
OMTENTAMEN I VEKTORANALYS

SI1146 och SI1140 Del 1, VT18

Onsdagen 15 augusti 08:00-13:00

Anteckna p̊a varje blad: Namn, utbildningslinje, årskurs och problemnummer.
Till̊atna hjälpmedel: Formelblad som delas ut. Räknedosa ej till̊aten!
Examinator: Edwin Langmann (Epost: langmann@kth.se)
Bonuspoängen fr̊an kursomg̊angen VT18 adderas till första uppgiften, dock max 6
poäng totalt.
Lösningar: Kommer att finnas p̊a KTH canvas (Extentor).
Poäng: Varje uppgift kan ge 6 poäng. Betygsgränserna finns p̊a KTH social (kurs-PM).
Motivera utförligt! Otillräckliga motiveringar kan medföra poängavdrag.

Notation: (x, y, z) är kartesiska koordinater, och r = xex + yey + zez är ortsvektorn.
(ρ, θ, z) är cylinderkoordinater definierade genom x = ρ cosϕ, y = ρ sinϕ, z = z. (r, θ, ϕ)
är sfäriska koordinater definierade genom x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

1. (a) L̊at ei (i = 1, 2, 3) vara enhetsvektorerna som definierar koordinataxlarna i ett
kartesiskt koordinatsystem K, och e′2 = e2, e′3 = 3

5
e1 − 4

5
e3 och e′1 enhetsvektorer

som definierar koordinataxlarna i ett annat kartesiskt koordinatsystem K ′ som är
ett högersystem. Beräkna transformationsmatrisen Lij fr̊an koordinatsystemet K
till K ′. Ledning: Börja med att beräkna e′1. (3p)

(b) En tensor definieras i kartesiska koordinatsystemet K genom komponenterna
T13 = 2, T31 = 1, Tij = 0 annars. Beräkna komponenterna T ′ij av tensorn i
koordinatsystemet K ′! (3p)

2. (a) Beräkna flödet av vektorfältet A = L−3r + |r|−3r ut ur kuben som definieras
genom −L ≤ x ≤ L, −L ≤ y ≤ L och −L ≤ z ≤ L, där L > 0 är en konstant
(|r| =

√
x2 + y2 + z2). (3p)

(b) Visa att vektorfältet

v =
3 cos2 θ − 1

r4
er +

sin 2θ

r4
eθ

har en skalär potential f i omr̊adet r > 0. Beräkna f ! (3p)

3. A och B är godtyckliga vektorfält. Är följande p̊ast̊aende korrekt? Om ja, bevisa
det. Om inte, rätta till det och bevisa det rättade resultat. (2+2+2p)

(a) div rot A är lika med grad div A.

(b) δijεjklδkmδml är lika med 3.

(c) ∇× (A×B) är lika med A(∇ ·B)−B(∇ ·A)− (A · ∇)B + (B · ∇)A.
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4. Paraboliska koordinater (u, v, w), som är ortogonala, är relaterade till kartesiska
koordinater x, y, z genom följande ekvationer,

x = 2uv, y = u2 − v2, z = w.

(a) Beräkna skalfaktorerna hu, hv, hw och enhetsvektorerna eu, ev, ew. (2p)

(b) Transformera vektorfältet v = xey till paraboliska koordinater. (2p)

(c) L̊at A = u
√
u2 + v2eu + v

√
u2 + v2ev + wew. Beräkna div A. (2p)

5. Beräkna magnetfältet B som genereras av elektriska strömtätheten j = ezf(ρ) där
f(ρ) = J/(R2π) > 0 om 0 ≤ ρ < R och f(ρ) = 0 om ρ > R; R > 0 och J > 0 är
konstanter, och ρ =

√
x2 + y2.

Ledning: Magnetfältet uppfyller Maxwell ekvationer

∇×B = j, ∇ ·B = 0.

6. Vi betraktar en modell av diffusion av ett ämne inom ett omr̊ade V : R < r < 2R,
där R > 0 är en konstant (r =

√
x2 + y2 + z2).

(a) Skriv ner ekvationerna som ger en matematisk beskrivning av följande tre
punkter. Inför själv och förklara symboler du kanske behöver!

