is usually the implicit grid filter due to the lower resolution employed for LES
calculations. The governing equations for the resolved (filtered) quantities read

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

− ∂τij
∂xj

,

∂uj
∂xj

= 0 ,

∂θ

∂t
+ uj

∂θ

∂xj
=

1

Re Pr
∇2θ − ∂qj

∂xj
.

(4.48)

The unclosed subgrid-scale (SGS) stresses and scalar flux are

τij = uiuj − ui uj ,

qj = ujθ − ujθ .
(4.49)

4.9.1 Dynamic Smagorinsky model

The eddy-viscosity ansatz due to Boussinesq relates the deviatoric part of the SGS
stresses to the resolved strain rate,

τij −
δij
3
τkk = τ∗ij = −2νtSij , (4.50)

with the strain rate

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.51)

Within the eddy-diffusivity ansatz, the scalar flux is approximated as being propor-
tional to the mean scalar gradient,

qj = −kt
∂θ

∂xj
(4.52)

with kt = νt/Pr t. The turbulent Prandtl number Pr t is approximately a constant of
order one. A standard value is Pr t = 0.6.

The Smagorinsky model (Smagorinsky, 1963) gives the eddy viscosity as follows

νt = C∆2|S| with |S| = (2SijSij)
1/2 . (4.53)

The model coefficient C = C2
S can be determined dynamically using the well-known

dynamic procedure (Germano et al., 1991; Lilly, 1992). Commonly, a two-dimensional
spectral cutoff filter at ωc = π/2 acting in the wall-parallel directions is employed

27

TRITA-MEK 2007:07

as a test filter. The coefficient C predicted by the dynamic procedure is known to
fluctuate strongly in both space and time. Therefore, in the present implementation,
a spanwise averaging is performed, i.e. C = C(x, y, t). Additionally, a clipping can
be employed, either requiring a positive model coefficient C = max(C, 0), or positive
total viscosity νt = max(νt,−ν). As common practice, the LES computations are
performed on the coarse (i.e. non-dealiasing) grid.

4.9.2 High-pass filtered Smagorinsky model

Recent developments in LES have shown that computing the SGS model forces based
on the small-scale fluctuations of the flow alone can be very successful and lead
to accurate results. This idea was first put forward in the variational multiscale
(VMS) approach, where a separation between large and small scales is performed
using hierarchical basis function and the modeling is restricted to only the small
scales. A physical-space formulation of the VMS method using spatial filters was
used in Stolz et al. (2005). The high-pass filtered (HPF) eddy-viscosity model, using
a high-pass filter H, is written as

τij −
1

3
τkkδij = 2νHPF

t Sij(H ∗ u) , (4.54)

with both Sij(H ∗ u) and the eddy viscosity computed from the high-pass filtered
velocity,

νHPF
t = C∆

2|S(H ∗ u)| . (4.55)

The symbol ∗ stands for convolution in physical space. This model is denoted as
small-“small” since the eddy viscosity νHPF

t is computed from the small scales, and
is applied to the Navier–Stokes equation using the small-scale strain rate. Due to
nonlinearity, however, the model influence (4.54) is not restricted to the small part
of the governing equations.

A consistent dynamic procedure for the HPF model (4.54), (4.55) has been intro-
duced in Bruhn (2006). Essentially, one can follow a similar way as in the procedure
by Germano et al. (1991), however, the residual stresses are now taken from their
respective HPF formulation.

The high-pass filters employed are based on the filter G defined in Stolz et al. (2001).
The filter definition for non-equidistant grids, e.g. in the wall-normal direction, assures
that all moments in physical space up to second order are vanishing. The cutoff
wavenumber ωc is defined by Ĝ(ωc) = 1/2 with the hat indicating a Fourier transform
(transfer function). Usually, ωc = 2π/3 is a preferred value. Based on G, related high-
pass filters can readily be constructed by HN = (I −G)N+1. The three-dimensional
filters are derived from the one-dimensional filters by a tensor product. HN is at
least of order r(N + 1) with r being the order of G. The latter is at least r = 3 on
non-equidistant grids.

4.9.3 Relaxation-term model (ADM-RT)

Whereas the Smagorinsky model is based on the eddy-viscosity assumption, the
ADM-RT model acts on the velocity components directly. The model employs the
relaxation term used in the context of the approximate deconvolution model (ADM)
(Stolz et al., 2001). It has been shown in e.g. Schlatter (2005) that for spectral sim-
ulations the deconvolution operation applied in the ADM approach is not necessary.
Therefore, the SGS force due to the ADM-RT model is given by (Schlatter et al.,
2004)

∂τij
∂xj

= χHN ∗ ui . (4.56)

χ is the model coefficient which can be set to a constant value herein motivated by
previous studies showing little dependency of the results on the actual value of the
coefficient (see e.g. Schlatter (2005)). A good guess for the model coefficient can be
obtained by relating it to the time step of the integration, i.e. χ ∝ 1/∆t, which itself

28

TRITA-MEK 2007:07

is related to a physically meaningful quantity (advection of small scales) by the CFL
stability condition.

The relaxation term χHN ∗ ui is proportional to the small-scale velocity fluctuations
in the flow field. Therefore, it will damp out these oscillations leading to a drain of
kinetic energy from the smallest resolved scales. It can be shown that the relaxation
term has a similar effect as an explicit filtering of the solution every (χ∆t)−1 time
steps.

The ADM-RT model proved to be accurate and robust in predicting transitional
and turbulent incompressible flows with spectral methods (Schlatter et al., 2004;
Schlatter, 2005). Note that the relaxation-term model is related to the spectral
vanishing viscosity approach. Due to the high-order filter HN with a cutoff frequency
of ωc ≈ 0.86π only the smallest represented eddies are affected, whereas the larger,
energy-carrying scales are not directly influenced by the model contributions.

Similar to the HPF model, a dynamic procedure for the model coefficient χ has been
proposed in Bruhn (2006).

4.10 Magneto-Hydrodynamics (MHD)

In the limit of low magnetic Reynolds number (Rem � 1), Moreau (1998), the in-
duced magnetic field is very small when compared to an externally imposed magnetic
field B0, and the electric current J is then given by the Ohm’s law,

J = σ (−∇Φ + u×B0) , (4.57)

where σ is the electrical conductivity, Φ the electric potential, (E = −∇Φ), E is
the electric field, and u is the velocity field. Using a characteristic magnetic field
B the relevant non-dimensional quantities are b0 = B0/B, j = J/(σUB) and φ =
Φ δ∗/(UB), with the velocity scale U . Then, the following equations for an electrically
conducting incompressible fluid in the limit of Rem � 1 are obtained:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u +N (j× b0) , (4.58)

j = −∇φ+ u× b0 , (4.59)

∇2φ = ∇ · (u× b0) = b0 · ω , (4.60)

where Eq. (4.60) is a consequence of ∇·j = 0 and is obtained by taking the divergence
of Eq. (4.59). Here ω = ∇× u, p the dimensionless pressure and Re = Uδ∗/ν is the
hydrodynamic Reynolds number. Moreover, incompressibility imposes ∇ · u = 0.

The traditional choice B = |B0| has been adopted for the characteristic magnetic field
so that b0 is a unit vector in the direction of the magnetic field. The Stuart number
(or interaction parameter), N = σB2δ∗/ρU , is the ratio of the electromagnetic force
to the inertial force and it is related to the Hartmann number by Ha =

√
Re N(=

Bδ∗
√
σ/ρν) where ρ is the density. Equations (4.58)–(4.60) are referred to as the

low-Rem MHD equations.

At present, in channel geometry the walls are assumed to be non-conducting. There-
fore, the boundary conditions for the current density and the electrical potential are

jy|wall = − ∂φ

∂y

∣∣∣∣
wall

= 0 , (4.61)

where jy is the wall-normal component of the current density.

29

5Numerical method

The temporal and spatial discretizations are described in detail in the following sec-
tions.

5.1 Temporal discretization

The time advancement is carried out by one out of two semi-implicit schemes. We
illustrate them on the equation

∂ψ

∂t
= G+ Lψ , (5.1)

which is of the same form as equation (4.9) and (4.11). Here ψ represents φ or ω,
G contains the (non-linear) advective, rotation and forcing terms and depends on
all velocity and vorticity components. Operator L represents the (linear) diffusion
and is discretized implicitly using the second order accurate Crank–Nicolson (CN)
scheme. Operator G is discretized explicitly by a low storage third order three or
four stage Runge–Kutta (RK3) scheme. These time discretizations may be written
in the following manner

ψn+1 = ψn + anG
n + bnG

n−1 + (an + bn)

(
Lψn+1 + Lψn

2

)
, (5.2)

where the constants an and bn are chosen according to the explicit scheme used and
G and L are assumed to have no explicit dependence on time. The two possibilities
for the RK3 schemes are shown in the table 5.1. Note that the schemes have three
or four stages which imply that a full physical time step is only achieved every three
or four iterations. The time used for the intermediate stages are given by t = t+ cn,
where cn is given in table 5.1.

To obtain some insight into the properties of these discretizations they will be applied
to the two dimensional linearized Burgers’ equation with a system rotation. The
eigenvalue analysis yields a necessary condition for stability which must be augmented

an/∆tn bn/∆tn cn/∆tn

RK3 8/15 0 0
3-stage 5/12 −17/60 8/15

3/4 −5/12 2/3
RK3 8/17 0 0
4-stage 17/60 −15/68 8/17

5/12 −17/60 8/15
3/4 −5/12 2/3

Table 5.1: Time stepping coefficients.

31

TRITA-MEK 2007:07

by an experimental verification. Putting the equation into the form of equation (5.1)
yields

ψ =

[
u
w

]
,

G =

[
u0∂/∂x+ w0∂/∂z 2Ω

−2Ω u0∂/∂x+ w0∂/∂z

] [
u
w

]
,

L =
1

Re

[
∂2/∂x2 + ∂2/∂z2 0

0 ∂2/∂x2 + ∂2/∂z2

]
,

(5.3)

where u0 and w0 represent the flow field around which the linearization was made.
System (5.3) can be seen as an approximation to equation (4.1). The dependence of
ψ on both the streamwise and spanwise coordinate directions have been included in
order to indicate how multiple dimensions enter into the stability considerations.

We will for simplicity use Fourier discretization in the spatial directions. The Cheby-
shev method acts locally as a transformed Fourier method and thus the stability
properties derived here can be applied with the local space step. An exception to this
occurs at the end points where the transformation is singular. It can be shown that
the Chebyshev method is more stable there. A numerical study of a one-dimensional
advection equation using the Chebyshev discretization yields that the upper limit
of its spectrum along the imaginary axis is about 16 times lower than the simple
application of the results from the Fourier method. This allows a corresponding in-
crease of the time step when the stability is limited by the wall-normal velocity at
the free-stream boundary.

Fourier transforming in x- and z-directions yields

ψ̂t =

[
iαu0 + iβw0 2Ω
−2Ω iαu0 + iβw0

]
ψ̂ − α2 + β2

Re
ψ̂ , (5.4)

where α and β are the wavenumbers in the x- and z-directions, respectively. This
equation can be diagonalized to give the equation,

ût = i(αu0 + βw0 ± 2Ω)û+
α2 + β2

Re
û . (5.5)

We assume that the absolute stability limit will first be reached for the largest
wavenumbers of the discretization αmax and βmax, which corresponds to a wave-
length of 2∆x and 2∆z, respectively, where ∆x and ∆z are the discretization step
lengths in physical space. The following parameters are useful for our analysis,

µ = ∆t(2|Ωk|+ (αmax|u0|+ βmax|w0|))

= ∆t

(
2|Ωk|+ π

(
|u0|
∆x

+
|w0|
∆z

))
,

λ =
1

Re
∆t(α2

max + β2
max)

=
1

Re
π2∆t

(
1

∆x2
+

1

∆z2

)
.

(5.6)

The parameter µ is usually called the spectral CFL number, in analogy with the
stability theory for finite difference equations. Henceforth it will be termed simply
the CFL number. Using the RK3–CN time discretization we have the following three
stages in each time step for the model equation (5.5),

ûn+1 = ûn + iµa1û
n − λ

2
a1(ûn+1 + ûn) ,

ûn+2 = ûn+1 + iµ(a2û
n+1 + b2û

n)− λ

2
(a2 + b2)(ûn+2 + ûn+1) ,

ûn+3 = ûn+2 + iµ(a3û
n+2 + b3û

n+1)− λ

2
(a3 + b3)(ûn+3 + ûn+2) .

(5.7)

The absolute stability regions, i.e. the regions where all solutions to the above dif-
ference equations are bounded in the µ – λ plane, can now be found by calculating

32

TRITA-MEK 2007:07

 0.0 0.5 1.0 1.5 2.0

µ

λ

µ

Figure 5.1: Contours of constant amplification factor for the RK3-CN method. Contour
spacing is 0.05 with dashed lines indicating that the amplification factor is below unity.

the roots of the associated characteristic polynomials. Contours of constant abso-
lute values of the roots, for the RK3-CN method, are given in figure 5.1. Note that
higher values of λ (lower Reynolds number) stabilizes the method, i.e. increases the
CFL number µ that is allowed for an absolutely stable solution. In the limit of infi-
nite Reynolds number the RK3-CN method approaches the limit

√
3, a result which

also can be arrived at through the standard analysis of the RK3 scheme alone. The
analysis for the four stage method is analogous and the stability limit is

√
8.

If the time advancement scheme (5.2) is applied to equations (4.9) and (4.11) we find
(for the moment disregarding the boundary conditions),

(
1− an + bn

2Re
∇2

)
φn+1 =

(
1 +

an + bn
2Re

∇2

)
φn + anh

n
v + bnh

n−1
v ,

∇2vn+1 = φn+1 ,

(5.8)

and (
1− an + bn

2Re
∇2

)
ωn+1 =

(
1 +

an + bn
2Re

∇2

)
ωn + anh

n
ω + bnh

n−1
ω . (5.9)

5.2 Horizontal discretization – Fourier expansions

The discretization in the horizontal directions uses a Fourier series expansion which
assumes that the solution is periodic.

The streamwise and spanwise dependence of each variable can then be written

u(x, z) =

Nx
2 −1∑

l=−(Nx
2 −1)

Nz
2 −1∑

m=−(Nz
2 −1)

û(αl, βm)e(i(αlx+βmz)) , (5.10)

where αl = 2πl/xL and βm = 2πm/zL, and Nx and Nz are the number of Fourier
modes included in the respective directions. Note that the indices on the discrete
wavenumbers α and β are sometimes left out for notational convenience and that
k2 = α2 + β2.

33

TRITA-MEK 2007:07

5.2.1 Normal velocity and normal vorticity equations

Expanding the dependent variables of equation (5.8) in Fourier series gives(
1− an + bn

2Re
(D2 − k2)

)
φ̂n+1 =

(
1 +

an + bn
2Re

(D2 − k2)

)
φ̂n

+ anĥ
n
v + bnĥ

n−1
v ,

(D2 − k2)v̂n+1 = φ̂n+1 ,

(5.11)

where D signifies a derivative in the normal direction. Note that the above equations
are two linear constant coefficient second order ordinary differential equations in y.
A similar equation can also be derived from equation (5.9). These three equations
can be written as follows

(D2 − λ2)φ̂n+1 = f̂nv ,

(D2 − k2)v̂n+1 = φ̂n+1 ,

(D2 − λ2)ω̂n+1 = f̂nω ,

(5.12)

where
λ2 = k2 + 2Re/(an + bn) ,

f̂nv = p̂nv −
2Re an
an + bn

ĥnv ,

f̂nω = p̂nω −
2Re an
an + bn

ĥnω ,

(5.13)

and

p̂nv = −
(
D2 − λ2 +

4Re

an + bn

)
φ̂n − 2Re bn

an + bn
ĥn−1
v

= −f̂n−1
v −

(
2Re

an−1 + bn−1
+

2Re

an + bn

)
φ̂n − 2Re bn

an + bn
ĥn−1
v ,

p̂nω = −
(
D2 − λ2 +

4Re

an + bn

)
ω̂n − 2Re bn

an + bn
ĥn−1
ω

= −f̂n−1
ω −

(
2Re

an−1 + bn−1
+

2Re

an + bn

)
ω̂n − 2Re bn

an + bn
ĥn−1
ω .

(5.14)

We will denote the quantities p̂nω and p̂nv the partial right hand sides of the equations.

5.2.2 Horizontal velocities and wavenumber zero

Having obtained v̂ and ω̂ we can find û and ŵ using equation (4.2) and the definition
of the normal vorticity component, both transformed to Fourier space. We find

û =
i

k2
(αDv̂ − βω̂) , (5.15a)

ŵ =
i

k2
(αω̂ + βDv̂) . (5.15b)

Similarly, we can find the streamwise and spanwise component of vorticity in terms
of ω̂ and φ̂,

χ̂ =
i

k2
(αDω̂ + βφ̂) , (5.16a)

ϑ̂ =
−i
k2

(αφ̂+ βDω̂) . (5.16b)

These relations give the streamwise and spanwise components of velocity and vorticity
for all wavenumber combinations, except when both α and β are equal to zero. In
that case we have to use some other method to find û0, ŵ0, χ̂0 and ϑ̂0 (the zero
subscript indicates that k = 0). The appropriate equations are found by taking the

34

TRITA-MEK 2007:07

horizontal average of the first and the third component of equation (4.1). Due to the
periodic boundary condition all horizontal space derivatives cancel out, i.e.,

∂u0

∂t
= H1 +

1

Re

∂2u0

∂y2
,

∂w0

∂t
= H3 +

1

Re

∂2w0

∂y2
.

