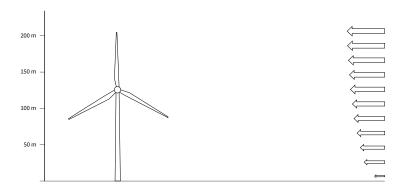
Modeling, Identification, Estimation and Adaptation for the Control of Power Generating Kites

Roy S. Smith

Automatic Control Laboratory ETH Zürich

11th July 2018

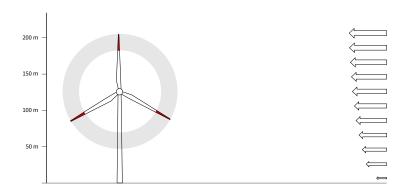
18th IFAC Symposium on System Identification Stockholm, Sweden


ĦΉ

1

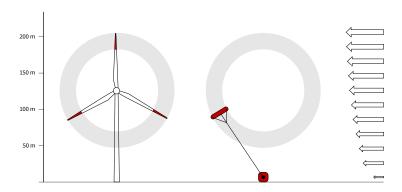
Airborne Wind Energy

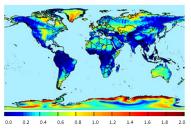
Motivation


Winds are stronger and more consistent wind at higher altitudes;

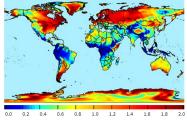
Airborne Wind Energy

Motivation


- Winds are stronger and more consistent wind at higher altitudes;
- Most of the power is generated by a small part of the turbine;


Airborne Wind Energy

Motivation


- Winds are stronger and more consistent wind at higher altitudes;
- Most of the power is generated by a small part of the turbine;
- ▶ Replace the effective part of the blade by a kite.

Utilization benefits

Wind power density (kW/m^2) at 120 m. altitude.

Wind power density (kW/m^2) at 600 m. altitude.

▶ The wind power scales with the cube of the wind velocity.

Cross-wind flight

Basic concept

106 J. ENERGY

VOL. 4, NO. 3

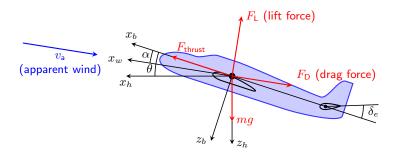
ARTICLE NO. 80-4075

10029

E 80-018 Crosswind Kite Power

Miles L. Loyd* Lawrence Livermore National Laboratory, Livermore, Calif.

This paper describes a concept for large-scale wind power production by means of aerodynamically efficient likes. Based on aircraft construction, these kites fit pransverse to the wind at high speed. The lift produced at this speed is sufficient to both support the kite and generate power. The equations of motion are developed, and examples are presented. One version, based on the C-5A sirrcraft, results in 6.7 MW produced by a 10-m/s wind. Extrapolation to newer technology, which is more comparable to modern wind turbines, indicates the production of 45 MW from a single machine. The detailed calculations are validated by comparison of their results with simple analytical models. The methodology used here lays the foundation for the systematic study of power-producing kites.

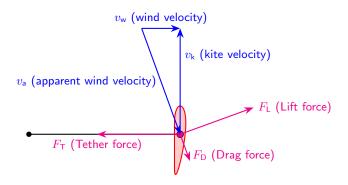

Airborne wind energy

An abbreviated history

- 1980 M. Loyd, "Crosswind kite power," J. Energy.
- 2001 M. Diehl, Real Time Optimization for Large Scale Nonlinear Processes.
- 2001 W. Ockels, "Laddermill, a novel concept to exploit the energy in the airspace," *Aircraft Design*.
- 2005 B. Lansdorp, & W. Ockels, "Design of a 100 MW laddermill for wind energy generation from 5 km altitude," *Recovery Recycling and Reintegration*.
- 2006 B. Houska & M. Diehl, "Optimal control of towing kites," CDC.
- 2007 M. Canale, L. Fagiano, & M. Milanese, "Power kites for wind energy generation," *CSM*.
- 2009 L. Fagiano, Control of tethered airfoils for high-altitude wind energy generation.
- 2010 ...