(i) Diffussionsströmtätheten J(r) av ett ämne i punkten r inom V är parallel med
riktningen där koncentrationen c(r) av ämnet minkar snabbast, och beloppet
av J(r) är proportionell mot ändringen av koncentrationen i denna riktning.

(ii) Flödet av diffussionsströmtätheten J(r) ut ur en godtycklig delvolym inom
omådet V är noll.

(iii) Koncentrationen c(r) vid randytorna r = R och 2R till omr̊adet V är lika
med c1 och c2, respektive; c1 > 0 och c2 > 0 är konstanter.

(b) Beräkna koncentrationen c(r) av ämnet som beskrivs i (a)! Ledning: Lös
PDE-problemet som du f̊ar genom att lösa uppgiften (a) ovan. (6p)

LYCKA TILL!
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Formelblad Vektoranalys

Följande formler gäller i ett ortogonalt, kroklinjigt koordinatsystem med koordina-
terna u1, u2, u3, basvektorerna e1, e2, e3 och skalfaktorerna h1, h2, h3 :

• dr = h1 du1 e1 + h2 du2 e2 + h3 du3 e3

• gradφ =
1

h1

∂φ

∂u1
e1 +

1

h2

∂φ

∂u2
e2 +

1

h3

∂φ

∂u3
e3

• divA =
1

h1h2h3

[
∂

∂u1

(
h2h3A1

)
+

∂

∂u2

(
h3h1A2

)
+

∂

∂u3

(
h1h2A3

)]

• rotA =
1

h1h2h3

∣∣∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂

∂u1

∂

∂u2

∂

∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣∣∣∣
• div gradφ =

1

h1h2h3

[
∂

∂u1

(h2h3
h1

∂φ

∂u1

)
+

∂

∂u2

(h3h1
h2

∂φ

∂u2

)
+

∂

∂u3

(h1h2
h3

∂φ

∂u3

)]

där A1, A2 och A3 är de kroklinjiga komponenterna av vektorfältet A,

A = A1 e1 + A2 e2 + A3 e3.

Specialfall

Cylinderkoordinater: hρ = 1, hϕ = ρ, hz = 1.

Sfäriska koordinater: hr = 1, hθ = r, hϕ = r sin θ.

ε-δ-relationen (tensornotation)

εijkεk`m = δi`δjm − δimδj`

Stokes sats (tensornotation)∫∫
S

εrst
∂Ajk...
∂xt

dSs =

∮
C

Ajk...dxr

Gauss sats (tensornotation)∫∫∫
V

∂Ajk...
∂xi

dV =

∫∫
©
S

Ajk...dSi
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Lösningsföreslag tentamen SI1146 och SI1140 Del 1, 15 augusti 2018

1. (a) e′1 = e′2 × e′3 = e2 × (3
5
e1 − 4

5
e3) = −3

5
e3 − 4

5
e1 ger Lij = e′i · ej,

(Lij) =

 −4
5

0 −3
5

0 1 0
3
5

0 −4
5


(b) T ′ij = LikLjmTkm = (LTLT )ij där

L = (Lij), T = (Tij) =

 0 0 2
0 0 0
1 0 0

 , LT = (LTij) = (Lji).

Detta ger

(T ′ij) = L

 0 0 2
0 0 0
1 0 0

 −4
5

0 +3
5

0 1 0
−3

5
0 −4

5

 =

 −4
5

0 −3
5

0 1 0
3
5

0 −4
5

 −6
5

0 −8
5

0 0 0
−4

5
0 3

5



=
1

25

 36 0 23
0 0 0
−2 0 −36

 .

2. (a) A = A1 + A2 där A1 = L−3r och A2 = |r|−3r.∫∫
©
S

A1 · dS =

∫∫∫
V

div A1dV = L−33(2L)3 = 24

med Gauss sats, och ∮
S

A2 · dS = 4π

(standard integral som löstes flera g̊anger under kursens g̊ang; full poäng kräver
att du förklara detta mer än jag gör här).

Svar: 24 + 4π.

(b) Om ∂ϕf = 0,

grad f = ∂rfer +
1

r
∂θfeθ = v⇒

∂rf =
3 cos2 θ − 1

r4
= −∂r

cos2 θ − 1/3

r3
⇒ f = −cos2 θ − 1/3

r3
+ g(θ).