(5.17)

After a time discretization we find,

(D2 − λ2)ûn+1
0 = f̂n01 ,

(D2 − λ2)ŵn+1
0 = f̂n03 ,

(5.18)

where

f̂n0i = p̂n0i −
2Re an
an + bn

Ĥn
0i , (5.19)

and

p̂n0i = −
(
D2 − λ2 +

4Re

an + bn

)
ûn0i −

2Re bn
an + bn

Ĥn−1
0i

= −f̂n−1
0i −

(
2Re

an−1 + bn−1
+

2Re

an + bn

)
ûn0i −

2Re bn
an + bn

Ĥn−1
0i .

(5.20)

Here the 0 index in Ĥ0i refers to the zero wavenumber in both horizontal directions.
Note that the above system contains the same type of equations as the system (5.12),
and can thus be solved using the same numerical algorithm. Once û0 and ŵ0 are
calculated, the streamwise and spanwise components of vorticity for k = 0 can be
found as follows

χ̂0 = Dŵ0 ,

ϑ̂0 = −Dû0 .
(5.21)

5.2.3 Solution procedure with boundary conditions

A problem with the above equations is that the boundary conditions do not apply to
the quantities for which we have differential equations. To remedy this, each of the
equations can be solved for a particular solution with homogeneous boundary con-
ditions. Then a number of homogeneous solutions with non-homogeneous boundary
conditions are found for the same equations. Finally the boundary conditions are
fulfilled by a suitable linear combination of particular and homogeneous solutions.
Explicitly we proceed as follows:

For all k =
√
α2 + β2 6= 0 and each of the two symmetries (symmetric and antisym-

metric with respect to reflections around y = yL/2) we solve:

(D2 − λ2)φ̂n+1
p = f̂n+1

v , φ̂n+1
p (yL) = 0 , (5.22a)

(D2 − k2)v̂n+1
p = φ̂n+1

p , v̂n+1
p (yL) =

{ v̂BS
2

symmetric ,

− v̂BS
2

antisymmetric ,
(5.22b)

(D2 − λ2)φ̂n+1
h = 0 , φ̂n+1

h (yL) = 1 , (5.22c)

(D2 − k2)v̂n+1
ha = φ̂n+1

h , v̂n+1
ha (yL) = 0 , (5.22d)

(D2 − k2)v̂n+1
hb = 0 , v̂n+1

hb (yL) = 1 , (5.22e)

(D2 − λ2)ω̂n+1
p = f̂n+1

ω , ω̂n+1
p (yL) = 0 , (5.22f)

(D2 − λ2)ω̂n+1
h = 0 , ω̂n+1

h (yL) = 1 , (5.22g)

where the subscripts p, h, ha and hb indicate the particular and the homogeneous
parts. The variable v̂BS is only non-zero for cases with blowing and suction through
the wall. Note that only one boundary condition is needed for each second order
equation since the assumption of symmetry (or antisymmetry) takes care of the other.

35

TRITA-MEK 2007:07

The particular solution of the wall-normal velocity, v̂n+1
p (yL), is zero at the upper

boundary when the symmetric and antisymmetric solutions are added and all the
other solutions are zero at y = 0. Equations (5.22c) and (5.22g) have zero right
hand sides and the same boundary conditions. The solution coefficients are therefore
identical and so are also their symmetric and antisymmetric coefficients. Thus, four
calls of the equation solver can be reduced to one.

To fulfill the remaining boundary conditions one first constructs v̂p1, v̂h1 and v̂h2,

v̂n+1
p1 = v̂n+1

p + Cp1v̂
n+1
ha , v̂n+1

p1 (yL) = 0 , v̂n+1
p1 (0) = vBS/2 ,

v̂n+1
h1 = v̂n+1

ha /
∂v̂ha
∂y

∣∣∣∣
y=yL

, v̂n+1
h1 (yL) = 0 , v̂n+1

h1 (0) = 0 ,

v̂n+1
h2 = v̂n+1

hb + Ch2v̂
n+1
ha , v̂n+1

h2 (yL) = 1 , v̂n+1
h2 (0) = 0 ,

(5.23)

where Cp1 and Ch2 are chosen to fulfill the boundary condition ∂v/∂y = 0 at the lower
wall for each of the two symmetries of v̂p1 and v̂h2. As the symmetric and antisym-
metric parts of ∂v̂h1/∂y cancel at the lower wall their sum vh1 fulfills ∂vh1/∂y = 0.

Now the solutions (vp1, ωp), (vh1, ω = 0), (vh2, ω = 0) and (v = 0, ωh) fulfill all the
physical boundary conditions at the lower wall. The total normal velocity is then
given by

v̂n+1 = v̂n+1
p1 + Cv1v̂

n+1
h1 + Cv2v̂

n+1
h2 , (5.24)

and the vorticity by
ω̂n+1 = ω̂n+1

p + Cωω̂
n+1
h , (5.25)

where Cv1, Cv2 and Cω are chosen such that the boundary conditions at the upper
boundary are fulfilled. The u and w velocities are found from the definition of the
normal vorticity and the incompressibility constraint.

In general we have to find u and w first to evaluate the boundary conditions. Thus
with the C’s unknown we find:

ûn+1 = ûn+1
p1 + Cv1û

n+1
h1 + Cv2û

n+1
h2 + Cωû

n+1
h ,

ŵn+1 = ŵn+1
p1 + Cv1ŵ

n+1
h1 + Cv2ŵ

n+1
h2 + Cωŵ

n+1
h ,

(5.26)

where (up1, wp1), (uh1, wh1), (uh2, wh2) and (uh, wh) are found from (vp1, ωp),
(vh1, ω = 0), (vh2, ω = 0) and (v = 0, ωh) using equation (5.15a) and (5.15b).

Assuming the boundary conditions are linear we can write them as:

Li(û, v̂, ŵ) = D̂i , i = 1, 2, 3 . (5.27)

Here Li is the linear operator for the ith boundary condition. This can include
derivatives in the wall-normal direction. The operator may also depend on the wave
number (for example when the boundary condition contains horizontal derivatives).
Note that the expression for evaluation Li may include ω̂ as this is equivalent to
horizontal derivatives. The right hand side D̂i is the data for the boundary condition,
the most common form of which is either zero (homogeneous boundary conditions)
or the operator Li applied to a base flow.

Finally inserting the expressions (5.24) and (5.26) into equation (5.27) and moving
all terms containing the particular solution to the right hand side, we get a three by
three linear system of equations which is easily solved to find the C’s.

For k = 0 we solve

(D2 − λ2)ûn+1
p0 = f̂n01 , ûn+1

p0 (0) = ulow , ûn+1
p0 (yL) = uupp ,

(D2 − λ2)ŵn+1
p0 = f̂n03 , ŵn+1

p0 (0) = wlow , ŵn+1
p0 (yL) = wupp ,

(D2 − λ2)ûn+1
h0 = 0 , ûn+1

h0 (0) = 0 , ûn+1
h0 (yL) = 2 ,

(D2 − λ2)ŵn+1
h0 = 0 , ŵn+1

h0 (0) = 0 , ŵn+1
h0 (yL) = 2 ,

(5.28)

where ulow, uupp, wlow and wupp denote the lower and upper wall velocities. Com-
putations in a moving reference frame can increase the time step. If the boundary

36

TRITA-MEK 2007:07

condition at the upper wall is in the form of Dirichlet type (specified velocity) then

û0 = ûp0 ,

ŵ0 = ŵp0 .
(5.29)

For other types of upper wall boundary conditions we find the complete solution from

û0 = ûp0 + Cuûh0 ,

ŵ0 = ŵp0 + Cwŵh0 ,
(5.30)

where Cu and Cw are chosen so that û0 and ŵ0 fulfill the boundary conditions.

The above equations are all in Fourier space, where the non-linear terms hv, hω,
H1 and H3 become convolution sums. These sums can be efficiently calculated by
transforming the velocities and vorticities using FFTs to physical space, where they
are evaluated using pointwise products.

5.3 Normal discretization – Chebyshev expansion

The typical equation derived above is a second order constant coefficient ordinary
differential equation of the form

(D2 − κ)ψ̂ = f̂ , ψ̂(0) = γ−1 , ψ̂(yL) = γ1 . (5.31)

For boundary layer flows first map the interval [0, yl] to [−1, 1] by setting y′ = 2y/yL−
1. Then

(D′2 − ν)ψ̂ = f̂ , ψ̂(−1) = γ−1 , ψ̂(1) = γ1 , (5.32)

where ν = κy2
L/4. In the following we have for simplicity dropped the prime.

This equation can be solved accurately if the dependent variable ψ̂, its second deriva-
tives, the right hand side f̂ and the boundary conditions are expanded in Chebyshev
series, i.e.,

ψ̂(y) =

Ny∑
j=0

ψ̃jTj(y) , (5.33a)

D2ψ̂(y) =

Ny∑
j=0

ψ̃
(2)
j Tj(y) , (5.33b)

f̂(y) =

Ny∑
j=0

f̃jTj(y) , (5.33c)

ψ̂(1) =

Ny∑
j=0

ψ̃j = γ1 , (5.33d)

ψ̂(−1) =

Ny∑
j=0

(−1)jψ̃j = γ−1 , (5.33e)

Dψ̂(1) =

Ny∑
j=1

j2ψ̃j = δ1 , (5.33f)

Dψ̂(−1) =

Ny∑
j=1

j2(−1)j+1ψ̃j = δ−1 , (5.33g)

where Tj are the Chebyshev polynomial of order j and Ny the highest order of
polynomial included in the expansion. If the Chebyshev expansions are used in equa-
tion (5.32), together with the orthogonality properties of the Chebyshev polynomials,
we find the following relation between the coefficients

ψ̃
(2)
j − νψ̃j = f̃j , j = 0, ..., Ny . (5.34)

37

TRITA-MEK 2007:07

By writing the Chebyshev functions as cosines and using well known trigonometric
identities, one finds relations between the Chebyshev coefficients of ψ̂ and those of its
derivative that can be used for differentiation and integration (Canuto et al. (1988))

ψ̃
(p)
j =

Ny∑
m=j+1
m+j odd

mψ̃(p−1)
m , j = 1, . . . , Ny , (5.35a)

ψ̃
(p−1)
j =

1

2j
(cj−1ψ̃

(p)
j−1 − ψ̃

(p)
j+1) , j = 1, . . . , Ny , (5.35b)

where the superscript p indicates the order of the derivative and cj = 2 for j = 0 and
cj = 1 for j > 0. In the first differentiation relation one observes that an error in
the highest order coefficients of ψ̃(p−1) influences all coefficients of its derivative ψ̃(p).
This problem is what is supposed to be avoided by the Chebyshev integration method
discussed below. In the second relation we assume that ψ̃

(p)
j = 0 for j > Ny and note

that ψ̃
(p−1)
0 is an integration constant needed when the function ψ̂(p−1) is found by

integrating ψ̂(p). Note also that the integration procedure introduces a truncation
error, since an integration of a Chebyshev polynomial would result in a polynomial
of one degree higher. The coefficient ψ̃

(p−1)
Ny+1 which would have multiplied TNy+1 is in

the present truncation set to zero.

If the relations (5.35a) and (5.35b) are used together with relation (5.34) a system

of equations can be derived for either coefficients ψ̃j or ψ̃
(2)
j . The second approach,

called the Chebyshev integration method (CIM), was proposed by Greengard (1991)
to avoid the ill conditioned process of numerical differentiation in Chebyshev space.
It was implemented in the original channel code by Lundbladh et al. (1992a) and is
also included in the present implementation. However, it has been found that using
this method, subtle numerical instabilities occur in some cases and it is therefore
recommended to solve for the coefficients of the function itself, ψ̃j . Such a Chebyshev
tau method (CTM), almost identical to that used by Kim, Moin & Moser, is also
implemented and is so far found to be stable. Note that the instabilities have occurred
only a few times and that the results otherwise are the same for the two methods.

5.3.1 Chebyshev tau method – CTM

If the recursion relation (5.35a) is used to express equations (5.34) in the coefficients
ψ̃j , one arrives at the system of equations (5.36 below). A more detailed derivation
can be found in Canuto et al. (1988), but observe the sign errors therein. We have

− cj−2ν

4j(j − 1)
ψ̃j−2 +

(
1 +

νβj
2(j2 − 1)

)
ψ̃j −

ν

4j(j + 1)
ψ̃j+2

=
cj−2

4j(j − 1)
f̃j−2 −

βj
2(j2 − 1)

f̃j +
βj+2

4j(j + 1)
f̃j+2 , j = 2, . . . , Ny

(5.36)

where

βj =

{
1 0 ≤ j ≤ Ny − 2 ,
0 j > Ny − 2 .

(5.37)

Note that the even and odd coefficients are uncoupled. Since a Chebyshev polynomial
with an odd index is an odd function, and vice versa, the decoupling of the systems
of equations is just a result of the odd and even decoupling of equation (5.32) itself.
The same can be achieved for the boundary conditions (5.33d)–(5.33g) if they are
added and subtracted,

Ny∑
j=0

j even

ψ̃j =
γ1 + γ−1

2
,

Ny∑
j=1
j odd

ψ̃j =
γ1 − γ−1

2
,

Ny∑
j=2

j even

j2ψ̃j =
δ1 − δ−1

2
,

Ny∑
j=1
j odd

j2ψ̃j =
δ1 + δ−1

2
.

(5.38)

38

TRITA-MEK 2007:07

These boundary conditions together with the equations (5.36) constitute a linear
system of Ny + 1 equations that can be solved for the coefficients ψ̃j (j = 0, . . . , Ny).
The structure of the equations involving the even coefficients forms a tridiagonal
system and so does the equation for the odd coefficients. The boundary conditions
fill the top row of both systems and make the systems only quasi-tridiagonal, but it
only takes 16Ny operations to solve both systems.

The system (5.36) has in fact been truncated to only contain Ny−1 equations and two
equations have been replaced by boundary conditions. That truncation introduces
what is usually called the tau error. In solution algorithms that solve for the three
velocity components of the Navier–Stokes equations and the pressure, the coupling
between the equations for the velocities and that for the pressure require corrections
of the tau error (Kleiser & Schumann (1980)). We have chosen to eliminate the
pressure in the Navier–Stokes equations and solve for the normal velocity and the
normal vorticity. As those equations do not couple in the same way, we do not have
to correct the tau error.

5.3.2 Chebyshev integration method – CIM

Instead of solving for the coefficients ψ̃j , the CIM solves for the coefficients of the

Chebyshev series for the second derivative, ψ̃
(2)
j . The major advantage is supposed to

come in the calculation of derivatives of the solution ψ̂. Derivatives are needed in the
calculation of the remaining velocities and vorticities using equations (5.15a)–(5.16b).
In the CIM the second derivative is already calculated and the first derivative and the
function itself can be found by the numerically well conditioned process of integration.

If the relations (5.35b) are used to write (5.34) in terms of ψ̃
(2)
j the result is the

following system of equations,

ψ̃
(2)
0 − νψ̃0 = f̃0 , j = 0 ,

ψ̃
(2)
1 − ν(ψ̃

(1)
0 − 1

8
ψ̃

(2)
1 +

1

8
ψ̃

(2)
3 = f̃1 , j = 1 ,

ψ̃
(2)
j − ν

1

4j(
cj−2ψ̃

(2)
j−2

j − 1
− ψ̃(2)

j

(
1

j − 1
+

1

j + 1

)
+
ψ̃

(2)
j+2

j + 1

)
= f̃j , 2 ≤ j ≤ Ny − 2 ,

ψ̃
(2)
Ny−1 − ν

1

4(Ny − 1)(
ψ̃

(2)
Ny−3

Ny − 2
− ψ̃(2)

Ny−1

(
1

Ny − 2
+

1

Ny

))
= f̃Ny−1 , j = Ny − 1 ,

ψ̃
(2)
Ny
− ν 1

4Ny(Ny − 1)
(ψ̃

(2)
Ny−2 − ψ̃

(2)
Ny

) = f̃Ny , j = Ny .

(5.39)

The equations for odd and even coefficients decouple and so do the boundary con-
ditions on the form (5.38). However, we now need to rewrite them with the aid of
(5.34) to contain the coefficients of ψ̃(2) that we are now solving for. We find that
the first sum in (5.38) takes the form,

ψ̃0 + ψ̃
(1)
0 +

1

4
ψ̃

(2)
0 − 1

12
ψ̃

(2)
1 − 7

48
ψ̃

(2)
2 +

Ny−2∑
j=3

3ψ̃
(2)
j

(j − 2)(j − 1)(j + 1)(j + 2)
−

(Ny − 6)ψ̃
(2)
Ny−1

4(Ny − 3)(Ny − 2)Ny
−

ψ̃
(2)
Ny

2(Ny − 2)(Ny − 1)Ny
= γ1 .

(5.40)

Thus, the solution of equation (5.32) is found by solving the system of equations for
the second derivative of ψ̃ (5.39) together with the boundary conditions (5.40) and

39

TRITA-MEK 2007:07

the corresponding one at y = −1. We now have two more equations than for the tau
method and the solution to the full system is a set of Ny +1 coefficients of the second

derivative and the two integration constants ψ̃
(1)
0 and ψ̃

(2)
0 representing the zeroth

order Chebyshev coefficient of Dψ̂ and ψ̂ itself, respectively. The function ψ̂ is then
found by two integrations, which in Chebyshev space can easily be constructed using
the relations (5.35b). The same quasi-tridiagonal form of the equation systems for
the odd and even coefficients appears as for the CTM and the same solution routine
can be used.