Basic aerodynamics

Lift and drag force equilibrium



Force balance: $F_{\text{thrust}} + F_{\text{L}} + F_{\text{D}} + mg = 0$

$$\|F_{\mathsf{L}}\| \ = \ \frac{\rho\|v_{\mathsf{a}}\|^2}{2} C_{\mathsf{L}} S \quad \text{and} \quad \|F_{\mathsf{D}}\| \ = \ \frac{\rho\|v_{\mathsf{a}}\|^2}{2} C_{\mathsf{D}} S.$$

Cross-wind flight

On-board generation

Turbines/generators mounted on a rigid wing

Makani

Makani

Generation concept

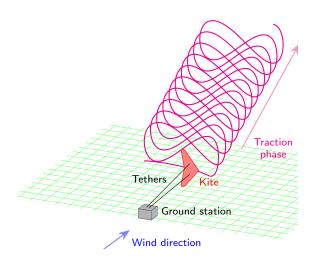
- ▶ The kite is flown in a tethered cross-wind pattern.
- ▶ This kite speed is 5 to 10 times the wind speed.
- On-board propellor-driven generators are driven by the higher velocity apparent wind.

Ground-based generation

Two-phase operation

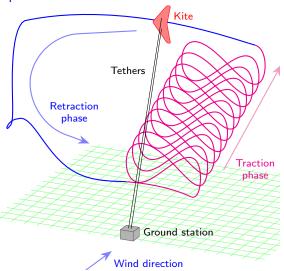
Fagiano, 2009

. Houle, FHNV


TwingTec

Generation concept

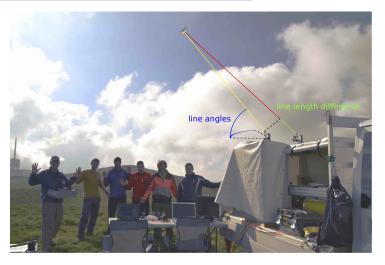
- ▶ Kite speeds in cross-wind flight are 5 to 10 times the wind speed.
- ▶ The tethers are wound on a winch connected to a motor/generator system.
- ► Two phase flight is required:
 - Traction generates power;
 - Retraction consumes power.

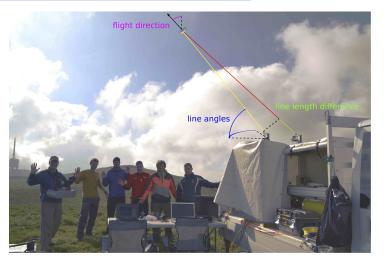

Ground-based generation

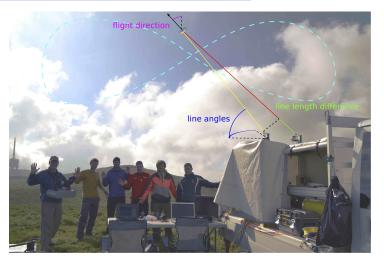
Two-phase operation

Ground-based generation

Two-phase operation




► Connection to the kite via tethers.


- ► Connection to the kite via tethers.
- ► Actuation and sensing on the ground.

- ► Connection to the kite via tethers.
- ► Actuation and sensing on the ground.

- Connection to the kite via tethers.
- Actuation and sensing on the ground.
- ► Control of flight direction to follow a figure-of-eight path.

- Connection to the kite via tethers.
- ▶ Actuation and sensing on the ground.
- ► Control of flight direction to follow a figure-of-eight path.

Ground-based generation: pumping cycles

Power generation

On-board generation

Ground-based generation

Wing:

Flight path: Lifting actuation:

Mass:

Crashes:

rigid

simple

turbines can actuate

heavy

very expensive

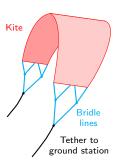
rigid or soft

pumping cycle

requires additional actuators

light weight

depends on the wing structure


Wing structure

	Rigid wings	Soft wings
Actuation:	on-board	ground-based
Sensing:	reasonably good	limited
Control performance:	high	constrained
Aerodynamics:	well modeled	highly variable
Efficiency	high	moderate
Crashes:	moderately expensive	no big deal