1

r
∂θf =

2 cos θ sin θ

r4
+ g′(θ) =

sin 2θ

r4
+ g′(θ)

⇒ v = grad f där f = −cos2 θ − 1/3

r3
. (Detta visa ocks̊a att v har en skalär

potential.)
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3. (a) Fel. div rot A = εijk∂i∂jAk = 0.

(b) Fel. δijεjklδkmδml = εikk = 0.

(c) Korrekt. ∇× (A×B) = (· · · ) = A(∇ ·B) + B(∇ ·A)− (A · ∇)B− (B · ∇)A.

(Flera detaljer än (· · · ) krävs för full poäng.)

4. (a)

∂ur = (2v, 2u, 0)⇒ hu = 2
√
u2 + v2, eu =

1√
u2 + v2

(v, u, 0)

∂vr = (2u,−2v, 0)⇒ hv = 2
√
u2 + v2, ev =

1√
u2 + v2

(u,−v, 0)

∂wr = (0, 0, 1)⇒ hw = 1, ew = (0, 0, 1).

(b) vu = eu ·2uv(0, 1, 0) = 2u2v/
√
u2 + v2, vv = ev ·2uv(0, 1, 0) = −2uv2/

√
u2 + v2,

vw = ew · 2uv(0, 1, 0) = 0

v =
1√

u2 + v2
2uv(ueu − vev)

(c)

div A =
1

4(u2 + v2)

(
∂u(2u(u2 + v2)) + ∂v(2v(u2 + v2) + ∂w4(u2 + v2)w

)
=

1

4(u2 + v2)
(6u2 + 2v2 + 2u2 + 6v2 + 4u2 + 4v2) = 3

5. Ansatsen
B(r) = Bρ(ρ)eρ +Bφ(ρ)eφ +Bz(ρ)ez (1)

ger

div(B) =
1

ρ
∂ρ(ρBρ(ρ)) (2)

och

rot(B) =
1

ρ

∣∣∣∣∣∣
eρ ρeφ ez
∂ρ ∂φ ∂z

Bρ(ρ) ρBφ(ρ) Bz(ρ)

∣∣∣∣∣∣ = −eφ∂ρ(Bz(ρ)) + ez
1

ρ
∂ρ(ρBφ(ρ)). (3)

Med j = f(ρ)ez och Maxwell ekvationer,

1

ρ
∂ρ(ρBρ(ρ)) = 0, ∂ρ(Bz(ρ)) = 0,

1

ρ
∂ρ(ρBφ(ρ)) = f(ρ). (4)

Detta ger

∂ρ(ρBρ(ρ)) = 0⇒ ρBρ(ρ) = c0 ⇒ Bρ(ρ) =
c0
ρ

och
∂ρ(Bz(ρ)) = 0⇒ Bz(ρ) = c1
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med integrationskonstanter c1 och c2. B→ 0 där ρ→∞ ⇒ c1 = 0.

|B| <∞ ⇒ c0 = 0.

1

ρ
∂ρ(ρBφ(ρ)) = f(ρ)⇒ ∂ρ(ρBφ(ρ)) = ρf(ρ)⇒ Bφ(ρ) =

c2
ρ

+
1

ρ

∫ ρ

0

dssf(s) (5)

c2 = 0 p.g.a. |B| <∞.

Detta ger

Bφ(ρ) =

{
Jρ/(2πR2) 0 ≤ ρ < R

J/(2πρ) ρ > R.
(6)

Svar: B = Bφ(ρ)eφ dvs.

B(r) = Bφ(
√
x2 + y2)

(−y, x, 0)√
x2 + y2

(7)

6. (a) (i) J = −D grad c där D > 0 är en konstant.

(ii) div J = 0

(iii) c|r=R = c1, c|r=2R = c2

(b) (a) ger PDE problem et ∆c = 0 (R < r < 2R) där c|r=R = c1 och c|r=2R = c2.

Rotationssymmetri: c = c(r), ∆c = c′′(r)+ 2
r
c′(r) = 0, som har allmänna lösningen

c(r) = C1 + C2/r med godtyckliga constanter C1,2. Randvillkoren ger

C1 +
C2

R
= c1, C1 +

C2

2R
= c2 ⇒ C2 = 2R(c1 − c2), C1 = 2c2 − c1

Svar:

c(r) = 2c2 − c1 +
2R

r
(c1 − c2)
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