5.3.3 Integration correction

When the solution for ψ̂(2) is found by the CIM and integrated to obtain ψ̂(1) and ψ̂
the same truncation is used for both the derivatives and ψ̂ itself. They are all repre-
sented with Ny +1 non-zero Chebyshev coefficients. This means that the truncations
are not compatible, since the derivative of a function represented as a finite Cheby-
shev series should have one coefficient less than the function itself. For example, if
the coefficients ψ̃j are used to construct those for the derivative, using the recurrence

relation (5.35a), the result will not be the same as the coefficients ψ̃
(1)
j . There will be

a slight difference in half of the coefficients for the derivative, the size depending on
the magnitude of the coefficient ψ̃Ny . The expression for the difference can be derived

as follows. We write ψ̂ explicitly using the coefficients ψ̃
(1)
j and the relation (5.35b),

ψ̂ = ψ̃0T0 +

Ny−1∑
j=1

1

2j
(cj−1ψ̃

(1)
j−1 − ψ̃

(1)
j+1)Tj +

1

2Ny
ψ̃

(1)
Ny−1TNy . (5.41)

Now (5.35a) is applied to the Chebyshev coefficients in (5.41) to calculate the deriva-
tive Dψ̂. Let ψ̃Dj be its new coefficients. We find that these new coefficients will not

equal ψ̃
(1)
j and the following relation is found between them,

ψ̃Dj =
2

cj

Ny∑
q=j+1

q+j odd

(cq−1ψ̃
(1)
q−1 − ψ̃

(1)
q+1) +

1

cj
ψ̃

(1)
Ny−1 = ψ̃

(1)
j , q +Ny odd ,

ψ̃Dj =
2

cj

Ny∑
q=j+1

q+j odd

(cq−1ψ̃
(1)
q−1 − ψ̃

(1)
q+1) = ψ̃

(1)
j −

1

cj
ψ̃

(1)
Ny

, q +Ny even .

(5.42)

Thus, we have a method of correcting the coefficients ψ̃
(1)
j so that they represent Dψ̂

with the same truncation as ψ̃j represent ψ̂. A similar correction can be derived for

the coefficients ψ̃
(2)
j of the second derivative. After some algebra we find,

ψ̃D
2

j = ψ̃
(2)
j −

1

cj

(
1 +

(Ny − 1)2 − j2

4Ny

)
ψ̃

(2)
Ny−1 , j +Ny odd ,

ψ̃D
2

j = ψ̃
(2)
j −

1

cj
ψ̃

(2)
Ny

, j +Ny even ,

(5.43)

where ψ̃D
2

j are the corrected Chebyshev coefficients for D2ψ̂.

When the horizontal components of the velocity and vorticity are found using the
relations (5.15a) to (5.16b), we need φ̂, Dv̂ and Dω̂. The above corrections are
therefore needed in order for the velocity and vorticity fields to exactly satisfy the
incompressibility constraint (4.2). Note that an error in the highest Chebyshev coeffi-
cients will, by the above correction scheme, affect all other coefficients of the first and
second derivative. This is exactly what was supposed to be avoided by the integration
method.

The CTM and CIM methods are equally efficient and give the same results with the
exception of a few, very rare, cases. We have found that numerical instabilities may

40

TRITA-MEK 2007:07

occur when the wall-normal resolution is very low and the velocity and vorticity fields
are not divergence free. We have also found that it in those cases is enough to make the
vorticity divergence free to stabilize the calculations. With the integration correction
or the CTM method, both the velocity and vorticity are completely divergence free.
However, for one channel flow case so far, and more frequently in the boundary layer,
a numerical instability occurs with the integration correction but not without.

Fortunately the instability causes the calculation to blow up in a few time steps and
before that the results are the same as for a stable version of the code. With suffi-
cient wall-normal resolution (which is required anyhow) and without the integration
correction the boundary layer code has been found completely reliable. The CTM
method is, however, to prefer.

41

6Implementation

In implementing the flow solver significant effort has been put into portability, flexi-
bility and computational efficiency. The main language is standard Fortran 77 with
fixed source format. However, to ease readability, some Fortran 90 features have also
been used making Fortran 90 compilers a requirement. In the main programs no
dynamic memory allocation has been used, i.e. all the sizes of arrays are known at
compile time. The demands on the data structure have forced an encapsulation of
the access to the main storage which requires some attention. Also the vectorization
and the need to process suitably large chunks of data at a time adds complexity in
exchange for execution speed.

The complete Simson package is written in single precision, i.e. with plain real and
complex declarations. However, in most cases there is a need to run the code in
double precision, i.e., with at least 10–12 digit precision. For most compilers there
are options that automatically changes single precision statements to double precision
like the -r8 flag for the Intel compiler.

6.1 Program structure of bla

The program bla has been divided into subroutines each with specific tasks. The
main program steps the time and calculates the adaptive time step. The subroutines
nonlinbl and linearbl carry out the main part of the algorithm aided by smaller sub-
routines for integration, equation solving etc. The FFTs are taken from cvecfft acc
which was developed specifically for the simulation codes but is an independent pack-
age of vectorizable Fourier and Chebyshev transforms.

Step 1 reads input files, initializes the FFTs and calculates the partial right hand
sides needed to start the time stepping loop and computes the base flow. In the
main time stepping loop the data needs to be stepped through twice. First slicing in
xz-planes to calculate the FFTs and the pointwise product for non-linear terms, step
2, and second in xy-planes to calculate the normal Chebyshev transforms and solve
the system of equations for the new velocities and vorticities, step 3. Step 4 stores
the final velocity field. The most important subroutines are briefly described in the
following sections.

6.1.1 Step 1, Initialization

In step 1 the flow solver is initialized:

• mpi * subroutines initialize the MPI parallelization and are only called if com-
piled with MPI.

• OMP * subroutines initialize the OpenMP parallelization and are only called
if compiled with OpenMP.

• ppar prints the contents of the parameter file par.f to standard output as a
check of which size of problem the image is compiled for.

43

TRITA-MEK 2007:07

• rparambl reads the file bla.i that contains the runtime parameters, in partic-
ular the input and output filenames and the final time to which the simulation
is to be run, cf. section 7.4.

• rdiscbl reads the resolution, the computational box size and a few parameters
defining the flow from the velocity file. The velocities are then read from the file
and put into the main storage positions 1–3. If the resolution of the image and
the file do not correspond, this is printed on standard output and the program
stops execution. The check can be disabled by the varsiz flag in the bla.i file in
which case the field is extended by zero-padding or truncated to fit the image
resolution.

• rescale rescales all input data that requires it (boundary layer simulations
only) from boundary layer scaling to the channel flow scaling which is used
internally, see appendix B.

• preprbl calculates wavenumbers and collocation points and initializes the
FFTs.

• rbla reads similarity solution from fsc.dat. Used by, for example, the fringe
forcing.

• fshift computes a Galilei transformation which can be used to increase the
maximum stable time step by shifting the streamwise and/or spanwise velocity
by a constant.

• rwavebl reads the profile of forcing waves to be introduced in the fringe region.

• rwavesbl a more general wave forcing than rwavebl introduced in the fringe
region.

• rstreakbl reads streak data to be introduced in the fringe region.

• bflow gets from file or computes the base flow used by the fringe forcing and
some free-stream boundary conditions.

• blfou computes the streamwise Fourier transform of the base flow.

• getdt calculates the initial time step to get a CFL number equal to the cflmax
value. The subroutine is only used if the time stepping is adaptive.

• rparamles reads parameters for LES.

• init filter initializes LES filters.

• prhs calculates the initial partial right hand sides p̂φ, p̂ω, p̂01, p̂03 and places
the first two in positions 6 and 7 of the main storage. The streamwise and
spanwise vorticities are also calculated and put into positions 4 and 5 of the
main storage.

Some initial parameter values for the time stepping mechanism are prepared in the
main program and output files are opened.

6.1.2 Step 2, Computations in physical space

Step 2 includes the first half of the time integration loop:

• wplbl serial / wplbl writes data to 2D plane files.

• blshift shifts the base flow and boundary conditions to be aligned with the
computational domain when a Galilean transform is used, i.e. if the lower wall
is moving.

• gtrip generates a random force flow trip.

• boxxys computes the spanwise and time averaged statistics for one xz-box.

• wxys writes statistics to file.

• wdiscbl writes intermediate velocity field to file if required.

• ffun computes the fringe forcing.

44

TRITA-MEK 2007:07

• nonlinbl calculates Hi as pointwise products in physical space and stores them
in position 1 to 3 of the main storage. It also computes the volume forcing and
adds it to Hi. As the main storage is in Fourier–physical space, cf. section 6.2.2,
the velocities and vorticities must be transformed back to physical space before
the product can be formed. Likewise the products Hi must be transformed to
Fourier space before storing them. The velocity rms amplitudes are computed
in Fourier–physical space. The maximum CFL number and the extrema of the
velocities are calculated from the velocities in physical space.

• wampbl the amplitudes are written to file.

• wextbl the extremum amplitudes are written to file.

• wcflbl updates the CFL time-step restriction which is used if adaptive time
stepping is enabled.

• cwallbc sets the boundary condition at the wall.

6.1.3 Step 3, Computations in Fourier–Chebyshev space

Step 3 includes the second half of the time integration loop:

• linearbl transforms the non-linear products computed in step 2 into Chebyshev
space and constructs the complete right hand sides for the evolution equations.
The Chebyshev-tau or Chebyshev-integration method is used to solve for the
evolution variables from a set of tridiagonal equations. The chosen boundary
conditions are applied. All velocities and vorticities are constructed and partial
right hand sides are computed for the next time step. Finally the velocities
and vorticities are transformed back to physical space in the y-direction. The
velocities are stored into positions 1 to 3, the streamwise and spanwise vorticity
into 4 and 5 and the partial right hand sides into 6 and 7 of the main storage.

• nonlinp computes the terms H1,1 +H3,3 and H2 and stores them in position
4 and 5. The energy E is calculated and stored in position 8.

• linearp computes the linear and non-linear parts of the boundary conditions
and the sum H1,1 + H2,2 + H3,3. The equation for the pressure is solved and
the streamwise and spanwise vorticity are recalculated. Pressure is stored in
position 8 of the main storage. Note that the pressure is only computed if the
pressure parameter is equal to one in the par.f file.

For selected times the 3D velocity data is written to file. Time is incremented and
execution is continued with the next time step from step 2 if the final time tmax
or any other break criterion (maximum integration steps, maximum wall-clock time
etc.) is not reached.

6.1.4 Step 4, Output

Step 4 writes the final output to files after the time integration has finished:

• wxys the final values of xy-statistics are written to file.

• wdiscbl handles the output of a velocity field to an external file.

• wdiscp the pressure is written to an external file if a valid pressure solution is
available and pressure is set to one.

• wplbl the planes are written to file.

6.2 Data structure

As the size of a problem is explicitly compiled into the program, the memory allocation
is for the most part static. Some effort has been put into minimizing not only the
three dimensional storage but also the two dimensional arrays.

45

TRITA-MEK 2007:07

6.2.1 Complex numbers and FFTs

Most of the algorithm works with quantities in Fourier space. They are in general
in complex form which requires storage of both real and imaginary parts. Although
Fortran has the capability of automatically handling complex numbers most compilers
produce inefficient code for this, especially for mixed real and complex expressions.
Moreover Fortran stores complex numbers with alternating real and imaginary parts,
which causes a severe performance loss for vector fetches on certain computers as the
stride will be even. To circumvent this, it was decided to store all complex quantities
in double arrays, one for real and one for imaginary parts. As the algorithm neither
includes general complex-complex multiplications nor divisions this did not add very
much code.

6.2.2 Main storage, boxes, drawers, and planes

The size of the three-dimensional main storage has already been introduced in section
3.2.4 on page 13. It is

(7 + pressure + 3× scalar)× nx× ny × nz

double precision numbers (i.e. 8 bytes), multiply by a factor of 3/2 for dealiasing in
the y-direction and by 1/2 if z-symmetry is used. If MPI is used the main 3D storage
is reduced by the factor nproc.

The access to the main storage can be rearranged to optimize the performance on,
for example, vector machines. If the three dimensional storage is divided into xz-
and xy-planes the largest common element between these is a single vector in the
x-direction, a pencil containing nx words. In order to increase this number, planes
are combined into a box consisting of an integer number of adjacent planes e.g., an
xy-box holds mbz xy-planes and an xz-box holds mby xz-planes. The intersection
between an xy- and an xz-box then holds mby×mbz pencils, which is called a drawer.
Most subroutines are made to handle a box rather than a plane at a time, with the
additional advantage that the vector length increases by a factor of mby or mbz.
Note that currently mby and mbz are set to one and cannot be changed.

The variables in the main storage are in Fourier–physical format, i.e., the axes are α,
physical y and β, except for the partial right hand sides p̂v and p̂ω, which are stored
in Fourier–Chebyshev space.

The main storage is accessed box-wise by the routines getxy, putxy, getxz and
putxz; in the MPI parallel version the routines getpxz and putpxz replace the
latter two.

The two dimensional storage for step 2 (with storage for calculating statistics) is

(16 + 4× scalar + 3× pressure)× nx× nz×mby × nthread

double precision numbers; multiply by a factor 3/2 each for dealiasing in the x and
z-directions and by 1/2 for z-symmetry. For step 3 storage is

(23.5 + 11.5× scalar)× nx× ny ×mbz× nthread

double precision numbers; multiply by 3/2 for dealiasing in the y-direction. The
storage for step 2 and step 3 overlaps so that the total two-dimensional storage is
equal to the maximum of the requirement for step 2 and step 3.

6.2.3 Naming conventions

Some naming conventions have been used for variable names. Greek letters have been
replaced by abbreviations. In the case a variable is complex it has been replaced
by two variables with the last letters r and i, for the real and imaginary parts
respectively. An example of this is pomyr which is the real part of the array p̂nω. Note

46

TRITA-MEK 2007:07

that the superscripts n etc. and the hat symbol are generally left out. When needed
for distinction they are replaced by suffixes, e.g. an+1 becomes anp1. The component
indices 1, 2 and 3 in, e.g., H1 are usually found as the last index of the array. Instead
numbers in the array names are used to distinguish between the same variable when
represented by two different arrays in step 2 and step 3. Normal derivatives are
denoted by prefixes d and d2. Sometimes a b is used for box, e.g., bbeta is the
wavenumber beta vector expanded to correspond to other box sized arrays.

Note that wall-normal resolution Ny used in this report corresponds to ny−1 in the
code.

6.2.4 The oddball wavenumbers

When transforming data between Fourier and physical space, one wavenumber, called
the Nyquist wavenumber N/2 or the oddball, needs special attention. This can be
understood if one considers the following scenario. If u(x) is a real function sampled
at N grid points, two modes in the finite Fourier series expansion ûk (in the positive
k half-plane) will be real, û0 and ûN/2 and the rest will be complex, û1,...,N/2−1, so
that the information (N real numbers) is conserved. Consider calculating the first
derivative of u(x), denoted by f(x), which of course will be real. Transforming again
the real function f(x) to Fourier space will give, again, two real Fourier coefficients f̂0
and f̂N/2. If one takes the derivative of u(x) in Fourier space, f̂n = iknûn then f̂N/2
will be purely imaginary. This is however not possible if f is supposed to be real.
Therefore, one sets f̂N/2 = 0 regardless of ûN/2. The consequence is that oscillation
in the numerical representation of a function at the Nyquist frequency should be
removed from the data to be consistent with computed spectral derivatives. If the
oddball modes are not filtered, their effect can propagate towards lower frequencies
and thus contaminate the accuracy of a whole simulation.

The above consideration directly transfers to multiple dimensions, see figure 6.1 for
a two-dimensional example. The oddball mode is always associated with the mode
N/2 in even directions of N . In consequence there is less information in spectral
representation than in physical space. Note that for N odd there is no oddball mode
and, consequently, a direct correspondence between physical and spectral space exists.

6.3 Parallelization

The code supports both parallelization based on shared memory using OpenMP and
distributed memory using MPI. Both variants give good speed-up on a variety of
computers. For machines supporting both MPI and OpenMP it is recommended
to compare both parallelizations, however, OpenMP is expected to be slightly more
efficient.

The parallelization (both OpenMP and MPI) is designed in such a way that exactly
the same operations in the same order are performed on the data. This implies that –
provided that the compiler generates similar code – results of a serial run are binary
the same as the ones obtained from a parallel calculation. This applies in particular
to the velocity and pressure fields, statistics files, two-point correlations and saved
planes.

6.3.1 OpenMP

The OpenMP parallelization is implemented in a straight-forward way around the
loops calling nonlinbl, linearbl, nonlinp and linearp. Additionally, one loop in
ffun and the computation of statistics in boxxys is also parallelized. These parallel
parts are the ones corresponding to the majority of the work performed during time
integration. Note that most of the two-dimensional working arrays have an additional
dimension corresponding to the number of threads used. Thereby it is assured that

47

TRITA-MEK 2007:07

FFTx

FFTz

x

z

α

z

α

β

α

β
odd-balls

Figure 6.1: Schematic figure of the 2D transformation from physical to Fourier space and
the oddball. A domain with N = 8 in two dimensions is first transformed from physical
space with a total of 64 numbers on a N ×N = 8× 8 = 64 grid (N indicates an arbitrary
number) in the x- and z-directions. In spectral space, the information is conserved, i.e.
64 independent numbers on a N × (N + 2) = 8 × 10 = 80 grid (C indicates redundant
data due to complex conjugate and 0 means zero). To make sure that the resulting field
in spectral space also corresponds to a realizable field, the oddball wavenumbers have to
be set to zero (marked with X). Thus, we are left with 49 independent numbers.

these work arrays are thread-private. Moreover, the first threaded use of these work
arrays is done by the correct thread, such that for certain processor architectures
independent memory busses are assigned.

There is no strict upper limit on the number of OpenMP threads. However, the
number of planes in both the wall-normal direction and spanwise direction is given by
nyp and nz, respectively. Therefore these numbers can be considered natural upper
limits for the number of threads that could still lead to a performance increase.