Our kite systems

Focus of today's talk

- 1. Ground-based generation
 - Traction/retraction trajectories
 - Focus on traction phase
- 2. Soft kites
 - Actuation via tethers controlled from the ground.
 - Uncertain aerodynamics

An outline

Modeling

Control architecture

Parameter estimation

 ${\sf State} \,\, {\sf estimation} \,\,$

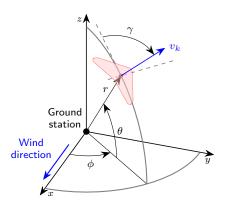
Control experiments

An outline

Modeling

Control architecture

Parameter estimation


 ${\sf State} \ {\sf estimation}$

Control experiments

Coordinates

The wind direction defines the x-axis.

- ϕ Azimuth angle
- θ Elevation angle
- γ flight path heading angle
- v_{k} kite velocity
- r tether length

Simplifying assumption

1. Slow reel-out $(\dot{r}(t) \ll v_{\rm k})$.

Modeling

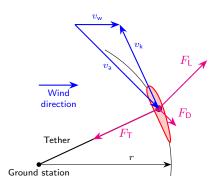
Kinematic model

$$\dot{\theta} = rac{v_{
m k}}{r}\cos\gamma, \quad {
m and} \quad \dot{\phi} = rac{v_{
m k}}{r\cos heta}\sin\gamma \qquad {
m (assumes} \ \dot{r} = 0)$$

Flight path angle

$$\gamma \ = \arctan\left(\frac{\cos(\theta) \ \dot{\phi}}{\dot{\theta}}\right)$$

Actuation model


The actuation model is motivated by the data.

$$\dot{\gamma} = K_{\rm s} u(t - \tau_{\rm s})$$
 (u is the tether length difference).

Actuation model from: Erhard & Strauch, TCST, 2013

Modeling: aerodynamics

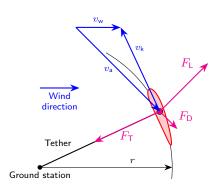
Basic aerodynamics

Simplifying assumptions

- 1. Slow reel-out $(\dot{r}(t) \ll v_k)$.
- 2. Low kite mass (force equilibrium).
- 3. Neglect tether mass, drag and dynamics.

Apparent wind

$$v_{\mathsf{a}} = v_{\mathsf{w}} - v_{\mathsf{k}},$$


Determines the aerodynamic forces:

$$\|F_{\mathsf{L}}\| \ = \ \frac{\rho \|v_{\mathsf{a}}\|^2}{2} C_{\mathsf{L}} S$$

$$||F_{\mathsf{D}}|| \ = \ \frac{\rho ||v_{\mathsf{a}}||^2}{2} C_{\mathsf{D}} S$$

Modeling: aerodynamics

Basic aerodynamics

Kite speed

Starting from apparent wind:

$$||v_{\mathsf{a}_{\mathsf{tangential}}}|| = ||v_{\mathsf{w}}|| \frac{C_{\mathsf{L}}}{C_{\mathsf{D}}} \cos \theta \, \cos \phi.$$

For efficient (high C_L/C_D) kites:

$$||v_{\mathbf{k}}|| \approx ||v_{\mathbf{w}}|| \frac{C_{\mathsf{L}}}{C_{\mathsf{D}}} \cos \theta \cos \phi.$$

More and better models: Schmehl, R., Noom, M., and van der Vlugt, R., Springer, 2013.

Modeling: aerodynamics

Approximate model

$$\begin{split} \dot{\theta} &= \frac{v_{k}}{r} \cos \gamma \\ \dot{\phi} &= \frac{v_{k}}{r \cos \theta} \sin \gamma \\ \dot{\gamma} &= K_{s} u(t - \tau_{s}) \\ \|v_{k}\| &\approx \|v_{w}\| \frac{C_{L}}{C_{P}} \cos \theta \cos \phi. \end{split}$$

Sources of uncertainty

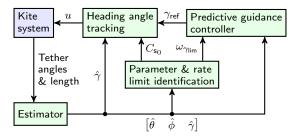
- ▶ For soft kites C_L and C_D are uncertain and variable (particularly when turning).
- $ightharpoonup v_{\rm w}$ is not accurately known as a function of altitude.
- $ightharpoonup v_{\rm w}$ can vary quickly and significantly in magnitude and direction.
- $ightharpoonup K_s$ varies (particularly with v_k) due to tether dynamics.
- $ightharpoonup au_s$ varies (particularly with r and F_T) due to tether dynamics.

