
Comparison between grammar-based and n-gram
language models

Aleix Sacrest Gascon
KTH Royal Institute of Technology

aleixsg@kth.se

Quim Arnau Ortega
KTH Royal Institute of Technology

quima@kth.se

Abstract

Statistical language models (SLM) are usually the choice for broad speech recogni-
tion when is necessary to deal with large vocabularies, whereas grammar-based
models (GLM) are used when dealing with smaller vocabularies, often specified by
hand and consisting of a few set of rules. In this paper we want to show experimen-
tally that this is the case in the specific human-computer interaction (HCI) problem
we are addressing: the recognition of a small set of terminal commands. We also
check whether open-source toolkits will allow us to build such recognition system
in a relatively short time to assess both models. In conclusion, our experimental
work showed that GLMs clearly outperformed SLMs in this context.

1 Introduction

Over the last decade, speech technology has gained a lot more attention changing the way we interact
with machines on everyday life. This is due to three main reasons: i) computational power keeps
raising, ii) more data is generated and available for everyone, iii) smart devices are everywhere. This
technology plays an important role in two applications: human-human communication (HHC) and
human-computer interaction (HCI) [1, Chapter 1, Section 1.1].

However, as striking as it can seem, the field of speech recognition does not seem to be as trendy as
one would think in the moment, according to web search indices from Google Trends [2]. It actually
has been decreasing since 2004, but we know how important this field is becoming, we just need
to be aware of the recent huge efforts made in creating voice-activated personal assistants like Siri
(Apple), Alexa (Amazon) or Google Home (Google).

Automatic speech recognition (ASR) requires language models for two main reasons: i) complement
acoustic models, ii) reduce the branching factor during recognition. In figure 1, extracted from [1, Fig.
1.3, Chapter 1, Section 1.2], we can see how these models fit into the architecture of an ASR system.

Figure 1: Usual ASR systems architecture

.

As stated in [3], “SLMs perform extremely well when there is adequate training data available,
but in practice this is not always the case. When training data is limited or, in the worst case,
completely unavailable, an alternative method is to construct the language model as a hand-coded
grammar.” That is also what we expect to experimentally see in the problem we are addressing:
GLMs outperforming SLMs, because the set of commands is sufficiently small to be coded in a
grammar, and it would be hard to find a corpus that might properly train an SLM for this purpose.
However this is our hypothesis and not any assumption made before hand.

In [4] a comparison between GLMs and SLMs was also done training the models with the same data
using a different method. The language analyzed was used in the Clarissa procedure navigator, a
spoken dialog system used in the International Space Station (ISS). However the problem addressed
there was broader in the sense that the language assessed was way more richer than a reduced set of
commands and also its evaluation was more rigorous, taking into account semantic and sentence error
rates. The results obtained revealed that GLMs were a better choice than SLMs having the former
lower error rates.

In the following subsections we are going to state our goals and define n-gram language models. In
section 2 we discuss the method we are going to follow. The experimental data recorded will be
explained in section 3. In section 4 all results will be shown and discussed in section 5, where we
will also state our conclusions and possible further work to be done in the future.

1.1 Goals pursued

The main purpose of this project is to build a recognition system in real time that lets the user interact
with the computer in a simple manner. Our idea resides in checking whether state-of-the-art speech
technology would allow us to create such system using open-source toolkits in short time. This study
serves also to: i) focus on the importance of language models in speech recognition and ii) compare
grammar-based models (GLM) to statistical language models (SLM).

We are going to build statistical language models using SRILM, and interact with the Julius dialog
manager with its speech-to-text features, as it was also done in [5], evaluating both SLMs and GLMs.

1.2 About n-gram language models

An n-gram is a sequence of n symbols, e.g., letters, phonemes, syllables, words, syntactic categories,
etc. An n-gram language model is used to predict each symbol in the sequence given its n-1
predecessors, assuming that its probability of occurrence in a test text can be estimated from the
frequency of occurrence in a given training text [6, Chapter 14].