6.3.2 MPI

In the present MPI parallelization, the main storage ur, ui of the code is distributed
among the processors along the spanwise z direction. Communication is therefore
necessary to evaluate the nonlinear terms in physical space. Hence, at the beginning of
the subroutines nonlinbl and nonlinp, a global data transpose has to be performed.
This is accomplished by accessing the main storage via the functions getpxz and
putpxz, which internally take care of collecting the relevant data of a xz-plane from
all processors. Note that getpxz and putpxz need to be called from all processors
at the same time, and that these functions always operate on nproc consecutive
wall-parallel planes.

The global communication in getpxz and putpxz is implemented in two different
ways. On the one hand, the standard MPI ALLTOALL library function can be used.
However, to fit with the data structure of the code, user-defined data types involving
MPI TYPE STRUCT and MPI UB have to be used. On the other hand, a hand-written
alternate version is also included, which is based on explicit point-to-point send and
receive statements. Both version of getpxz and putpxz essentially perform similarly
and exhibit approximately the same memory requirement. The hand-written version

48

TRITA-MEK 2007:07

is chosen as the standard for the present release. Further details on the implementa-
tion of the MPI communication can be found in Alvelius & Skote (2000). Note that
this reference is based on an older version of the code, not supporting all the features
of the new code release.

The main storage is distributed among the processors. Therefore, the memory foot-
print is also reduced by employing multiple MPI processes. However, since each
process needs to have a certain amount of two- and one-dimensional work arrays,
the decrease in memory requirement is not linear. Note that all the large permanent
storage is allocated/declared in the main Fortran function bla, which allows a simple
estimate on the memory required by each process.

The distribution of the data along the spanwise direction imposes the natural upper
limit of the possible processors to be nz. Moreover, nz needs to be evenly divisible
by the number of processors, nproc. The code has been shown to scale essentially
linearly up to nz/2 processors on various distributed-memory architectures.

49

7File formats

This section contains the formats of the most important input and output files that
are used by the Simson programs.

7.1 Compile time parameter file par.f

The parameter file par.f needs to be adjusted to fit the numerical experiment at
hand before starting to compile Simson. Below follows a short description of these
parameters.

The number of spectral modes in each direction is set by the parameters nx, ny and
nz. The following restrictions apply: nx and ny−1 must be even and factorable by
2, 3 and 5, nz must be factorable by 2, 3, 5 and at least 2. Note that ny is the
number of Chebyshev polynomials and thus is equal to Ny + 1 used in chapter 4.

Dealiasing, i.e. padding to remove aliasing errors, can be switched on (1) or off (0)
independently for each direction by the flags nfxd, nfyd and nfzd. If dealiasing in
the respective direction is used nx, ny−1 must be divisible by 4, and nz must be
divisible by 2.

There is an option to run 2 1/2 dimensional simulations, i.e., simulations of flow in
a two dimensional geometry with all three velocity components non-zero, which is
sometimes called the infinite swept flow (two dimensional flow is a special case of
this). In this case the spanwise parameters should be set to nz = 1, nfzd = 0 and
the limitations on nz given above do not apply.

The parameter nthread determines the maximum number of OpenMP threads the
code should be compiled for. The parameter nproc specifies the number of processors
that should be used for the MPI parallelization. Note that it is possible to combine
OpenMP and MPI parallelization (experimental).

To collect run-time statistical data during a simulation, several parameters are used
to define the storage requirements of these data sets. The maximum number of two-
dimensional x − y velocity statistics collected is given by nxys (at the moment, 96
statistics are implemented, see section 7.12. The number of statistics involving the
scalars is given by nxysth (maximum 35). Note that these statistics are taken for
each scalar separately. The parameter mcorr sets the maximum number of spanwise
two-point correlations. The maximum number of time series is given by mser. The
parameter msamp is the size of the array storing the time-series during run-time
between writing them out to disk and it is therefore required to be at least ixyss/ixys
(see section 7.4).

To allow for simultaneous calculation of velocities and pressure, the parameter pres-
sure should be set to 1. The temperature can also be computed as a passive scalar
field by setting scalar to 1 or higher. By setting scalar larger than one, multiple
passive scalar fields with individual Prandtl numbers and scalar boundary conditions
can be computed simultaneously.

51

TRITA-MEK 2007:07

.

.
c
c Number of spectral modes
c

parameter (nx=128,ny=121,nz=128)
c
c Number of processors (MPI)
c

parameter (nproc=1)
c
c Number of threads (OpenMP)
c

parameter (nthread=1)
c
c Statistics
c

parameter (nxys = 96)
parameter (nxysth= 35)
parameter (mcorr = 30)
parameter (mser = 20)
parameter (msamp = 16)

c
c Pressure (0/1)
c

parameter (pressure=1)
c
c Passive scalars
c

parameter (scalar=0)
c
c Dealiasing flags
c

parameter (nfxd=1,nfyd=0,nfzd=1)
c
c Number of waves for freestream OS-eigenmodes
c

parameter (osnf=250)
c
c Number of points in base flow
c

parameter (mbla=20001)
.
.

Table 7.1: An example of the user specific part of the compile time parameter file par.f.

All other parameters in the par.f file are computed and should not be changed man-
ually. Note that most subroutines must be recompiled after changing par.f. An
example of the user relevant part of a par.f file is given in table 7.1.

7.2 Runtime parameter file fsc.i

The file fsc.i is formatted and sequential. Comments can be put after data on lines
not containing character input. This file is read when running fsc in order to create
a similarity solution for boundary layer flows.

1. m Power law exponent; real.

2. n Wall-normal resolution; integer.

3. eps Convergence criterion; real.

4. ymax Box height; real.

5. scalar The number of scalars. If non-zero, items a) and b) are repeated for
each passive scalar; integer.

a) pr Prandtl number; real.

b) m1 Scalar exponent; real. Note that m1 = 0 corresponds to an isothermal
boundary condition, whereas m1 = 0.5 can be used for a iso-flux boundary
condition.

52

TRITA-MEK 2007:07

7.3 Runtime parameter file bls.i

The file bls.i is formatted and sequential. Comments can be put after the data
on lines not containing character input. For boundary layer flows all input is non-
dimensionalized with the displacement thickness and the free-stream velocity at x = 0
and t = 0. This file is read when running bls to generate initial velocity fields, see
also section 3.1.1. Contents line by line:

1. namnin Optional input velocity field file name; character*80.
The base flow can be given in the form of an input velocity field file.

2. namnut Output velocity file name; character*80.

3. re The Reynolds number; real.

4. xlb The length of the computational box; real.
The streamwise extent of the box must for spatially developing flows include
the length of the fringe region, which is typically set to 30–100 displacement
thicknesses.

5. h2 The height of the computational box; real.
In case of boundary layer flow the vertical extent of the box must include the
whole boundary layer. Depending on the choice of free-stream boundary con-
dition, the box may include only the boundary layer or a few times more. The
sufficiency of the box height may be investigated through numerical experi-
ments.

6. zlb The width of the computational box; real.

7. fltype Base flow type; integer.
See table 4.1 on page 24 for a complete list of flow types.

a) If fltype = −1 or ≥ 7: rlam The acceleration exponent of the velocity
in the free-stream; real.

b) If fltype = −2 or ≥ 8: spanv The spanwise free-stream velocity; real.

c) If fltype ≥ 4: bstart The streamwise position of the start of the blending
of the base flow; real.

d) If fltype ≥ 4: blength The length of base flow blending region; real.

The base flow can either be parallel or spatially developing. The parallel base
flows currently span Poiseuille, Couette, Blasius, Falkner–Skan and FSC corre-
sponding to fltype = 1, 2, 3, −1 and −2 respectively. The spatially developing
base flow can be either Poiseuille (fltype = 4), Couette (fltype = 5), Blasius
(fltype = 6), Falkner–Skan (fltype = 7), Falkner–Skan–Cooke (fltype = 8)
or temporal flow with fringe region (fltype = 9). For the three latter cases
the acceleration exponent rlam for the streamwise free-stream velocity must
be given (i.e. m in U = Cxm). For Falkner–Skan–Cooke (swept wedge) flow
the spanwise velocity spanv in the free-stream must be specified. Note that
the spanwise direction is parallel to the leading edge of the wedge for this case,
and that the spanwise free-stream velocity is constant. For spatially developing
flows the base flow from the upstream and the downstream end are blended in
the fringe region. The start and blending length must be specified. Typically
the start is given as a negative number i.e., the distance upstream of the inflow
boundary where the blend starts is given (see section 4.2.2).

8. pert Flag to generate flow field without base flow. Used for simulations in
perturbation mode; logical.

9. ushift The Galilei shift velocity. Set to 0 for no shift; real.

10. locdi Flag to generate a localized disturbance; logical.

a) ditype The type of disturbance, only useful values 1 to 4; integer.

b) amp The amplitude of a localized disturbance; real.

c) theta The rotation angle theta of the localized disturbance in radians;
real.

53

TRITA-MEK 2007:07

d) xscale The streamwise scale of the disturbance; real.

e) xloc0 Origin of the disturbance in x-direction; real.

f) yscale The wall-normal scale of the disturbance; real.

g) zscale The spanwise scale of the disturbance; real.

h) ipoly The wall-normal distribution of the disturbance, only useful values
1 to 4; integer.

The ditype determines the type of disturbance. See bls.i for more information.

The localized disturbance example (ditype = 1) is governed by the amplitude,
the rotation angle, the length and spanwise scale. The rotation angle is the
angle by which the spanwise symmetric disturbance is rotated about the y-
axis. The x-scale and the z-scale of the disturbance are given to be applied
to the disturbance before rotation. The form of the disturbance is given in a
coordinate system aligned with the disturbance:

u′ = 0 ,

v =
∂ψ

∂z
,

w′ = −∂ψ
∂y

,

ψ = amp
x′

xsc

z′

zsc
p

(
y

ysc

)
e
−
(

x′
xsc

)2
−
(

z′
zsc

)2

,

(7.1)

where p(s) is determined by ipoly, see bls.i. The relation between the distur-
bance aligned velocities and coordinates (with ′) and the computational box
aligned ones is:

x = x′ cos(θ) + z′ sin(θ) ,

z = −x′ sin(θ) + z′ cos(θ) ,

u = w′ sin(θ) ,

w = w′ cos(θ) .

(7.2)

11. gaussian Flag to generate a Gaussian shaped disturbance; logical.

a) amp Disturbance amplitude; real.

b) y0 Wall-normal peak location; real.

c) yscale1 Wall-normal scaling factor; real.

d) walfa Streamwise wavelength; real.

e) wbeta Spanwise wavelength; real.

12. waves Flag to generate a pair of oblique waves; logical.

a) energy Energy density of the waves; real.

b) ystart The lowest y-value of non-zero wave amplitude; real.

c) yend The largest y-value of non-zero wave amplitude; real.

d) yrise The switch distance from zero to max wave amplitude; real.

e) yfall The highest y-value of non-zero wave amplitude; real.

f) walfa Streamwise wave number of the waves; real.

g) wbeta Spanwise wave number of the waves; real.

13. os Flag to use tabulated eigenmodes; logical.

14. specm Spectral space mode; logical.

a) amp Amplitude; real.

b) y0 Wall-normal peak location; real.

c) yscale1 Wall-normal scaling factor; real.

d) nalfa Streamwise wavenumber; real.

54

TRITA-MEK 2007:07

e) nbeta Spanwise wavenumber; real.

15. pertfromfile Read perturbation from file; logical.

a) initcond u File name of u-component; character*80.

b) initcond v File name of v-component; character*80.

c) nalfa Streamwise wavenumber; real.

d) nbeta Spanwise wavenumber; real.

16. noise Flag to add noise; logical.

a) ed The mean energy density of the noise; real.

b) nxn The maximum streamwise wavenumber of the noise, should be ≤
nx/2; integer.

c) nyn The number of vertical Stokes modes in the noise, should be even,
< ny×2/3; integer.

d) nzn The maximum spanwise wavenumber of the noise, should be odd, <
nz; integer.

e) seed A random number seed in the range −700000 to −1; integer.

The noise is in the form of Stokes modes, i.e., eigenmodes of the flow operator
without the convective term. They fulfill the equation of continuity and the
boundary condition of vanishing velocity at the lower and upper boundaries.
Although the actual boundary condition may allow a non-zero amplitude at
the free-stream boundary the restriction of zero amplitude for the noise doesn’t
have a large impact in practice.
If noise is used the mean energy density must be given along with the number of
wave numbers to be randomized for each direction. In the wall-normal direction
the number of Stokes modes to be randomized is given. The same noise will be
generated for the same setting of this seed, if the physical size of the simulation
box is unchanged. In particular the resolution can be changed without affecting
the noise, as long as the number of grid points is sufficient to resolve the noise
modes. This is useful for convergence studies.

7.4 Runtime parameter file bla.i

The file bla.i is formatted and sequential. Comments can be put after data on lines
not containing character input or on separate lines if the line begins with #. Contents
line by line:

1. date Version of the bla.i file. The version has to match the version of bla. The
format of the version is YYYYMMDD; The current version is dated 20070716.
integer.

2. namnin Input velocity file name; character*80.

3. namnut Output velocity file name; character*80.

4. tmax The final simulation time; real.

5. maxit The maximum number of iterations to simulate; integer.

6. cpumax The maximum CPU time in seconds; real.

7. wallmax The maximum wall clock time in seconds; real.
The input and output file names and the final time tmax determine the scope
of the simulation, in addition setting the maximum number of iterations puts
a limit on the number of iterations to be taken through the main time step
loop. The latter parameter is useful with variable time stepping in a batch
environment to ensure that the execution terminates before running out of ex-
ecution time. If the maximum number of iterations is used before the final time
is reached the execution will terminate normally by saving the present veloc-
ity field to the output velocity file. Note that the physical time step consists

55

TRITA-MEK 2007:07

of three or four iterations. The execution will only stop after completing an
integer number of physical time steps. If adaptive time stepping is used the
program will adjust the final four time steps so that it reaches exactly the final
time. You can also control maximum execution time by giving either the max-
imum CPU time (cpumax) or maximum wall clock time (wallmax) for batch
jobs. If one of the stop criteria is not to be used, specify a negative number.

8. write inter Write intermediate velocity field whenever statistics are written
to disk (i.e. every ixyss steps, see below); logical.

9. dt The time step length; real.
dt is the length of the time step, if it is set ≤ 0 the adaptive time stepping
is used. The time step is regulated to keep the CFL number close to cflmax,
which is set by the next parameter.

10. nst The number of stages in the time discretization; integer.
The parameter nst selects between the different formulas for the explicit time
discretization (3 three stage Runge–Kutta, 4 four stage Runge–Kutta). The
4 stage Runge–Kutta method is about 20% more efficient than the 3 stage
version.

11. cflmaxin The maximum CFL number; real.
The maximum convective stability limit is

√
3 for the three stage Runge–Kutta

and
√

8 for the four stage Runge–Kutta. When using a fringe region the time
step is also limited by the numerical stability for the damping term, this is
1.75/fmax for the three stage RK and 1.96/fmax for the four stage RK (fmax
is the max strength of the fringe region, see below). If dt is set < 0 then −dt is
used as an additional limit on the variable time step. The parameter cflmaxin
is a factor indicating with fraction of the maximum stability limit should be
used for dynamic time-stepping. A value of about 0.8 is recommended.

12. xl The new box length. If lower than the length read from the velocity field,
the velocity field length will be used; real.

13. varsiz Flag to allow read of a velocity field of different size than the code is
compiled for; logical.
If varsiz is set true the program may start from an input field of a differ-
ent resolution than the program is compiled for. The spectral coefficients are
padded with zeroes or truncated to achieve a spectrally accurate interpolation.
However, the resolution cannot be reduced in the normal direction as the trun-
cated field in general will not fulfill the equation of continuity and the boundary
conditions.

14. rot The angular velocity of the coordinate frame around the z-axis. For non-
rotating flows it should be set to zero; real.

15. cflux Constant mass flux; logical. Only effective for channel flow (fltype = 1).
If cflux is false:

a) retau Target Reynolds number Reτ ; real. The pressure gradient is spec-
ified such that the required skin friction is obtained.

16. pert Perturbation equations; logical. Solve the Navier–Stokes equations in
perturbation form (4.36). The base flow should be a converged solution to the
Navier–Stokes equations, i.e. preferably a steady simulation result. If pert is
true:

a) lin Linear simulation; logical.

17. ibc The free-stream boundary condition number; integer.
A number of these boundary conditions makes the numerical scheme unstable.
Among the stable boundary conditions, the most used for boundary-layer cases
are number 101 and 110. A complete list of available conditions are given in
table 7.2 on page 63. See also section 4.3 for more information about the
different boundary conditions. Note that for channel flow and Couette flow
ibc = 0 should be chosen.

56

TRITA-MEK 2007:07

18. Boundary conditions for passive scalars. The following parameters are read
scalar times.

a) tbc The boundary condition number (from 0 to 3); integer.

b) If tbc = 0

i. theta0 low Value of scalar at lower boundary; real.

ii. theta0 upp Value of scalar at upper boundary; real.

c) If tbc = 1

i. dtheta0 low Derivative of scalar at lower boundary; real.

ii. theta0 upp Value of scalar at upper boundary; real.

d) If tbc = 2

i. theta0 low Value of scalar at lower boundary; real.

ii. dtheta0 upp Derivative of scalar at upper boundary; real.

e) If tbc = 3

i. dtheta0 low Derivative of scalar at lower boundary; real.

ii. dtheta0 upp Derivative of scalar at upper boundary; real.

iii. theta0 upp Value of scalar at upper boundary; real.