An outline

Control architecture

Parameter estimation

 ${\sf State} \,\, {\sf estimation} \,\,$



Control experiments

Control system architecture

Cascade control structure

Guidance: Heading angle trajectory generation

Traction phase power extraction

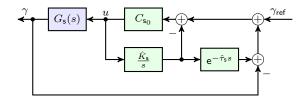
Tracking: Track heading angle, γ_{ref}

Compensate for gain and delay variation

Identification: Estimate gain, K_s , and delay, τ_s , for each figure-of-eight cycle.

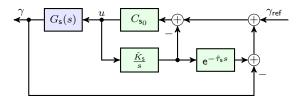
Cascaded structures are also in: Erhard & Strauch, TCST, 2013; Jehle & Schmehl, JGCD, 2014; Fagiano, Zgraggen, Morari &

Khammash, TCST, 2014


Inner loop control: Heading angle tracking

Delayed plant model

$$\gamma = G_{\mathsf{s}}(s)u = \frac{K_{\mathsf{s}}}{s}\mathsf{e}^{-\tau_{\mathsf{s}}s}u.$$


▶ The steering delay, τ_s , ranges between 0.5 and 2 seconds.

Smith predictor configuration

Inner loop control: Heading angle tracking

Smith predictor configuration

Design an ideal loopshape:

$$\frac{C_{\mathsf{s}_0} K_{\mathsf{s}}}{s} \mathsf{e}^{-\tau_{\mathsf{s}} s} \qquad (C_{\mathsf{s}_0} \text{ constant})$$

Smith predictor controller uses estimates of $K_{\rm s}$ and $\tau_{\rm s}$:

$$C_{s}(s) = \frac{C_{s_0}}{1 + \frac{C_{s_0}\hat{K}_s}{s}(1 - e^{-\hat{\tau}_s s})}$$

Inner loop control: Heading angle tracking

Robustness requirements

Uncertain steering gain, K_s , and steering delay, τ_s :

$$\hat{K}_{\rm s} - \delta_{K_{\rm s}} < K_{\rm s} < \hat{K}_{\rm s} + \delta_{K_{\rm s}} \qquad \qquad \hat{\tau}_{\rm s} - \delta_{\tau_{\rm s}} < \tau_{\rm s} < \hat{\tau}_{\rm s} + \delta_{\tau_{\rm s}}$$

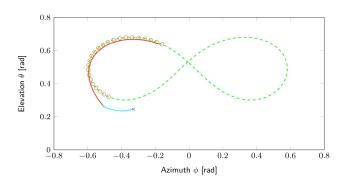
Robust stability of the Smith predictor is "guaranteed" for:

$$C_{\mathrm{s}_0} < \frac{\pi}{2\hat{K}_{\mathrm{s}}\delta_{\tau_{\mathrm{s}}}\sqrt{\left(1+\frac{\delta_{K_{\mathrm{s}}}}{\hat{K}_{\mathrm{s}}}\right)^2+1}},$$

Bandwidth limits

Guidance limitation,

$$|\dot{\gamma}_{
m ref}| < \omega_{\gamma_{
m lim}},$$
 (depends on $C_{
m s_0}$, $\hat{K}_{
m s}$, and $\hat{ au}_{
m s}$)


imposed by the predictive guidance algorithm.

See: Wood, Hesse, Zgraggen, & Smith, CDC, 2015.

Predictive guidance

Model predictive control: generating $\gamma_{\rm ref}$

- ▶ Generate (v_w,r) parameterized family of trajectories.
- ▶ Relatively standard (quadratic) MPC for state-deviation
 - Soft constraints on the position errors.
 - Include $\omega_{\gamma_{\lim}}$ bandwidth constraint.
 - Account for τ_s delay: predict using past inputs.