The probability of a word sequence w1, ..., wm is modeled as:

P̂ (w1, ..., wm) =

m∏
i=1

P̂ (wi |w1, ... , wi−1) ≈
m∏
i=1

P̂ (wi |wi−n+1, ... , wi−1) (1)

Where the approximation comes from limiting the context for some n ≥ 1. As mentioned before,
probability estimates in these models are based on maximum likelihood estimates, i.e., based in
counting occurrences in a training text as follows, where C stands for the count function:

P̂ (wi |wi−n+1, ... , wi−1) =
C(wi−n+1, ... , wi)

C(wi−n+1, ... , wi−1)
(2)

However, a problem arises when a sequence of words does not appear in the training corpora. Then its
occurrence probability is zero, which leads the recognizer to disregard it, no matter what the acoustic
model said. That is when smoothing comes in, trying to build a more robust model that produce
less extreme probabilities for unseen data. One of the simplest methods is the additive smoothing
technique, which assumes that every possible word sequence is seen at least a δ number of times in
the training corpus [7]. Using this simple method we do not have zero probabilities anymore. But
more complex methods can be used such as interpolation or back-off models, Katz, Knesser-Ney or
Good-Turing smoothing techniques, among others. An introduction to these methods can be found in
[6, Chapter 14, Section 14.3] and [7, 8].

2

2 Method

In order to build statistical language models we are using The SRI Language Modeling (SRILM) a
toolkit primarily used for speech recognition, statistical tagging and segmentation, as well as machine
translation (sources available in [9]). We are specifically using the ngram-count command which
generates and manipulates n-gram counts, and estimates n-gram language models from them (see
manual page for further details in [10]).

We are also using Julius, an open-source large vocabulary continuous speech recognition engine based
on GMM-HMMs. Because we are not focusing on acoustic models, we are using an already trained
model from HTK that uses MFCC_O_D acoustic features, available from VoxForge in [11]. This
toolkit will allow us to perform speech recognition both with statistical language models and with
grammar-based models. We will also be able to do the recognition in real time using its speech-to-text
features using a microphone or set the input to be a recorded utterance [12, Chapter 3, Sections
3.1-3.3].

2.1 Language we want to recognize

We have created a language for an easy interaction with the computer which allows to perform simple
actions such as setting volume options, launching applications or creating directories. The language
is shown in table 1 using regular expressions. Six different types of commands are recognized:

• Open the text editor emacs, a new tab in google chrome browser with a newspaper webpage
(www.ara.cat), a new terminal window or the file system.

• Make or remove a directory in the home directory with the name newdir.

• Launching the command cmatrix in a new terminal.

• Showing statistics of the system with the command top.

• Rising and lowering the volume.

• Dictation, which allows the user to dictate numbers from one to ten. This command has to
start with the word dictate followed by any sequence of numbers and the word final when
the dictation is finished. The sequence of numbers will be written in the file dictate.txt.

Table 1: Commands to recognize

1 open (emacs | newspaper | terminal | file system)
2 (make | remove) directory
3 matrix
4 top
5 (raise | lower) volume
6 dictate (digit)+ final

2.2 Building statistical language models

We have trained several language models with different corpora. Our idea is to extract Wikipedia
text entries related to HCI, terminal commands, and specifically to the ones we wanted to recognize,
i.e., entries like File system, Human computer interaction, Emacs, among others. After that we
preprocessed the texts in a simple manner: keeping only characters from the alphabet, not numbers,
and converting them to lowercase. Finally it was necessary to perform the intersection between the
words in the text and a dictionary of English words with its phonetic transcription, because Julius
will need this dictionary to do the recognition. For this purpose, we used the dictionary provided with
the acoustic model we are using (from VoxForge) and we added some specific words that we needed,
such as emacs. And the texts are ready to be used to build the statistical language model.

Once we train a language model using SRILM, we need to convert the resulting file from ARPA
standard format to a compact Julius binary format using mkbingram, a command from Julius.

3

www.ara.cat

2.3 Creating a grammar-based model

Grammar-based models specify a closed language using a set of rules defined over terminal and
nonterminal symbols. Terminal symbols are those which can be found in the language, whereas
nonterminals are used to define the rules. According to the syntax used, the grammar allows up to
context-free level, but since Julius uses a DFA as a parser only regular expression grammar will be
accepted during compilation. This implies that recursions can be expressed but only on the left hand
side.

To define a grammar-based language model in Julius two files are needed, with extensions .grammar
and .voca. In the first file the regular grammar is defined and in the second one there is a list of all
terminal symbols taking part in the grammar.

Once the grammar is defined with the two files specified above it needs to be complied. The
compilation takes place with the perl program mkdfa.pl which is included when the Julius binaries
are downloaded. This process outputs the files that will be used for Julius during its execution, these
are the .dfa and .dict files, which need to be specified in the Julius’ configuration file. The grammar
is defined in the .grammar as shown in table 2.