19. cim Flag to use Chebyshev integration method. If false the tau method is
used; logical. If cim is true:

a) icorr Flag to use integration correction; logical.
The combination of using integration correction and boundary conditions
other than of Dirichlet type may lead to numerical instability. The flag
is normally set false.

20. gall Flag to compute and use a Galilei transformation in both streamwise and
spanwise direction to increase the maximum stable time step; logical.
Presently only supported for temporal flows. The output (velocity fields, statis-
tics) are corrected for the shifted walls, i.e. the shift velocity is added to the
velocity components, and the flow field is periodically shifted by the appropriate
value.

21. suction Flag to use constant suction at lower wall; logical. If suction is true:

a) asbl Asymptotic suction boundary layer; logical. If asbl is false:

i. vsuc Suction rate; real.

22. spat Flag to perform spatial simulation; logical.
If spat is false bla program performs a temporal simulation. For spatial simu-
lations a number of parameters specifying the fringe region must be given, see
section 4.2.2. Items a) through l) are read only if spat is true.

a) tabfre Tabulated free-stream velocity; logical.
To use a tabulated free-stream velocity the flag tabfre is set true. The
format of the free-stream velocity file is given in section 7.15. If tabfre
is true:

i. namfre Name of file containing free-stream velocity table; charac-
ter*80.

b) rbfl Flag to use a 3D flow field as a base flow; logical.
To use a 3D flow file to define the base flow the flag rbfl is set true. The
format of the 3D flow file is given in section 7.6. If rbfl is true:

i. nambfl Name of file containing a 3D base flow; character*80.

c) fmax Maximum strength of the fringe region; real.

d) fstart x-position of the start of the fringe region; real.

e) fend x-position of the end of the fringe region; real.

f) frise The distance from the start of the fringe region to the first point of
maximum damping; real.

57

TRITA-MEK 2007:07

g) ffall The distance from the last point of maximum damping to the end
of the fringe region; real.

h) ampob The amplitude of oblique waves forced in the fringe; real.
A pair of oblique waves can be generated in the fringe region by setting
ampob non-zero. The format of the waveform file wave.dat is given in
section 7.16.

i) amp2d The amplitude of two dimensional Tollmien–Schlichting wave
forced in the fringe; real.

j) osmod Flag to use free-stream turbulence modes; logical. If osmod is
true:

i. osdamp; logical. Whether or not to account for the spatial growth
of the amplitudes in the fringe region.

ii. osamp The amplitude of free-stream turbulence modes forced in the
fringe; real.

iii. osfil The name of the file containing the free-stream turbulence
modes; real.

k) streak Generate streaks (one or two) in the fringe;logical. If streak is
true:

i. str nam1 Input file; character*80.

ii. ampst(1) Amplitude; real.

iii. tsmoo(1) Length of smooth turn on; real.

iv. tsmoo(2) Length of smooth turn off; real.

v. tsmst(1) Start of smooth turn on; real.

vi. tsmend(1) Start of smooth turn off; real.

vii. iampst Initial amplitude of streak; real.

viii. str nam2 Input file; character*80.

ix. ampst(2) Amplitude; real.

x. tsmoo(3) Length of smooth turn on; real.

xi. tsmoo(4) Length of smooth turn off; real.

xii. tsmst(2) Start of smooth turn on; real.

xiii. tsmend(2) Start of smooth turn off; real.

xiv. phist Relative phase(/π) of streaks; real.

l) waves Generate waves in the fringe; logical. If waves is true:

i. waamp Amplitude; real.

ii. wamoo Smoothing; real.

iii. wamst Start time; real.

iv. waiamp Initial amplitude; real.

If spat is false:

a) cdev The reference speed for the parallel boundary layer growth; real.
For temporal simulations cdev must be set to the reference speed of the
boundary layer growth, see section 4.2.1.2.

23. sgs To read the file sgs.i, used to enable LES mode; logical.

24. isfd To use selective frequency damping (0=off, 1=on); integer. If isfd is 1:

a) sfdzero Start from zero filtered field; logical. If true:

i. namnut sfd Initial filtered field; character*80.

b) sfd delta Temporal filter width; real.

c) sfd chi Temporal relaxation parameter; real.

25. imhd To enable a magnetic field (MHD) (0=off, 1=on); integer. If imhd is 1:

a) b0(1) Component of the magnetic field in x-direction; real.

58

TRITA-MEK 2007:07

b) b0(2) Component of the magnetic field in y-direction; real.

c) b0(3) Component of the magnetic field in z-direction; real.

d) mhd n Strength of the magnetic field. The direction of the magnetic
field b0(1), b0(2), b0(3) will be normalized to unity; real.

26. loctyp to generate a localized volume force disturbance; integer.
The parameter loctyp can take values from 1 to 8. Various disturbances can
be created. See locf.f for more information. The different values of loctyp
each requires a distinct number of parameters in the file bla.i, see rparambl.f
for more information. As an example, a localized volume force disturbance to
generate wave packets is created by setting loctyp to 1.

a) ampx Max amplitude of the localized volume force disturbance in x-
direction; real.

b) ampy Max amplitude of the localized volume force disturbance in y-
direction; real.

c) ampz Max amplitude of the localized volume force disturbance in z-
direction; real.

d) xscale Length scale of the localized volume force disturbance in x-direction;
real.

e) xloc0 Origin of the localized volume force disturbance in x-direction; real.

f) yscale Length scale of the localized volume force disturbance in y-direction;
real.

g) zscale Length scale of the localized volume force disturbance in z-direction;
real.

h) If zscale < 0: lskew The obliqueness of waves of the localized volume
force disturbance; real.

i) tscale Time scale of the localized volume force disturbance; real.
If loctyp is 1, the form of the localized disturbance is: F1

F2

F3

 =

 ampx
ampy
ampz

e−(y/ysc)
2
g(x, z)f(t) , (7.3)

where

zsc > 0 g(x, z) = e−((x−xloc0)/xsc)
2−(z/zsc)

2
,

zsc < 0 g(x, z) = cos(2π(z − xlskew)/zsc)e
−((x−xloc0)/xsc)

2
,

(7.4)

and
tsc > 0 f(t) = e−(t/tsc)

2
,

tsc < 0 f(t) = S(−t/tsc)) ,
tsc = 0 f(t) = 1 ,

(7.5)

and

S(x) =

0 , x ≤ 0 ,

1/(1 + e(1/(x−1)+1/x)) , 0 < x < 1 ,
1 , x ≥ 1 .

(7.6)

27. tripf Flag to generate a random “sand paper” volume force trip strip running
in the spanwise direction; logical. If tripf is true:

a) tamps Maximum steady amplitude of the trip; real.

b) tampt Maximum time varying amplitude of the trip; real.

c) txsc Streamwise length scale of the trip; real.

d) tx0 Streamwise origin of the trip; real.

e) tysc Wall-normal length scale of the trip; real.

59

TRITA-MEK 2007:07

f) nzt Number of Fourier modes in the spanwise direction of the trip; integer.

g) tdt Time interval between change of the time dependent part of the trip;
real.

h) seed Negative number in the range −700000 to −1 to initialize the ran-
dom number generator for the trip; integer.

The trip force can be used to generate turbulence or noise at lower amplitude
levels to test the stability of a boundary layer or flow structure. The trip has a
steady amplitude tamps and a time dependent amplitude tampt which allow
both steady and time varying trips to be generated. The volume force has one
continuous time derivative and is independent of the time discretization. The
random numbers are generated such that if the random number seed and other
trip parameters are unchanged, the same trip forces are generated. This is true
even if the simulation is split into two or more runs. For every run beyond the
first the random number generator is run forward to the correct state. The
form of the volume force, which is directed normal to the wall, is as follows:

F2 = exp({(x− tx0)/txsc}2 − (y/tysc)
2)f(z, t) , (7.7)

where
f(z, t) = tampsg(z) + tampt((1− b(t))hi(z) + b(t)hi+1(z)) , (7.8)

and
i = int(t/tdt) ,

b(t) = 3p2 − 2p3 ,

p = t/tdt − i .
(7.9)

Here g(z) and hi(z) are Fourier series of unit amplitude with nzt random
coefficients. The trip forcing generates noise with a uniform distribution over
all frequencies lower than the cutoff frequency corresponding to 2π/tdt.

28. wbci Boundary conditions at wall; integer.
wbci can be set from −2 to 2. If wbci is not equal to zero, additional param-
eters must be provided. See rparambl.f, rparamwallrough.f and cwallbc.f. The
example below is for wbci set to 1.

a) amp Max amplitude of the localized blowing/suction; real.

b) damp Damp amplitude. No effect if less than one; real.

c) xstart Start position of disturbance; real.

d) xend End position of disturbance; real.

e) xrise Rise length of disturbance; real.

f) xfall Fall length of disturbance; real.

g) zbet Spanwise variation; real.

h) tomeg Time variation; real.

The form of this boundary condition is

v|y=0 = ampf(x) cos(zbetz) sin(tomegt) , (7.10)

where

f(x) = S

(
x− xstart

xrise

)
− S

(
x− xend

xfall + 1

)
, (7.11)

and S(x) is given by equation (7.6).
If wbci is set to −1 the wall-roughness model is turned on, see section 4.3.5.
Then, an extra input file containing the relevant parameters has to be supplied:

a) wallroughinput Name of input file for wall roughness; character*80.

Details about the required parameters for the roughness model can be found
in rparamwallrough.f and in section 7.18.
If wbci is set to −2 a jet profile is imposed, see section 4.3.6 for more details.

60

TRITA-MEK 2007:07

29. icfl Number of time iterations between calculation of the CFL number; integer.
If the CFL number is computed each iteration this adds a few percent to the
execution time, but since it is used to regulate the time step it should not be
computed too sparsely, preferably every complete time step, i.e. icfl = nst.

30. iamp Number of time iterations between calculation of rms amplitudes; integer.
If iamp > 0 items a) and b) are read.

a) namamp Output file for rms amplitudes; character*80.

b) fileurms Write u-rms velocities; logical.

As for the CFL number continuous calculation of the amplitude costs a number
of percent in execution speed. If iamp = 0 no amplitudes will be calculated
and no amplitude file will be written. To get the correct time accuracy iamp
should be an integer multiple of nst.

31. longli Flag to generate amplitude for each horizontal plane (y-value). Applies
both to rms amplitudes and wave component amplitudes.
If longli is set true the program will produce y-dependent statistics and write
these to the amplitude files, both for the global statistics and statistics by
wavenumber. The statistics files can become quite large if the flag is set true.

32. iext Number of time iterations between calculation of extremum amplitudes;
integer.
To get the correct time accuracy iext should be an integer multiple of nst. If
iext = 0 no extremum amplitudes will be calculated. If iext > 0 item a) is
read.

a) namext Output file for extremum amplitudes; character*80.

33. ixys Number of time iterations between calculation of xy-statistics; integer.
The statistics can be analyzed with pxyst. The statistics generated and the
output file format are described in section 7.12. The file is written to every
ixyss iterations, overwriting older data. To get the correct time accuracy ixys
should be an integer multiple of nst. If ixys > 0 items a) through e) are read.

a) namxys Output file for xy-statistics; character*80.

b) ixyss Number of time iterations between saving of xy-statistics data to
file; integer. If write inter is true, then also an intermediate velocity
field is saved to the file end.uu (this name can be changed in rparambl.f).
A crashed simulation can then be safely restarted from the saved inter-
mediate field without corrupting statistics taken during the run, since the
statistics and the velocity field are written out at the same time instant.

c) txys Time to start accumulation of xy-statistics; real.

d) corrf Flag to save spanwise two-point correlations; logical. The statistics
generated and the output file format are described in section 7.13. If
corrf is true:

i. corrnam Output file for two-point correlations; character*80.

ii. ncorr Number of positions to save two-point correlations; integer.
The list is then read from file two-point.dat; the format of this input
file is a simple text file with at least ncorr lines specifying on each
line the x and y coordinates and the quantity to save. The possible
quantities are the velocities, pressure, scalar correlations and some
selected correlations of derivatives (see file boxxys.f for details).

e) serf Flag to save time histories at given coordinates; logical. The statistics
generated and the output file format are described in section 7.14. If serf
is true:

i. namser Output file for time histories; character*80.

ii. nser Number of positions to save time histories; integer.
The list is then read from the input file probe.dat; the format of
this input file is a simple text file with at least nser lines specifying

61

TRITA-MEK 2007:07

on each line the x, y and z coordinates and an integer representing
the quantity to save. The possible quantities are the velocities, pres-
sure, scalar, and the various velocity and scalar derivatives (see file
boxxys.f for details).

34. msave The number of complete velocity fields to be saved at specific times. If
msave > 0, items a) and b) are repeated for each file; integer.

a) tsave The time for which to save a field; real.

b) nmsave The name of the velocity file; character*80.

msave is the number of velocity fields to be saved, maximum nsave (set as a
parameter in bla.f). If larger than zero the times and names of the files to be
saved must be given. If the adaptive time stepping is used bla automatically
adjusts the time step to reach exactly the desired times. For fixed time step
the save is done at the nearest time.

35. mwave The number of wavenumber amplitudes to be saved. If mwave > 0,
item b) is repeated for each wavenumber; integer.

a) namwav The name of the wave amplitude file; character*80.

b) kx kz The streamwise wavenumber as multiples of the fundamental wavenum-
ber 2π/xL, the spanwise wavenumber as multiple of the fundamental
wavenumber 2π/zL; both integers.

mwave sets the number of specific wavenumbers to calculate amplitudes for.
For each wave, the x and z wavenumbers must be specified as integers to be
multiplied by 2π/xL and 2π/zL respectively. The wavenumbers are counted in
the physical way for positive and negative kz and kx zero and up, not in the
way of the internal storage. The wave amplitudes are calculated for each of the
six velocities and vorticities at intervals set by the iamp value.

36. npl The number of planes to be continuously saved during the simulation. If
npl > 0, items b) through e) are repeated for each plane; integer.

a) ipl The saving interval for planes in number of iteration; integer.

b) tpl(i,1) The type of plane to be saved, 1 for xy and 2 for xz; integer.

c) tpl(i,2) The variable to be saved, i.e. 1 for u, 2 for v, 3 for w; integer.

d) cpl The coordinate for which to save the plane; real.

e) nampl The name of the file in which to save the planes; character*80.

npl is the number of 2D planes to be saved every ipl iterations during the
simulation. To get the correct time accuracy ipl should be an integer multiple
of nst. These files can be visualized with rps. The format is described in
section 7.11 below. The MPI version does currently not support yz-planes.

7.5 Runtime LES parameter file sgs.i

The file sgs.i is formatted and sequential. Comments can be put after data on lines
not containing character input. This file is read when running LES. Contents line by
line:

1. date Date to show which version of the sgs.i file that is needed; the current
version is dated 20060909; integer.

2. iles Type of SGS model used; integer.
If iles = 0: no SGS model is used, i.e. a DNS is performed.
If iles = 1: the ADM-RT model is used:

a) cutoff inv Inverse cutoff wavenumber of the primary filter; real.

b) iord Order of the high-pass filter; integer.

62

TRITA-MEK 2007:07

ibc Free-stream boundary condition types
0 u = v = w = 0
1 Du = Dv = Dw = 0
2 D2u = D2v = D2w = 0
3 D3u = D3v = D3w = 0

10 Du+ ku = Dv + kv = Dw + kw = 0
11 D2u+ kDu = D2v + kDv = D2w + kDw = 0
12 D3u+ kD2u = D3v + kDv = D3w + kD2w = 0
20 Dv + kv = D2v + kDv = ω = 0

100 u = U , v = V , w = W
101 Du = DU , Dv = DV , Dw = DW
110 Du+ ku = DU + kU , Dv + kv = DV + kV , Dw + kw = DW + kW
120 Dv + kv = DV + kV , D2v + kDv = D2V + kDV , ω = 0
130 u = U , Du = DU , w = W
140 u = U , Dv = DV , w = W
150 u = U , Du− vx = 0, Dw = 0

Table 7.2: Free-stream boundary conditions. Here u, v, w are the solution velocities and
U, V,W are the base flow velocities. The velocity derivative normal to the boundary is
indicated by D and k denotes the modulus of the horizontal wavenumber (k2 = α2 +β2).

c) chi Model coefficient χ, χ = 0 activates the dynamic procedure; real.

If iles = 2: the standard Smagorinsky model is used.

a) cs Model coefficient CS , CS = 0 activates the dynamic procedure; real.

b) If cs = 0: ineg Determines clipping behavior of the dynamic procedure;
integer. ineg = 0, no clipping, ineg = 1, clipping to positive CS , ineg
= 2, clipping to positive total viscosity.

If iles = 3: the high-pass filtered Smagorinsky model is used.

a) cutoff inv Inverse cutoff wavenumber of the primary filter; real.

b) iord Order of the low-pass filter; integer.

c) cs Model coefficient CS , CS = 0 activates the (consistent) dynamic pro-
cedure; real.

d) If cs = 0: ineg Determines clipping behavior of the dynamic procedure;
integer. ineg = 0, no clipping, ineg = 1, clipping to positive CS , ineg
= 2, clipping to positive total viscosity.

7.6 Velocity file

Format of a 3D velocity file. The format is used for any 3D input or output from bls,
bla and cmp. The file is unformatted, sequential. This file can be visualized by rit.

Record 1: Reynolds number; real, Poiseuille (true) or Couette flow (false); logical,
xL; real, zL; real, the time for this field; real, the length by which the box has
been shifted to the right since time zero; real, Prandtl number; real, m1 power
law exponent; real. The last two parameters are repeated for each scalar field.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: Flow type fltype; integer, displacement thickness expressed in half box
heights dstar; real.