Optimal trajectories

Offline trajectory generation

$$\begin{array}{ll} \underset{x(\cdot),u(\cdot),x_0,T_{\rm p}}{\text{maximize}} & \frac{1}{T_{\rm p}} \int_0^{T_{\rm p}} F(x(t),u(t)) dt \\ \\ \text{subject to:} & \dot{x} = f(x(t),u(t)) & \text{(dynamics)} \\ \forall t \in [0,T_{\rm p}] & \underline{c} \leq x(t) \leq \overline{c} & \text{(altitude limits)} \\ & \underline{b} \leq u(t) \leq \overline{b} & \text{(actuation limits)} \\ & x(0) = x(T_{\rm p}) = x_0 & \text{(periodicity)} \end{array}$$

Objective function

Approximation of the tether force, F_T :

$$F(x,u) = \frac{\rho S C_{\rm D}}{2} \left(1 + \left(\frac{C_{\rm L}}{C_{\rm D}} - \beta u^2\right)^2\right)^{3/2} (\cos\theta \, \cos\phi \, v_{\rm w})^2$$

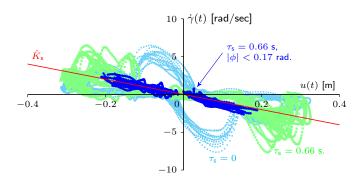
ETH

An outline

Control architecture

Parameter estimation

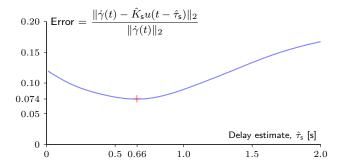
 ${\sf State} \,\, {\sf estimation} \,\,$


Control experiments

Steering gain parameter estimation

Actuation model: $\dot{\gamma} = K_s u(t - \tau_s)$

An estimate of $\dot{\gamma}$ comes from an Inertia Measurement Unit (IMU) on the kite.



Parameter estimation

Steering delay parameter estimation

Actuation model: $\dot{\gamma} = K_{\rm s} \, u(t - \tau_{\rm s})$

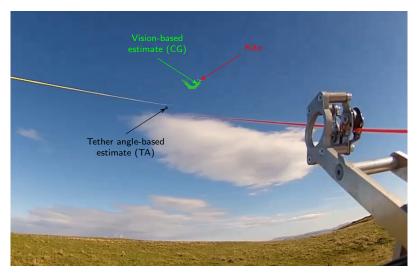
Best gain fit, $\hat{K}_{\rm s}$, as a function of the estimated delay, $\hat{\tau}_{\rm s}$.

An outline

Control architecture

Parameter estimation

 ${\sf State} \,\, {\sf estimation} \,\,$



Control experiments

Tether angle-based estimation

Challenges

Sensing options

Tether angle sensing. Encoders mounted on the tether feed-out arms.

Inertial measurement unit (IMU). Mounted on the kite. (3-axis accelerometer, 3-axis gyroscope).

Vision sensing. Video camera on the tether feed-out arms. $(1280 \times 960 \text{ pixels}, 48 \text{ frames/second}).$

Radio localisation. Ultra-wide band time-of-flight radio sensors on the kite.

Range: 290 m. Accuracy: 0.1 m Update rate: 50 Hz.

GPS position measurements are not feasible.

Estimator/sensor configurations

Name	Process model	Sensing	
TA	Unicycle	tether angles/gyro	
CG	Unicycle	camera/gyro	
TCG	Dual unicycle	tethers/camera/gyro	

Estimator model assumptions: unicycle

- 1. The tethers are rigid (and have no mass or drag).
- 2. The camera gives direct (undelayed) measurements of θ and ϕ .
- 3. The gyroscope rate measurements of θ and ϕ contain noise and drift which is included in the estimated variables.