Table 2: Grammar definition

1 S : NS_B INS NS_E
2 INS: OPEN OPARAM
3 INS: OPEN FILE SYSTEM
4 INS: DIRMANAGE DIR
5 INS: COMMAND
6 INS: DICTATE DIC
7 INS: FACTOR NUM
8 INS: VOLUMEOPTS VOLUME
9 DIC: NUMBERS FINAL

10 NUMBERS: NUMBERS NUM
11 NUMBERS: NUM

The symbols on the left side are the nonterminals, whereas the symbols which appear on the right
side and not in the left are defined in the .voca file with terminal symbols. The symbols NS_B and
NS_E are the silences of start and end of sentence respectively. All grammars defined for Julius have
to contain the definition of a nonterminal symbol S which is where the grammar starts, in this case
this symbol is defined as start_silence instruction end_silence. Where instruciton represents
the set of all different instructions that can be understood by the dialog manager, and in the grammar
are defined by the nonterminal symbols INS. One example of this is INS: OPEN OPARAM, where
OPEN can only be substituted by the terminal symbol "open" and OPARAM can be substituted by the
terminal symbols "newspaper", "emacs" and "terminal". All this is defined in the .voca file.

4

3 Experiments

The experiments are designed taking into account the language of commands we created for the
interaction with the computer, see subsection 2.1. He have selected 12 commands to experiment with
different combinations of phonemes allowed by them. The commands recorded are shown in table 3.

Table 3: Commands used in the experiments

1 open emacs
2 open terminal
3 make directory
4 dictate one two three final
5 raise volume
6 top
7 open newspaper
8 open file system
9 remove directory

10 dictate five five five final
11 lower volume
12 matrix

A total of 168 utterances by 7 non-native English male and female speakers from different nationalities
were recorded in a noisy environment with a humble laptop recorder1. The recordings were made
using arecord in linux, specifying them to be monoaural (1 single channel used), sampling rate of
16KHz and in wav format. Each command is recorded twice by each speaker. Almost all utterances
last 3 seconds, except for dictations, which last 5.

We evaluate the recognition of all utterances using the metric Word Error Rate (WER), disregarding
other possibilities as sentence or semantic error rates because the former is easy to compute, widely
used in speech technologies and machine translation systems, as well as one of the primary metrics
used to estimate the performance of language models in speech recognition systems [13, 14]. Word
error rates represent how different is what the speech recognizer interprets from the actual transcription
of the input. This is non-trivial and is computed as follows:

WER = 100 · S +D + I

N
Where,

• S is the number of substitutions

• D is the number of deletions

• I is the number of insertions

• N is the total number of words of the transcription

With such metric we can compute the accuracy as A = 100−WER, which gives a measure of how
good is the recognizer performing.

A quick test with a small set of texts revealed that the statistical language model trained was not the
appropriate for such a specific task. Because our goal was to recognize a small set of commands,
not probable to appear in natural English language, e.g., make directory, we discarded the statistical
language model created from texts really soon, as the recognizer could not figure out any command
unless it explicitly appeared in the texts, which most likely would not. Not even using smoothing or
interpolation techniques we managed to recognize a single command.

Instead we created a list of possible commands and we used it as corpus to train an n-gram model of
order 2, without smoothing as all the commands appeared in the list. With this configuration the SLM
has better performance since the commands appear in the corpus. But notice that from that point on
we do not have a statistical model anymore and the comparison is not strictly fair.

1Audio device: Advanced Micro Devices, Inc. [AMD/ATI] Kaveri HDMI/DP Audio Controller

5

4 Results

In this section we present the results obtained with the grammar we have created and the last version
of the statistical language model, i.e., using a list of possible commands as the training data (as
specified in the previous section).

We have computed the overall accuracy for each of the models and the results are shown in table 4.

Table 4: Overall accuracy by model

Model Accuracy (%)
GLM 95.56
SLM 77.33

The commands chosen for the experiments contain different combinations of sounds, so that some
may be easier to recognize than others. Moreover, taking into account that our set of speakers is
compounded by non-native English speakers, the performance of the recognition of one command to
another can vary. For this reason, we have arranged the results in order to classify the accuracy of
each command recorded for each of the models. With this classification we aim to observe whether
both models have similar results, e.g., the easiest/hardest command to recognize is the same for both.
The results can be seen in table 5.