63

TRITA-MEK 2007:07

Record 4: If fltype ≥ 4: start of blending region bstart, length of blending region
blength, if fltype ≥ 7: acceleration exponent of streamwise free-stream ve-
locity rlam, spanwise free-stream velocity spanv. If fltype = −1: rlam and
if fltype = −2 rlam and spanv. For other values of fltype this record is
omitted.

Record 5: The u, v, w-velocities in Fourier x, z and physical y space. One record
contains nx/2 complex coefficients in normal Fortran format. The records are
stored in y, z, i order with y varying the fastest and i the slowest. The number
of points in the y-direction is nyp and the number of points in the z-direction
is nzc. Total number of records nyp×nzc×3.

Record 6 - . . . The θi scalar distribution in Fourier x, z and physical y space (sim-
ilar to the velocities). The number of records depends on the number of scalars
at compile time.

7.7 Pressure file

Format of a 3D pressure file. The format is the same as for the velocity file, except
the last record which contains only the pressure. This file can be visualized by rit.

7.8 Amplitude file

Formatted, sequential. To be analyzed with the tools pamp1 and pamp2. The
rms-levels are averages over the physical box. For each time three records are saved:

1: Time; real, urms; real, vrms; real, wrms; real, χrms; real, ωrms; real, ϑrms; real, ω2/k2;
real, DUuv; real, energy for wavenumber zero; real, h+, i.e. the box half-height
in wall units; real.

If longli is true then for each time the above is followed by statistics by y-plane in
descending y-coordinate order as follows:

2: Mean squared streamwise velocity without Blasius base flow; real, mean squared
normal velocity; real, mean squared spanwise velocity; real, mean squared
streamwise vorticity; real, mean squared normal vorticity; real, mean squared
spanwise vorticity without Blasius base flow; real, mean squared vorticity squared
over wavenumber square average, no (0,0); real, Reynolds stress average; real,
mean streamwise disturbance velocity squared; real, mean spanwise disturbance
velocity squared; real.

7.9 Wave amplitude file

Formatted, sequential. To be analyzed with the tools pampw and pampw2. The
data in this file is in internal scaling. For each time the following data are saved:

1: Time; real, number of waves saved; integer, number of points in the y-direction;
integer, Reynolds number; real, fundamental wavenumber in the x-direction;
real, fundamental wavenumber in the z-direction; real, flag longli.

2: The wavenumber α as multiples of the fundamental 2π/xL; integer, the wavenum-
ber β as multiple of the fundamental 2π/zL; integer, urms; real, vrms; real, wrms;
real, ωrms; real.
Item 2 is repeated for each wave.

If longli is true then for each time the above is followed by statistics by y-plane in
descending y-coordinate order as follows:

3: If the wavenumber is zero: û for each y-plane (with the imaginary part zero),
otherwise v̂ for each y-plane; complex.

64

TRITA-MEK 2007:07

4: If the wavenumber is zero: ŵ for each y-plane (with the imaginary part zero),
otherwise ω̂ for each y-plane; complex.

Items 3 and 4 are repeated for each wave.

7.10 Extremum file

Formatted, sequential. For each time the following data are saved:

1: Time; real.

2: Min u− Ulaminar; real, x-coordinate for this minimum; real.

3: y-coordinate; real, z-coordinate; real.

4 - 5: Same for min v.

6 - 7: Same for min w.

8 - 9: Same for min χ.

10 - 11: Same for min ω.

12 - 13: Same for min ϑ.

14 - 15: Same for min ϑ− ϑlaminar.

16 - 29: Same as 2 through 15 but for maximum.

7.11 Plane velocity file

Unformatted, sequential. This file can be visualized by rps.

Record 1: Reynolds number; real, .false. (this is to be backward compatible with
channel flow files); logical, xL; real, zL; real, the time for this field; real, the
length by which the box has been shifted to the right since time zero; real.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: The type of plane, 1 for xy-plane, 2 for xz-plane; integer, the variable
number, i.e., 1 for u, 2 for v, 3 for w; integer, the coordinate of the plane; real,
flow type fltype; integer, displacement thickness dstar expressed in half box
heights; real.

Record 4: Time; real, the length by which the boxed has been shifted to the right
since time zero; real.

Record 5: The velocity array in physical space; xy-planes are nx×nyp with x
varying the fastest; xz-planes are nx×nz for the non-symmetric case and
nx×(nz/2+1) for the symmetric case with x varying the fastest.

Record 4 and 5 are repeated for each time the plane is saved.

7.12 xy-statistics file

Unformatted, sequential. This file can be visualized by pxyst.

Record 1: Reynolds number; real, .false. (this is to be backward compatible with
channel flow files); logical, xL; real, zL; real, the time for this field; real, the
length by which the boxed has been shifted to the right since time zero; real.
real, Prandtl number; real, power-law exponent for the scalar; real. The last
two variables are repeated for each scalar.

65

TRITA-MEK 2007:07

Record 2: A; character, mhd n; real, b0; real. Strength and direction of a possible
magnetic field (MHD).

Record 3: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 4: Flow type fltype; integer, displacement thickness dstar expressed in half
box heights; real.

Record 5: If fltype ≥ 4: start of blending region bstart; real, length of blending
region blength; real, acceleration exponent of streamwise free-stream velocity
rlam; real, spanwise free-stream velocity spanv; real. If fltype < 0 accelera-
tion exponent of streamwise free-stream velocity rlam; real. For other values
of fltype this record is omitted.

Record 6: Sum of the length of the time steps at which statistics have been sampled
sumw; real, number of statistics calculated nxys; integer, number of statistics
calculated involving the scalars nxysth; integer, the number of scalars; integer.
At the time of writing this user guide, nxys = 96 velocity statistics and nxysth
= 35 scalar statistics are implemented.

Record 7 - 6+nxys: Each record contains a nx×nyp plane of statistics with the
x-index varying the fastest. The statistics are averaged over time and the
z-direction.

Velocity statistics 96 velocity statistics are implemented and described below. For
details of the implementation see file boxxys.f.

Record 7 - 12: u, v, w, u2, v2, w2.

Record 13 - 18: ω1, ω2, ω3, ω2
1 , ω2

2 , ω2
3 .

Record 19 - 22: uv, uw, vw.

Record 22 - 24: u(x)u(x+1), v(x)v(x+1), w(x)w(x+1) (i.e. one point separation
auto correlations, x counted cyclically). Note that these quantities are not
implemented anymore, i.e. records 22–30 are zero for the time being.

Record 25 - 27: u(y)u(y + 1), v(y)v(y + 1), w(y)w(y + 1).

Record 28 - 30: u(z)u(z + 1), v(z)v(z + 1), w(z)w(z + 1) (z counted cyclically).

Record 31: Rε11 = u2
x + u2

y + u2
z, εij is the dissipation tensor.

Record 32: Rε22 = v2
x + v2

y + v2
z .

Record 33: Rε33 = w2
x + w2

y + w2
z .

Record 34: Rε12 = uxvx + uyvy + uzvz.

Record 35: Rε13 = uxwx + uywy + uzwz.

Record 36: Rε23 = vxwx + vywy + vzwz.

Record 37 - 48: p, p2, pu, pv, pw, pux, pvy, pwz, puy, pvz, pwx, puz.

Record 49 - 50: Minimum and maximum disturbance u.

Record 51: Square strain rate SijSij .

Record 52 - 57: Strain-rate tensor Sij .

Record 58: LES model coefficient C = C2
S .

Record 59: SGS dissipation τijSij .

Record 60 - 65: SGS stress tensor τij .

Record 66: Eddy viscosity νt.

Record 67 - 68: Forward and backward scatter.

Record 69 - 71: Velocity skewness.

Record 72 - 78: Triple velocity correlations.

Record 79 - 80: pvx, pwy.

66

TRITA-MEK 2007:07

Record 81 - 83: Velocity flatness.

Record 84 - 85: Pressure skewness and flatness.

Record 86 - 88: τijuj .

Record 89 - 90: Electric potential φ, φ2.

Record 91 - 99: ji, j
2
i , j1j2, j1j3, j2j3.

Record 100 - 102: φji.

Scalar statistics 35 scalar statistics are implemented and described below. For
details of the implementation see file boxxys.f. The scalar statistics are repeated
for each scalar.

Record 103 - 104: θ, θ2.

Record 105 - 107: uiθ.

Record 108 - 110: uiθ
2.

Record 111 - 113: ∂θ/∂xi∂θ/∂xi (no summation).

Record 114 - 117: θp correlations.

Record 118 - 123: Velocity2-θ correlations.

Record 124 - 132: uj∂θ/∂xi.

Record 133 - 135: θ-velocity dissipation.

Record 136 - 137: Scalar skewness and flatness.

7.13 Two-point correlation file

Unformatted, sequential.

Record 1: Reynolds number (negative); real, .false. (this is to be backward com-
patible with channel flow files); logical, xL; real, zL; real, the time for this field;
real, the length by which the boxed has been shifted to the right since time
zero; real, Prandtl number; real, power-law exponent for the scalar; real. The
last two parameters are repeated scalar times. real. The last two variables are
repeated for each scalar.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: Flow type fltype; integer, displacement thickness expressed in half box
heights; real.

Record 4: If fltype ≥ 4: start of blending region bstart; real, length of blending
region blength; real. For other values of fltype this record is omitted.

Record 5: Sum of the length of the time steps at which statistics have been sampled
sumw; real, the number of scalars; integer.

Record 6: ncorr Number of two-point correlations; integer.

Record 7: Coordinates of the two-point correlation: x and y position; real, x and y
index; integer, x and y position actually used (i.e. the coordinates of the grid
point where the correlations are evaluated); real, quantities for the correlation;
integer (see boxxys.f for a list of possible values).

Record 8: Mean of the two quantities involved, and mean squared of the two quan-
tities; real.

Record 9: Two-point correlation data, total n×z real numbers.

Record 10: Records 7–9 are repeated ncorr times for each two-point correlation.

67

TRITA-MEK 2007:07

7.14 Time-series file

Formatted, sequential. Time history of data at given coordinates is appended to an
existing file.

appended record: time; real. nser numbers corresponding to the instantaneous
values of the quantities specified in the input file probe.dat; real.

7.15 Free-stream velocity table file

Formatted, sequential. This file is read if tabfre is true in bla.i and it specifies the
free-stream velocity distribution for boundary layer flows.

1: n number of table entries

2 - (n+1): xtab streamwise coordinate; real, utab free-stream velocity; real.

7.16 Forced wave file wave.dat

Formatted, sequential.

1: rew Reynolds number of wave (not used by bla); real.

2: alfaw the streamwise, betaw the spanwise wavenumber of the wave; both real.

3: eig the eigenvalue of the wave, the real part of which is used as the angular
frequency of the wave; complex.

4 - (n+3): n Chebyshev coefficients of the mode shape of the normal velocity, of
which the first nyp are used. If there are not enough coefficients they are
padded by zeros; complex.

7.17 Base flow profile file fsc.dat

The file fsc.dat is unformatted and sequential. It is generated by fsc located in the
bls directory. The basic flow profile is needed for flows that require a non-analytic
base flow (e.g. Blasius and FSC). The current version of bla is not generating the
file if it does not exist.

Record 1: Similarity coordinate ηstart; real, ηend; real, number of grid points n;
integer, power-law exponent m for the velocities; real, displacement thickness
in units of η; real, number of scalars; integer.

Record 2 For all scalars if scalar > 0: Prandtl number Pr ; real, power-law expo-
nents m1; real for all scalars (this record is not present for scalar = 0).

Records 2+scalar - n+1+scalar: The similarity coordinate η, similarity solu-
tions f , f ′, f ′′, f ′′′, g, g′, g′′, θ, θ′, θ′′ (the last three variables are repeated
according to the number of scalars).

7.18 Surface-roughness file

Formatted, sequential.

1. updat If true the boundary conditions for the velocity at y = 0 due to rough-
ness are re-computed, using the current flow field; logical.

68

TRITA-MEK 2007:07

a) every Update interval, i.e. the roughness conditions are re-calculated
every everyth full time step. Note that no update is performed during
the first 50 time steps to allow for the flow to adjust to the new boundary
conditions. For high roughness elements the code might become unstable;
increase every in this case; integer.

b) monitor If true a formatted file is created containing the modified bound-
ary conditions at (xmax, 0, zmax) over the iteration number it, i.e. at the
location of highest roughness hmax = h(xmax, zmax); logical.

i. monfile Name of file containing modified boundary condition; char-
acter.

2. v wall If true the projection method is also applied to the wall-normal velocity
component v; logical.

3. taylor4 If true the Taylor series used to project the roughness no–slip con-
ditions onto the plane y = 0 is truncated after the 4th–order term; otherwise
after the linear term; logical.

4. h rough Maximum roughness height; real.

5. hstart Chordwise location at which the roughness element starts; real.

6. hend Chordwise location at which the roughness element ends; real.

7. hrise Chordwise width of the rising roughness flank; real.

8. hfall Chordwise width of the falling roughness flank; real.

9. zfunc Spanwise distribution of the roughness function. If 0: Roughness contour
constant (sinusoidal) along the span z; integer.

a) If zfunc is 1: qq Number of periods within the span; integer.

10. rghfil If true a formatted file is generated, containing the roughness contour
over the chordwise coordinate x at maximum height h(x, zmax); logical.

a) roughfile Name of roughness contour file; character*80.

69

Bibliography

Alvelius, K. & Skote, M. 2000 The performance of a spectral simulation code for tur-
bulence on parllel computers with distributed memory. Technical Report TRITA-
MEK 2000:17, Royal Institute of Techmology, Stockholm.

Bech, K. H., Henningson, D. S. & Henkes, R. A. W. M. 1998 Linear and nonlin-
ear development of localized disturbances in zero and adverse pressure gradient
boundary-layers. Phys. Fluids, 10(6), 1405–1418. URL http://link.aip.org/

link/?PHF/10/1405/1.

Berlin, S. & Henningson, D. S. 1999 A new nonlinear mechanism for receptivity of
free-stream disturbances. Phys. Fluids, 11(12), 3749–3760. URL http://link.

aip.org/link/?PHF/11/3749/1.

Berlin, S., Kim, J. & Henningson, D. S. 1998 Control of oblique transition by flow
oscillations. Technical Report TRITA-MEK 1998:6, Royal Institute of Techmology,
Stockholm.

Berlin, S., Lundbladh, A. & Henningson, D. S. 1994 Spatial simulations of oblique
transition. Phys. Fluids, 6, 1949–1951.

Berlin, S., Wiegel, M. & Henningson, D. S. 1999 Numerical and experimental inves-
tigation of oblique boundary layer transition. J. Fluid Mech., 393, 23–57.

Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear stability of
the Blasius boundary layer. J. Fluid Mech., 242, 441–474.

Brandt, L., Cossu, C., Chomaz, J.-M., Huerre, P. & Henningson, D. S. 2003 On the
convectively unstable nature of optimal streaks in boundary layers. J. Fluid Mech.,
485, 221–242.

Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-
pressure-gradient boundary layers. J. Fluid Mech., 472, 229–262.

Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers
subject to free-stream turbulence. J. Fluid Mech., 517, 167–198.

Bruhn, T. 2006 Large-eddy simulation of zero-pressure gradient turbulent boundary
layers. Master’s thesis, KTH Mechanics, Stockholm, Sweden.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in
Fluids Dynamics. Springer.

Chevalier, M. 2004 Feedback and Adjoint Based Control in Boundary Layer Flows.
Ph.D. thesis, Royal Institute of Technology, Department of Mechanics, Stockholm,
Sweden.

Chevalier, M., Hœpffner, J., Åkervik, E. & Henningson, D. S. 2007 Linear feedback
control and estimation applied to instabilities in spatially developing boundary
layers. J. Fluid Mech., 588, 163–187.

Chevalier, M., Högberg, M., Berggren, M. & Henningson, D. S. 2002 Linear and
nonlinear optimal control in spatial boundary layers. AIAA Paper 2002–2755.

Choudhari, M. & Streett, C. L. 1992 A finite reynolds-number approach for the
prediction of boundary-layer receptivity in localized regions. Phys. Fluids A, 4,
2495–2514.

71

http://link.aip.org/link/?PHF/10/1405/1
http://link.aip.org/link/?PHF/10/1405/1
http://link.aip.org/link/?PHF/11/3749/1
http://link.aip.org/link/?PHF/11/3749/1

TRITA-MEK 2007:07

Collins-Sussman, B., Fitzpatrick, B. W. & Pilato, C. M. Version Control with Sub-
version. http://svnbook.red-bean.com.

Cooke, J. C. 1950 The boundary layer of a class of infinite yawed cylinders. Proc.
Camb. Phil. Soc., 46, 645–648.

Cossu, C., Chevalier, M. & Henningson, D. S. 2007 Optimal secondary energy growth
in a plane channel flow. Phys. Fluids, 19(5), 058107. URL http://link.aip.org/

link/?PHFLE6/19/058107/1.

Crouch, J. D. 1992 Localized receptivity of boundary layers. Phys. Fluids A, 4,
1408–1414.

Elofsson, P. A. & Lundbladh, A. 1994 Ribbon induced oblique transition in plane
poiseulle flow. In Henningson, D. S. (Editor), Bypass transition - Proceedings from
a mini-workshop, pages 29–41. KTH. TRITA-MEK Technical Report 1994:14,
Royal Institute of Technology, Stockholm, Sweden.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale
eddy viscosity model. Phys. Fluids A, 3(7), 1760–1765.

Greengard, L. 1991 Spectral integration and two-point boundary value problems.
SIAM J. Numer. Anal., 28, 1071–1080.

Henningson, D. S. 1995 Bypass transition and linear growth mechanisms. In Benzi, R.
(Editor), Advances in turbulence V, pages 190–204. Kluwer Academic Publishers.