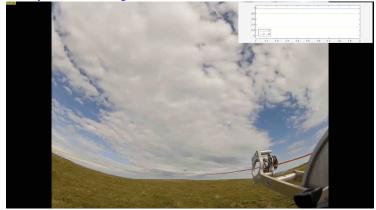
Dual-unicycle model

Create a second unicycle model,

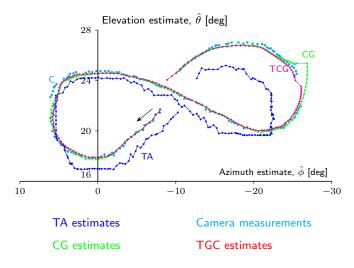
$$\dot{\theta}^* \, = \, \frac{v_{\rm k}^*}{r} \cos \gamma^* \qquad \text{and} \qquad \dot{\phi}^* \, = \, \frac{v_{\rm k}^*}{r \, \cos \theta^*} \sin \gamma^*, \label{eq:theta_total_problem}$$

The (θ^*, ϕ^*) model is coupled to the (θ, ϕ, γ) kite model via,

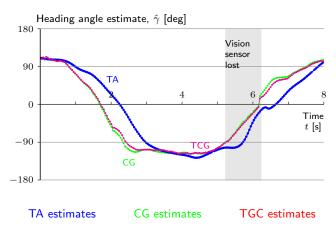
$$v_{\rm k}^* = v_{\rm k} - v_{\rm offset}$$
 and $\gamma^* = \lambda \gamma (t - t_{\rm offset})$ (with $\lambda \approx 1$).


The parameters v_{offset} and t_{offset} can be estimated offline from prior data.

Estimator model assumptions: dual unicycle


- 1. The tethers are rigid (and have no mass or drag) and give direct (undelayed) measurements of θ^* and ϕ^* .
- 2. The camera gives direct (undelayed) measurements of θ and ϕ .
- 3. The gyroscope rate measurements of θ and ϕ contain noise and drift which is included in the estimated variables.

Camera-based motion tracking/estimation


Post-analysis of video flight data

Estimator comparison: $\hat{\theta}$, $\hat{\phi}$

Estimator comparison: $\hat{\gamma}$

Estimator comparison: using post analysis on video flight data

Name	Process model	Sensing	$\hat{\gamma}$ error	$(\hat{ heta},\hat{\phi})$ error
			[deg.]	[deg.]
TA	Unicycle	tether angles/gyro	21	4.1
CG	Unicycle	camera/gyro	11	0.7
TCG	Dual unicycle	tethers/camera/gyro	9.7	0.7

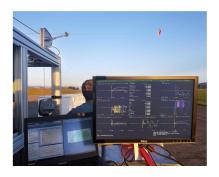
- ▶ The camera gives a very large improvement in position accuracy.
- ▶ For heading angle the camera reduces the error by half (w.r.t. TA)
- ► The combination of tether angles and camera provides some additional heading angle estimation improvement.

An outline

Control architecture

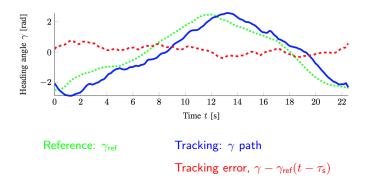
Parameter estimation

 ${\sf State} \ {\sf estimation}$


Control experiments

Control experiments

Tow testing

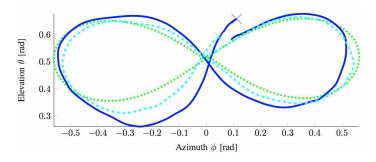


- ▶ 5 m² kite.
- ▶ Sampling time: 10 milliseconds.
- ▶ MPC prediction horizon: 30 steps (0.3 seconds).
- ▶ Figure-of-eight cycle period: approx. 20 seconds.

Path tracking results

Path tracking performance: γ

Inner loop (heading angle) tracking control


▶ The γ_{ref} tracking controller (Smith predictor) tracks the delayed reference.