Table 5: Accuracy by command

Command Accuracy (%)
GLM SLM

open terminal 100.0 67.86
open emacs 100.0 92.29
open newspaper 100.0 100.0
raise volume 100.0 96.43
open file system 100.0 76.19
dictate five five five final 78.57 5.71
matrix 100.0 85.71
make directory 89.29 53.57
top 100.0 14.29
dictate one two three final 100.0 77.14
lower volume 100.0 67.86
remove directory 100.0 75.0

5 Discussion and Conclusions

The results show that the grammar-based language model clearly outperforms the statistical language
model. This can be seen in table 4 where the overall accuracy is shown but it is also detailed in table
5 where we can observe the accuracy in recognition for each command. This last one shows that the
accuracy for the GLM is higher than the SLM for all the commands.

This observations fulfill our initial hypothesis which was that for a closed language, such as a set
of commands for the interaction with the computer, a GLM would get better results than a SLM.
However, as mentioned in section 3, the SLM trained in the end was not a statistical model as it is
known.

Another aspect we wanted to determine was whether the general performance, in terms of accuracy,
for each command would be similar for both language models. This question is difficult to answer
because for GLM most commands get a 100% accuracy whereas for SLM there is much variability.
However, the coincidence is that the command getting the least accuracy for GLM is also the one
getting the least for SLM. We believe this is because it was rather a large command and it contained
the same word (five) three consecutive times.

6

5.1 Future work

Regarding future work for this application, developing different acoustic and language models in our
own language, Catalan or Spanish, could be an interesting idea and right now VoxForge is trying to
persuade users to get their recordings, but a lot of data is currently needed.

References

[1] D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning Approach. Springer
Publishing Company, Incorporated, 2014.

[2] Google, “Web searches comparison over time between Speech recognition and Machine
Learning on Google Trends.” [Online]. Available: https://goo.gl/OHiIz1

[3] B. A. Hockey, M. Rayner, and G. Christian, Training Statistical Language Models from
Grammar-Generated Data: A Comparative Case-Study. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 193–204. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-85287-2_19

[4] B. A. Hockey and M. Rayner, “Comparison of Grammar-Based and Statistical Language Models
Trained on the Same Data,” no. Nuance, 2005.

[5] A. Azzarone, “English N-Gram Language Models for Robotic Spatial Commands,” Kungliga
Tekniska Högskolan, Tech. Rep., 2016.

[6] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, V. Valtchev, and P. Wood-
land, The HTK book, 2002, vol. 3, no. July 2000.

[7] S. F. Chen and J. T. Goodman, “An Empirical Study of Smoothing Techniques for Language
Modeling,” pp. 310–318, 1996. [Online]. Available: http://arxiv.org/abs/cmp-lg/9606011

[8] R. Levy, “Working with n-grams in SRILM,” pp. 1–6, 2015.
[9] SRI International, “STAR Laboratory: SRI Language Modeling Toolkit.” [Online]. Available:

http://www.speech.sri.com/projects/srilm/
[10] ——, “Manual page for the ngram-count command,” 2013. [Online]. Available:

http://www.speech.sri.com/projects/srilm/manpages/ngram-count.1.html
[11] VoxForge, “Acoustic models for English,” 2017. [Online]. Available: http://www.repository.

voxforge1.org/downloads/Nightly%5C_Builds/AcousticModel-2017-05-03/
[12] A. Lee, The Julius book, 2010. [Online]. Available: http://julius.sourceforge.jp
[13] S. F. Chen, D. Beeferman, and R. Rosenfeld, “Evaluation metrics for language models.”

[Online]. Available: http://www.itl.nist.gov/iad/mig/publications/proceedings/darpa98/html/
lm30/lm30.htm

[14] S. Seljan and I. Dund̄er, “Automatic word-level evaluation and error analysis of formant speech
synthesis for Croatian,” pp. 172–178.

7

https://goo.gl/OHiIz1
http://dx.doi.org/10.1007/978-3-540-85287-2_19
http://dx.doi.org/10.1007/978-3-540-85287-2_19
http://arxiv.org/abs/cmp-lg/9606011
http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/manpages/ngram-count.1.html
http://www.repository.voxforge1.org/downloads/Nightly%5C_Builds/AcousticModel-2017-05-03/
http://www.repository.voxforge1.org/downloads/Nightly%5C_Builds/AcousticModel-2017-05-03/
http://julius.sourceforge.jp
http://www.itl.nist.gov/iad/mig/publications/proceedings/darpa98/html/lm30/lm30.htm
http://www.itl.nist.gov/iad/mig/publications/proceedings/darpa98/html/lm30/lm30.htm

	Introduction
	Goals pursued
	About n-gram language models

	Method
	Language we want to recognize
	Building statistical language models
	Creating a grammar-based model

	Experiments
	Results
	Discussion and Conclusions
	Future work