Henningson, D. S., Johansson, A. V. & Lundbladh, A. 1990 On the evolution of
localized disturbances in laminar shear flows. In Arnal, D. & Michel, R. (Editors),
Laminar-Turbulent Transition, pages 279–284. Springer-Verlag.

Henningson, D. S. & Lundbladh, A. 1994 Transition in Falkner–Skan–Cooke flow.
Bull. Am. Phys. Soc., 39, 1930.

Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass
transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech.,
250, 169–207.

Herbst, A. H. & Henningson, D. S. 2006 Periodic Influence of Periodic Excitation on
a Turbulent Separation Bubble. Flow, Turbulence and Combustion, 76(1), 1–21.

Hildings, C. 1997 Simulations of laminar and transitional separation bubbles. Tech-
nical report, Department of Mechanics, The Royal Institute of Technology, Stock-
holm, Sweden.

Hœpffner, J., Chevalier, M., Bewley, T. R. & Henningson, D. S. 2005 State estimation
in wall-bounded flow systems, Part 1. Laminar flows. J. Fluid Mech., 534, 263–294.

Högberg, M. & Henningson, D. S. 1998 Secondary instability of cross-flow vortices in
Falkner–Skan–Cooke boundary layers. J. Fluid Mech., 368, 339–357.

Högberg, M., Chevalier, M., Berggren, M. & Henningson, D. S. 2001 Optimal control
of wall bounded flows. Scientific Report FOI-R--0182--SE, Computational Aero-
dynamics Department, Aeronautics Division, FOI.

Högberg, M., Chevalier, M. & Henningson, D. S. 2003 Linear compensator control
of a pointsource induced perturbation in a Falkner–Skan–Cooke boundary layer.
Phys. Fluids, 15(8), 2449–2452.

Högberg, M. & Henningson, D. S. 2002 Linear optimal control applied to instabilities
in spatially developing boundary layers. J. Fluid Mech., 470, 151–179.

Högberg, M., Henningson, D. S. & Berggren, M. 2000 Optimal control of bypass
transition. In C., D. (Editor), Advances in turbulence VIII.

72

http://link.aip.org/link/?PHFLE6/19/058107/1
http://link.aip.org/link/?PHFLE6/19/058107/1

TRITA-MEK 2007:07

Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech., 285,
69–94.

Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel
flow. J. Fluid Mech., 177, 133–166.

Kleiser, L. & Schumann, U. 1980 Treatment of incompressibility and boundary con-
ditions in 3-d numerical spectral simulations of plane channel flows. In Hirschel,
E. H. (Editor), Proc. 3rd GAMM Conf. Numerical Methods in Fluid Mechanics,
pages 165–173. Vieweg. Braunschweig.

Kreiss, G., Lundbladh, A. & Henningson, D. S. 1994 Bounds for threshold amplitudes
in subcritical shear flows. J. Fluid Mech., 270, 175–198.

Levin, O., Chernoray, V., Löfdahl, L. & Henningson, D. S. 2005a A study of the
blasius wall jet. J. Fluid Mech., 539, 313–347.

Levin, O., Davidsson, E. N. & Henningson, D. S. 2005b Transition thresholds in
the asymptotic suction boundary layer. Physics of Fluids, 17(11), 114104. URL
http://link.aip.org/link/?PHF/17/114104/1.

Levin, O. & Henningson, D. S. 2007 Turbulent spots in the asymptotic suction bound-
ary layer. J. Fluid Mech., 584, 397–413.

Levin, O., Herbst, A. H. & Henningson, D. S. 2006 Early turbulent evolution of the
Blasius wall jet. J. Turbulence, 7(68), 1–17.

Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure
method. Phys. Fluids A, 4(3), 633–635.

Lu, Q. & Henningson, D. S. 1990 Subcritical transition in plane Poiseuille flow. Bull.
Am. Phys. Soc., 35, 2288.

Lundbladh, A. 1993 Growth of a localized disturbance in inviscidly stable shear flow.
TRITA-MEK 1993:4, Royal Institute of Technology, Stockholm, Sweden.

Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. & Henning-
son, D. S. 1999 An Efficient Spectral Method for Simulations of Incompressible
Flow over a Flat Plate. Technical Report TRITA-MEK 1999:11, Department of
Mechanics, Royal Institute of Technology, KTH.

Lundbladh, A. & Henningson, D. S. 1993 Numerical simulation of spatial disturbance
development in rotating channel flow. FFA-TN 1993-30, Aeronautical Research
Institute of Sweden, Bromma.

Lundbladh, A. & Henningson, D. S. 1995 Evaluation of turbulence models from direct
numerical simulations of turbulent boundary layers. FFA-TN 1995-09, Aeronauti-
cal Research Institute of Sweden, Bromma.

Lundbladh, A., Henningson, D. S. & Johansson, A. V. 1992a An efficient spectral
integration method for the solution of the Navier–Stokes equations. FFA-TN 1992-
28, Aeronautical Research Institute of Sweden, Bromma.

Lundbladh, A., Henningson, D. S. & Reddy, S. C. 1994a Threshold amplitudes for
transition in channel flows. In Hussaini, M. Y., Gatski, T. B. & Jackson, T. L. (Ed-
itors), Transition, Turbulence and Combustion, Volume I, pages 309–318. Kluwer,
Dordrecht.

Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane
Couette flow. J. Fluid Mech., 229, 499–516.

Lundbladh, A., Johansson, A. V. & Henningson, D. S. 1992b Simulation of the break-
down of localized disturbances in boundary layers. Proceedings of the 4th European
Turbulence Conference, Delft, The Netherlands.

73

http://link.aip.org/link/?PHF/17/114104/1

TRITA-MEK 2007:07

Lundbladh, A., Schmid, P. J., Berlin, S. & Henningson, D. S. 1994b Simulation of by-
pass transition in spatially evolving flows. Proceedings of the AGARD Symposium
on Application of Direct and Large Eddy Simulation to Transition and Turbulence,
AGARD-CP-551.

Malik, M. R., Zang, T. A. & Hussaini, M. Y. 1985 A spectral collocation method for
the Navier–Stokes equations. J. Comp. Phys., 61, 64–88.

Moreau, R. 1998 Magnetohydrodynamics. Kluwer.

Nordström, J., Nordin, N. & Henningson, D. S. 1999 The fringe region technique and
the Fourier method used in the direct numerical simulation of spatially evolving
viscous flows. SIAM J. Sci. Comp., 20(4), 1365–1393.

Reddy, S. C., Schmid, P. J., Bagget, P. & Henningson, D. S. 1998 On stability
of streamwise streaks and transition thresholds in plane channel flows. J. Fluid
Mech., 365, 269–303.

Schlatter, P. 2005 Large-eddy simulation of transition and turbulence in wall-bounded
shear flow. Ph.D. thesis, ETH Zürich, Switzerland, Diss. ETH No. 16000. Available
online from http://e-collection.ethbib.ethz.ch.

Schlatter, P., Brandt, L. & Henningson, D. S. 2006 Large-eddy simulation of bypass
transition. In 6th European Fluid Mechanics Conference, Stockholm, Sweden.

Schlatter, P., Stolz, S. & Kleiser, L. 2004 LES of transitional flows using the approx-
imate deconvolution model. Int. J. Heat Fluid Flow, 25(3), 549–558.

Schlichting, H. 1979 Boundary-Layer Theory. Springer, seventh edition.

Schmid, P. J. & Henningson, D. S. 1992 A new mechanism for rapid transition in-
volving a pair of oblique waves. Phys. Fluids A, 4, 1986–1989.

Schmid, P. J. & Henningson, D. S. 1993 Nonlinear energy density transfer during
oblique transition in plane Poiseuille flow. Technical Report TRITA-MEK 1993:5,
Royal Institute of Technology, Stockholm.

Schmid, P. J., Lundbladh, A. & Henningson, D. S. 1994 Spatial evolution of dis-
turbances in plane Poiseuille flow. In Hussaini, M. Y., Gatski, T. B. & Jackson,
T. L. (Editors), Transition, Turbulence and Combustion, Volume I, pages 287–297.
Kluwer, Dordrecht.

Schmid, P. J., Reddy, S. C. & Henningson, D. S. 1996 Transition thresholds in bound-
ary layer and channel flow. In Gavrilakis, S., Machiels, L. & Monkewitz, P. A. (Ed-
itors), Advances in Turbulence VI, pages 381–384. Kluwer Academic Publishers.

Skote, M., Haritonidis, J. H. & Henningson, D. S. 2002 Varicose instabilities in
turbulent boundary layers. Physics of Fluids, 14(7), 2309–2323. URL http:

//link.aip.org/link/?PHF/14/2309/1.

Skote, M., Henkes, R. A. W. M. & Henningson, D. S. 1998 Direct numerical simula-
tion of self-similar turbulent boundary layers in adverse pressure gradients. Flow,
Turbulence and Combustion, 60, 47–85.

Skote, M. & Henningson, D. S. 2002 Direct numerical simulation of a separated
turbulent boundary layer. J. Fluid Mech., 471, 107–136.

Smagorinsky, J. 1963 General circulation experiments with the primitive equations.
Mon. Weath. Rev., 91(3), 99–164.

Spalart, P. R. & Yang, K. 1987 Numerical study of ribbon induced transition in
blasius flow. J. Fluid Mech., 178, 345–365.

Stolz, S., Adams, N. A. & Kleiser, L. 2001 An approximate deconvolution model
for large-eddy simulation with application to incompressible wall-bounded flows.
Phys. Fluids, 13(4), 997–1015.

74

http://link.aip.org/link/?PHF/14/2309/1
http://link.aip.org/link/?PHF/14/2309/1

TRITA-MEK 2007:07

Stolz, S., Schlatter, P. & Kleiser, L. 2005 High-pass filtered eddy-viscosity models for
large-eddy simulations of transitional and turbulent flow. Phys. Fluids, 17, 065103.
URL http://link.aip.org/link/?PHFLE6/17/065103/1.

Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter,
P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency
damping. Phys. Fluids, 18, 068102. URL http://link.aip.org/link/?PHFLE6/

18/068102/1.

75

http://link.aip.org/link/?PHFLE6/17/065103/1
http://link.aip.org/link/?PHFLE6/18/068102/1
http://link.aip.org/link/?PHFLE6/18/068102/1

AExamples

For each example case in the examples directory all the needed parameter files are
included and each case is briefly described in this appendix. For some example cases
there is also a Bash script run.sh that shows how to run the case in detail.

A.1 Temporal channel and Blasius boundary layer flow

The bypass transition from localized disturbances is studied in Henningson et al.
(1993). To illustrate transitional flows, two examples from that publication are in-
cluded in temporal-channel-laminar and temporal-blasius respectively.

For the channel flow case, at Re = 3000, the amplitude parameter for the localized
perturbation is set to ε = 0.0001 which guarantees a linear evolution. Due to disper-
sive effects and the damping of the normal modes the amplitudes decrease by about
one order of magnitude between t = 10 and 40. During this time a strong streamwise
shear has developed around the symmetry plane z = 0.

For the boundary layer flow, at Reδ∗ = 950, a different wall-normal distribution of
the localized perturbation is used and the amplitude is set to ε = 0.001. However the
main flow features in the channel and boundary layer flows remain the same.

A.2 Temporal turbulent channel flow at Reτ = 180

Turbulent channel flow with periodic boundary conditions in both the streamwise
and spanwise direction is provided as an example in temporal-channel-retau180. The
Reynolds number based on the laminar centerline velocity Recl = 4200, correspond-
ing to a bulk Reynolds number Reb = 2800. The initial file is created with either
bls.i.noise (creating the parabolic profile with superimposed small-amplitude noise)
or bls.i.localised (laminar channel profile with a localized disturbance). The flow
is then integrated using bla.i with either constant mass flux or setting the pressure
gradient to a constant value corresponding to Reτ = 180 (for further details on the
forcing see Section 4.2.1.1). Note that two-dimensional statistics in a xy-plane are
taken although the x-direction is homogeneous; the spanwise average is taken directly
in pxyst. The resolution in par.f is not sufficient for a fully resolved direct numerical
simulation; for a DNS at least 128 grid points in each direction should be employed.

A.3 Temporal Couette flow with turbulent spots

An example with Couette flow is provided in temporal-couette-spot. A localized
perturbation is developing in time until a turbulent spot has formed. The Reynolds
number Reco = 375 is defined as in equation 4.5 and the box is large enough to fit
the perturbation for even longer times than is used in the example (tend = 90).

77

TRITA-MEK 2007:07

The horizontal extent of the spot has an elliptical character, with an aspect ratio
that increases with increasing Reynolds number. With increasing time however the
streamwise elongation becomes less pronounced. For slightly lower Reynolds numbers
the spot cannot be sustained. This and similar flow configurations were studied in
Lundbladh & Johansson (1991).

A.4 Temporal Falkner–Skan–Cooke boundary layer flow

This test case, located in temporal-fsc, is based on a temporal FSC boundary layer
flow with the Reynolds number Re = 337.9 and a free-stream cross-flow velocity
component W∞ = 1.44232U∞(x = 0) and a favorable pressure gradient m = 0.34207
as defined in section 4.4.

The initial disturbance used here is the unstable eigenfunction associated with the
eigenvalue c = −0.15246 + i0.0382 that appears at α = 0.25 and β = −0.25. This
corresponds to an inviscid instability due to an inflection point in the boundary layer
flow. Note that for a boundary layer flow with a three-dimensional velocity profile
one can always find inflection points.

The disturbance is generated by bls based on the information given in the file os.i.
In the example bash script run.sh this disturbance is integrated in time to guaran-
tee that a velocity field that fulfills the Navier–Stokes equations is generated. The
final velocity field is saved and the time stamp is set to zero. A new simulation is
started with the converged velocity field as initial condition. The perturbation energy
grows exponentially in time. However if the simulation is run long enough nonlinear
saturation will cause the growth rate to decrease.

This disturbance has been used in previous studies, for example, Högberg & Hen-
ningson (2002) and Chevalier et al. (2007) where it was used as a test case to verify
control and estimator algorithms.

A.5 Asymptotic suction boundary layer flow

The example case temporal-asbl shows how to set up an asymptotic suction boundary
layer flow with a localized perturbation included. The purpose of the steady suction is
to stabilize the flow and delay/prohibit transition to turbulence. Detailed simulations
based on this implementation can be found in Levin & Henningson (2007).

A.6 Spatial Blasius boundary layer flow

There are three examples included which all highlight some specific feature of the
Simson package for spatially developing flows. The linear and nonlinear evolution of
a Tollmien–Schlichting (TS) wave is simulated in the example spatial-blasius-TS. The
inlet Reynolds number based on the displacement thickness and free-stream velocity
is set to Reδ∗0 = 300 or Rex = (300/1.721)2 = 30387 in a two-dimensional (nz = 1)
computational box. A harmonic forcing located at Rex ≈ 60386 (x = 100) with
nondimensional frequency F = 106ω/Reδ∗0 = 120 acting in the wall-normal direction
is introduced, forcing the TS-waves; branch I is at Rex ≈ 150000 (x ≈ 666) and
branch II at Rex = 387000 (x ≈ 1071). The streamwise rms-amplitude of the TS-
waves at branch I is approximately 0.76%.

A sample result displaying the evolution of the streamwise fluctuation maximum
urms,max (option −71 in pxyst) is given in figure A.1, where the simulation data
are compared to the results obtained from linear PSE (parabolized stability equa-
tions). It can be seen in figure A.1a) that the direct nonlinear solution of the Navier–
Stokes equations (bls.i.full and bla.i.full) gives exactly the same result as the one
computed nonlinearly in disturbance formulation (bls.i.dist and bla.i.pert), provided
that the corresponding baseflow is a converged solution (i.e. obtained using bls.i.full

78

TRITA-MEK 2007:07

a)
Re

x

u rm
s,

 m
ax

0 1 2 3 4 5 6

x 10
5

0

0.01

0.02

0.03

0.04

b)
Re

x

u rm
s,

 m
ax

0 1 2 3 4 5 6

x 10
5

0

0.01

0.02

0.03

0.04

Figure A.1: a) Nonlinear and b) linear development of a two-dimensional TS-wave in
a spatially developing Blasius boundary layer (example spatial-blasius-TS). Wall-normal
maximum of the streamwise rms fluctuation urms,max is shown as a function of the down-
stream distance Rex. Direct nonlinear solution; � nonlinear solution in disturbance
formulation using a converged baseflow; nonlinear solution in disturbance formula-
tion using the Blasius solution as baseflow. Linearized disturbance formulation us-
ing a converged baseflow; ∆ rescaled full solution at 10× lower amplitude; linearized
disturbance formulation using the Blasius solution as baseflow. • Results from linear
parabolized stability equations (PSE).

and bla.i.baseflow). The growth rate is considerably underestimated if the Blasius so-
lution (i.e. a solution to the boundary layer equations) is used as a baseflow (bls.i.pert
and bla.i.magic-forcing). On the other hand, due to nonlinear saturation the non-
linear development is considerably different from the linear development depicted in
figure A.1b): The linearized solution around a converged baseflow (bla.i.pert-linear)
and the rescaled direct solution coincide with the linear PSE solution, whereas the
linear solution around the Blasius baseflow is again underestimating the growth of
the TS-wave.

An example of a spatially evolving, zero-pressure-gradient turbulent boundary layer
with various passive scalars is provided in spatial-blasius-scalars. The inflow is located
at Reδ∗0 = 450. Turbulent statistics, spanwise two-point correlations and time series
at selected coordinates of various quantities are generated as output. The laminar
flow close to the inlet plane is disturbed via a trip force (see equation (7.7) in Section
7.4) located at x = 10. The Prandtl numbers Pr for the scalars are all set to 0.71,
and different boundary conditions have been chosen at the wall and in the freestream:
Dirichlet-Dirichlet, Neumann-Dirichlet, Dirichlet-Neumann and Neumann-Neumann.
Note that the spatial resolution in par.f is not sufficient for a fully-resolved direct
numerical simulation.