Path tracking results

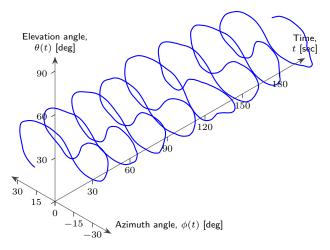
Path tracking performance: (θ, ϕ)

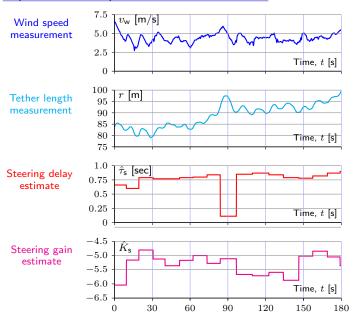
Model predictive controller for guidance

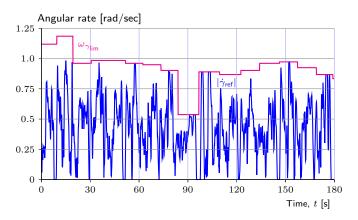
Single cycle example:

Reference path

Tracking (with non-predictive guidance)


Tracking (with predictive guidance)


Adaptive Smith-predictor/Model predictive control cascade


ETH

Figures-of-eight

Adaptive bandwidth limitation

- ▶ The MPC guidance controller respects the bandwidth limitation.
- ▶ The actual turn rate comes close to the bound.

Discussion

White box identification problem

- How detailed should the model be?
 - What is needed for the control task?
 - What behaviours/dynamics are reliably reproduced by the model?
 - Finding the tradeoff between model complexity, model reliability, robustness, control performance.
- Identifying the parameters:
 - Which should be identified offline by experiment? $(C_D, C_L, \beta, t_{offset}, v_{offset})$
 - Which should be estimated online and used for adaptation? (K_s, τ_s) .

Really hard problems for kite control

- Reliable take off and landing.
- Robustness to a wide range of conditions.
- ▶ Long term autonomy.

The future?

Almost commercial technologies

Makani, US 600 kW

TwingTec, Switzerland 50 kW

Skysails, Germany 160 m² kite

Ampyx, Netherlands

 ${\sf KiteGen,\ Italy}$

EnerKite, Germany

Acknowledgments

ETH, Automatic Control Lab

Eva Ahbe, RS, Tony Wood, Henrik Hesse, Lorenzo Fagiano, Max Polzin, Aldo Zgraggen, Manfred Morari.

TwingTec collaboration

Rolf Lucksinger, Corey Houle Colin Jones (EPFL)

AWESCO Project Roland Schmehl (TU Delft) *et al.*

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Swiss Confederation

Commission for Technology and Innovation CTI

European Research Council

Thanks for your attention.

Roy Smith (2018-07-11)

References

- T.A. Wood, H. Hesse, A.U. Zgraggen, & R.S. Smith, "Model-based identification and control of the velocity vector orientation for autonomous kites," *Proc. ACC*, 2377–2382, 2015.
- A. Millane, H. Hesse, T.A. Wood, & R.S. Smith, "Range-inertial estimation for airborne wind energy," Proc. IEEE CDC, 455–460, 2015.
- T.A. Wood, H. Hesse, A.U. Zgraggen, & R.S. Smith, "Model-based flight path planning and tracking for tethered wings," *Proc. IEEE CDC*, 6712–6717, 2015.
- T.A. Wood, E. Ahbe, H. Hesse, & R.S. Smith, "Predictive guidance control for autonomous kites with input delay," Proc. IFAC WC, 13276–13281, 2017.
- M. Polzin, T.A. Wood, H. Hesse, & R.S. Smith, "State estimation for kite power systems with delayed sensor measurements," *Proc. IFAC WC*, 11959–11964, 2017.
- ► T.A. Wood, H. Hesse, & R.S. Smith, "Predictive control of autonomous kites in tow test experiments", IEEE Ctrl. Syst. Letters, 1(1), 110–115, 2017.
- H. Hesse, M. Polzin, T.A. Wood, & R.S. Smith, "Visual motion tracking and sensor fusion for ground-based kite power systems", Airborne Wind Energy, 413–438, Springer, 2018.
- R. Luchsinger, D. Aregger, F. Bezard, D. Costa, C. Galliot, F. Gohl, J. Heilmann, H. Hesse, C. Houle, T.A. Wood, & R.S. Smith, "Kite power with Twings," Airborne Wind Energy, 603–621, Springer, 2018.
- ► E. Ahbe, T.A. Wood, & R.S. Smith, "Stability verification for periodic trajectories of autonomous kite power systems," *ECC*, 2018.