A similar turbulent boundary layer with large-eddy simulation (LES) is given as exam-
ple in spatial-blasius-les. In sgs.i the Smagorinsky eddy-viscosity model is turned on
together with an adaptive determination of the model coefficient (dynamic Smagorin-
sky model).

A.7 Spatial Falkner–Skan–Cooke boundary layer flow

In the example spatial-fsc the flow from appendix A.4 is studied in a spatial setting.
Traveling cross-flow vortices are generated, in an upstream location, by applying a
volume force (trip forcing) built as a sum of Stokes modes with time-varying ampli-
tudes and stochastic coefficients.

The vortices merge and split and form complicated patterns. The time average of the
disturbance energy is plotted in figure A.2 which shows the exponential growth of the
traveling vortices. The fringe forcing starts at x = 350 and lowers the perturbation
energy and makes the base flow periodic.

The same flow case was studied in Högberg & Henningson (1998), Högberg & Hen-
ningson (2002) and Chevalier et al. (2007). In the two latter studies this flow configu-

79

TRITA-MEK 2007:07

0 50 100 150 200 250 300 350 400 450 500
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

E

x

Figure A.2: Time average of energy integrated in the z-direction for simulation of traveling
cross-flow vortices.

ration served as an example to illustrate the effectiveness of control and compensator
algorithms respectively, where blowing and suction on the lower wall was used to
decrease the disturbance energy growth.

80

BScaling of variables

For all the boundary layer flows the scaling, for all parameters, is based on the
displacement boundary layer thickness and free-stream velocity at t = 0, x = 0
for the reference or base flow. However, internally in the simulation code bla the
implementation uses a scaling based on the half box height (the external and internal
velocity scale is the same). This means that all external data must be rescaled when
read into the program, and the reverse scaling applied on output. If we let dstar be
the displacement thickness expressed in half box heights, then the following scaling
relationships hold:

timeint = timeext × dstar ,

lengthint = lengthext × dstar ,

velocityint = velocityext ,

vorticityint = vorticityext/dstar ,

forceint = forceext/dstar .

(B.1)

All formatted input and output files except the wave amplitude file use external
scaling, whereas the unformatted files and the wave amplitude file use internal scaling.

81

CSubversion quickstart

C.1 Introduction

To ease the development of Simson the version control system Subversion has
been used. Subversion works by keeping all source files including their history in a
database called a repository where the data is stored in an efficient manner.

Each developer has their own private working copy of the files. Each working copy
directory contains a special directory named .svn where some administrative files are
stored. The developer decides when and how to synchronize the working copy with
the repository.

Read and write access to the repository can be specified to certain directories for
certain users if needed. This allows developers, responsible for different parts of the
code, to work independently.

In this appendix follows a short description on how to use Subversion and the most
common commands. The entire Subversion book/manual can be found in Collins-
Sussman et al..

C.2 Getting started

C.2.1 Creating a working copy root directory

The following command creates a new working directory simson and puts the latest
source code from the Simson trunk repository there:

svn checkout https://www2.mech.kth.se/svn/simson/trunk simson

The checkout subcommand is only used when you want to create a new private
working copy from scratch.

Now you can edit the files in the simson directory. Changes in this directory do not
affect other developers. The local .svn directories contain administrative files that
Subversion uses to keep track of your files and should not be changed.

C.2.2 The most commonly used Subversion subcommands

C.2.2.1 General work flow

This is the most often used Subversion commands and the general work flow goes
through the following items. Each command is described in the following sections.

Update your working copy:

• svn update

83

TRITA-MEK 2007:07

Make changes:

• svn add

• svn delete

• svn copy

• svn move

Examine your changes:

• svn status

• svn diff

• svn revert

• tkdiff (svn-aware graphical diff frontend)

Merge others’ changes into your working copy:

• svn update (IMPORTANT!)

• svn resolved

Commit your changes:

• svn commit

Note that it is crucial that you update your copy of the repository before you commit
your changes. Otherwise changes committed by others between the previous update
of your copy and now could be lost.

C.2.2.2 Getting help

If you want a list of all Subversion subcommands, use help:

svn help

Type svn help subcommand for help on a specific subcommand.

Most subcommands take file and/or directory arguments, recursing on the directories.
If no arguments are supplied, it will recurse on the current directory (inclusive) by
default. Available subcommands are (aliases are given within parentheses):

add
blame (praise, annotate, ann)
cat
checkout (co)
cleanup
commit (ci)
copy (cp)
delete (del, remove, rm)
diff (di)
export
help (?, h)
import
info
list (ls)
log
merge
mkdir
move (mv, rename, ren)
propdel (pdel, pd)
propedit (pedit, pe)
propget (pget, pg)
proplist (plist, pl)
propset (pset, ps)
resolved
revert
status (stat, st)
switch (sw)
update (up)

84

TRITA-MEK 2007:07

C.2.2.3 Examining and comparing working copy with the repository

The most commonly used subcommand reports what files you have modified in your
working directory among other things:

svn status

The status subcommand and many other subcommands works recursively on direc-
tories (by default the current working directory). If you want the status of a named
directory or a single file you add the name of that file or directory. For instance:

svn status mydirectory/myfile.f

There is an important extra flag to the status subcommand: -u. The -u flag is used
to display pending updates from the repository.

svn status -u -v mydirectory/myfile.f

To view the history of a file or directory, use the log subcommand. This shows who
changed the file, when they did it and the log message they provided to describe their
changes.

svn log

The diff subcommand examines the difference between your working copy and the
repository more in detail. The output is similar to the output of the Unix command
diff; e.g.

svn diff afortranfile.f

A graphical frontend to diff is the freely available tkdiff, which is svn-aware. For
example,

tkdiff afortranfile.f

displays all local changes of the given file since the last update, whereas

tkdiff -r100 afortranfile.f

shows all the changes compared to revision 100 in the repository.

C.2.2.4 Undoing changes to the working copy

If you want to undo your changes to some file or directory in your working copy there
is a convenient way. Use revert:

svn revert myfile.f

After the revert subcommand has finished the working copy has the same state as
when you did update or checkout the last time.

The revert subcommand may also be applied to several files at once, or an entire
directory. Because the revert subcommand reverts to the mirror-copy kept in the
.svn directories it works even when there is no network connection to the repository,
such as when working with a laptop.

85

TRITA-MEK 2007:07

C.2.2.5 Updating working copy

The update subcommand updates your working copy and the .svn directories with
the latest changes to the repository.

All files in your current working directory and below are updated. If you have also
changed the contents of your working copy the repository changes are merged with
your changes.

svn update

Again, you may update a single file or directory by naming it:

svn update mydirectory/myfile.f

Note that you can run status -u to get a list of all updates available in the repository.
This is a good way to predict what update will do.

The update subcommand is also used when you want to retrieve an old version of
some file(s) from the repository; e.g. to get the repository version of myfile.f as it
was on the 6:th of October 2004 you write:

svn update -r ’{20041006}’ mydirectory/myfile.f

In some cases update will fail to merge changes to the repository with your local
changes. If update or status lists a file with a “C” in front this means that you need
to merge the reported file(s) manually.

C.2.2.6 Committing modified files into the repository

The commit subcommand updates the repository with your changes.

svn commit -m ’New adiabatic boundary condition added’

This commits all files in the current directory and below recursively. You may also
commit a single file or directory by naming it:

svn commit mydirectory/somefile.f -m ’Fixed memory leak problem’

Note that commit will safely fail if you do not have write access to all corresponding
files in the repository.

C.2.3 Other useful subcommands

C.2.3.1 Commands for moving, removing, and adding files

If you add or delete files from your working copy you need to explicitly tell Subver-
sion about this. The subcommands add, move, copy and delete are used for this.
See svn help xxx for help on these subcommands. The rename subcommand is an
alias for move.

As usual, the repository is not changed when you apply these commands on your
working copy. When you do svn commit the repository changed.

86

TRITA-MEK 2007:07

C.2.3.2 Adding the keywords to a new file

Subversion can substitute certain information directly into the files. This is done
by putting keywords inside the file. When you add a new file for version control, put
the following lines in the beginning of that file:

$HeadURL: https://www2.mech.kth.se/svn/simson/trunk/doc/simson-user-guide-v4.0.tex $
$LastChangedDate: 2007-12-07 13:05:07 +0100 (fr, 07 dec 2007) $
$LastChangedBy: mattias@MECH.KTH.SE $
$LastChangedRevision: 1053 $

You must tell Subversion which keywords to look for. This is done through the
following command (on one line):

svn propset svn:keywords ’LastChangedBy LastChangedDate
LastChangedRevision HeadURL’ filename

Another important keyword is the ignore tag. This is set/changed for the current
directory through the command

svn propedit svn:ignore .

and then editing the file names in the editor window. In general, properties of a
specific file or directory are displayed by

svn proplist <FILE>
svn propget <PROPERTY> <FILE>

C.2.3.3 Looking inside the repository

Because the Subversion repository is stored in a database file on a remote server ma-
chine you cannot look at the repository files using Unix/Linux ls command. Instead
you must use the Subversion subcommand ls.

svn ls https://www2.mech.kth.se/svn/simson/releases

Note that many Subversion subcommands that take a working copy directory as an
argument may also take a repository URL as an argument.

C.2.3.4 Exporting source code

To export the source code from a Subversion working copy into a source code tree
without the .svn directories there is a convenient command:

svn export mydirectory simson-export

This creates a new directory simson-export with your source code in it. The only
thing export does is to copy all files recursively from your working copy (or from a
repository URL) into a new directory, omitting all .svn directories.

C.2.4 Manually merging a conflict

When svn status reports a file or directory with a “C” in front of the filename this
means that there is a conflict that Subversion cannot resolve. This could happen if
you and another developer have simultaneously changed the same lines in the same
file. When the other developer commits his changes and you update your working
copy Subversion finds the conflict which you have to resolve manually.

To resolve a conflict simply edit the conflicting file and then save it. To help you
out, Subversion has written both your modifications and the modifications from
the repository into the file. In addition, Subversion has saved your file and the
repository’s file in your working copy directory (.mine and .Rxxx respectively). Note
that you need to remove the two additional files before you can commit your file.

87

TRITA-MEK 2007:07

C.2.5 Branches

Branches are versions of any file or directory that were forked from another version
of the same file or directory and are subsequently developed further independent of
the original version. A branch can e.g. include additional features that are not (yet)
meant to be part of the original file/directory version. Branches are kept in the
directory branches. To create a branch, simply copy the base version to the branch
directory, e.g. from the trunk/bla directory

svn copy trunk/bla branches/bla-branch

followed by a commit of the new branch via

svn commit trunk/bla-branch -m’Created new branch bla-branch, based on revision XXX’

It is very important to state in the commit comment from which revision the branch
was created. Subversion will not keep track of that essential information. Note that
the commit will create a new revision which will overwrite the revision information
in the newly copied files.

The main advantage of using branches comes from the fact that it is possible to keep
a branch copy updated with respect to the original version (i.e. the one the branch
was based upon). To update a branch, use

svn merge -rXXX:YYY trunk/bla/bla.f branches/bla-branch/bla.f

The two revision XXX and YYY are essential: They specify that all the changes in
trunk/bla/bla.f made between revisions XXX and YYY should be included in branches/bla-
branch/bla.f. A merge will probably create some conflicts which have to be resolved
manually. As mentioned above, when committing the merged version, it is essential
to include in the comment information about the revision numbers the merge was
based on. Subversion will not keep track of this information. Therefore, use a
comment similar to

svn commit -m’merged <files> with trunk revisions from XXX to YYY’ <files>

In this way, for a subsequent merge, the logs can be used to determine up to which
revision number a merge has already been performed.

C.2.6 Private configuration file

After running svn for the first time you will have a directory in your home directory
named .subversion. This directory contains the file .subversion/config can be edited
to customize Subversion behavior.

C.3 Examples

Below follows common examples of Subversion subcommands.

Create a new working copy root directory

svn checkout https://www2.mech.kth.se/svn/simson/trunk Simson

List your modifications to the working copy.

svn status somedirectory

List modifications to the repository and predict what update would do.

svn status -u somedirectory

88

TRITA-MEK 2007:07

Update your working copy with modifications to the repository.

svn update somefile.f90

Update the repository with modifications to your working copy of a file.

svn commit -m ’Your log-message here’ somefile.f90

Get an old version of a file from the repository.

svn update -r ’{20041006}’ somefile.f90

Undo modifications to the working copy.

svn revert somefile.f90

List history of a file.

svn log somefile.f90

List details of your modifications to a working copy file.

svn diff somefile.f90

List differences between your working copy and an old repository version of a file.

svn diff -r ’{20041006}’ somefile.f90

List differences between two old repository versions of a file.

svn diff -r ’{20041006}:{20040930}’ somefile.f90

List differences between two old repository version r110 and r120 of a file.

svn diff -r 110:120 somefile.f90

List files in the repository.

svn ls https://www2.mech.kth.se/svn/simson/

Rename a file/directory.

svn mv somefile.f90 newname.f90

Put a new file/directory under version control.

svn add somefile.f90

Remove a file/directory.

svn delete somefile.f90

Export a source code tree for distribution to a user/customer.

svn export https://www2.mech.kth.se/svn/simson/releases/mydir mydir

View who has written specific parts of a file

svn blame somefile.f90

To resurrect an earlier deleted file (from revison 972)

89

TRITA-MEK 2007:07

svn cp -r972 https://www2.mech.kth.se/svn/simson/trunk/myfile myfile

To merge changes in trunk version of bla from revision 687 to 691 to one branch copy
of bla

svn merge -r687:691 bla/bla.f ../branches/bla2dparallel/bla.f

And finally to get help

svn help

90

ISSN 0348-467x
ISBN 978-91-7178-838-2
TRITA-MEK 2007:07

KTH
 2007

SIM
SO

N

M aT T I a S C H e va l I e r , P H I l I P P S C H l aT T e r ,
a N d e r S l u N d b l a d H a N d d a N S . H e N N I N g S O N

KTH Mechanics
KTH, SE-100 44 Stockholm

www.kth.se

SIMSON

Technical Report
Stockholm, Sweden 2007

A Pseudo-Spectral Solver for
Incompressible Boundary Layer Flows

	Introduction
	Contributions
	Release notes
	Version 4.0.0

	Published results
	Channel and Couette flow studies
	Boundary layer flow studies

	Installation
	Prerequisites
	Requirements
	Optional requirements

	Directory structure
	Building Simson
	Configuring
	Compiling
	Compiling for parallel runs
	Installing

	Operation
	Preprocessing
	Generating initial velocity fields with fsc and bls
	Generating non-similarity base flows

	Running bla
	Running in serial
	Running in parallel with OpenMP
	Running in parallel with MPI
	Memory requirements
	Performance tuning

	Postprocessing
	Postprocessing velocity files with rit
	Postprocessing velocity files with cmp
	Postprocessing plane files with rps
	Postprocessing velocity files with fou
	Postprocessing amplitude files with pamp1, pamp2, pampw, pampw2 and pext1
	Postprocessing xy-statistics files with pxyst

	Theory
	Derivation of the velocity--vorticity formulation
	Forcing
	Temporal simulations
	Spatial simulations

	Boundary conditions
	Poiseuille flow
	Couette flow
	Boundary layer flow
	Asymptotic suction boundary layer flow
	Surface roughness
	Jet in crossflow

	Initial conditions
	Disturbance formulation and linearized solver
	Pressure solver
	Passive scalar
	Selective frequency damping
	Large-eddy simulation
	Dynamic Smagorinsky model
	High-pass filtered Smagorinsky model
	Relaxation-term model (ADM-RT)

	Magneto-Hydrodynamics (MHD)

	Numerical method
	Temporal discretization
	Horizontal discretization -- Fourier expansions
	Normal velocity and normal vorticity equations
	Horizontal velocities and wavenumber zero
	Solution procedure with boundary conditions

	Normal discretization -- Chebyshev expansion
	Chebyshev tau method -- CTM
	Chebyshev integration method -- CIM
	Integration correction

	Implementation
	Program structure of bla
	Step 1, Initialization
	Step 2, Computations in physical space
	Step 3, Computations in Fourier--Chebyshev space
	Step 4, Output

	Data structure
	Complex numbers and FFTs
	Main storage, boxes, drawers, and planes
	Naming conventions
	The oddball wavenumbers

	Parallelization
	OpenMP
	MPI

	File formats
	Compile time parameter file par.f
	Runtime parameter file fsc.i
	Runtime parameter file bls.i
	Runtime parameter file bla.i
	Runtime LES parameter file sgs.i
	Velocity file
	Pressure file
	Amplitude file
	Wave amplitude file
	Extremum file
	Plane velocity file
	xy-statistics file
	Two-point correlation file
	Time-series file
	Free-stream velocity table file
	Forced wave file wave.dat
	Base flow profile file fsc.dat
	Surface-roughness file

	Bibliography
	Examples
	Temporal channel and Blasius boundary layer flow
	Temporal turbulent channel flow at Re=180
	Temporal Couette flow with turbulent spots
	Temporal Falkner--Skan--Cooke boundary layer flow
	Asymptotic suction boundary layer flow
	Spatial Blasius boundary layer flow
	Spatial Falkner--Skan--Cooke boundary layer flow

	Scaling of variables
	Subversion quickstart
	Introduction
	Getting started
	Creating a working copy root directory
	The most commonly used Subversion subcommands
	Other useful subcommands
	Manually merging a conflict
	Branches
	Private configuration file

	Examples

