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Abstract

The use of Deep Neural Networks (DNN) is widely spread in Speech Recognition,
as they have been proven to outperform the traditional Hidden Markov Models
(HMM) and Gaussian Mixture Model (GMM) recognition architecture. Whereas
the traditional model uses HMMs for temporal variability of speech, and GMMs
determines the probability of each HMM state belonging to an acoustic input,
the DNN takes multiple frames of data and outputs posterior probabilities over
HMM states. Furthermore, Convolutional Neural Networks (CNN) have been
proven to outperform the DNN. Sharing the benefits of DNNs, CNNs achieve
better generalization and more robust models.

This paper aims to investigate the performance of Convolutional Neural Networks
using Context Input Windows of varying size, and our experiments clearly indicates
improved classification accuracy as the length of context input window is increased,
with diminishing returns as the length increases.



1 Introduction

The aim of Automatic Speech Recognition (ASR) is to transcript human speech into spoken words.
For many years state-of-the-art ASR systems modelled the relationship between speech signals and
phonemes using spectral-based feature extraction followed by training using GMM-HMM. Recently,
Deep Neural Networks (DNN) have been proven to outperform GMM [1 2, 3, 4} 5, |6] for estimating
probabilistic distributions associated with HMM states. The superior performance of the DNN
classifier is due to the powerful discriminative model, capable of representing arbitrary classification
surfaces in contrast to the one hidden expert assumption by the GMM. Furthermore, the DNNs
have proven superior to HMM in ASR, as the former is not restricted by the classical independence
assumptions [[1]

Previous research on the subject have proven that the CNN is able to outperform a DNN [7, (8} (9, [10],
and attributes its robustness to learned features from small frequency shifts [[11]. Furthermore, deep
CNN architectures have proven useful in end-to-end speech recognition with no data preprocessing,
as they explicitly harness locality in the spectral feature space through shared weight filter[12]. The
use of CNNs in Speech Recognition is driven by the successes of Deep CNNs in Computer Vision,
and investigates performance by adding depth of processing using more non-linarites and expressive
power, while keeping the number of parameters manageable [/1]].

CNNs have in earlier research been stated to capture translational invariance in signals with fewer
parameters than DNNs, by replicating weights across frequency and time [10]], and are inherently
more well suited for speech recognition.

This paper aims to to further explore the use of the Convolutional Neural Network (CNN) [13]] by
evaluating the phoneme classification performance of the network using on Mel Frequency Spectral
Coefficients (MFCCs) [[14]] on the TIMIT [|15]] dataset, and the impact of various degrees of context
frame size.

1.1 Tensorflow

Tensorflow [[16] is an open source library for machine learning developed by Google to compute
numerical operations efficiently. Tensorflow has the ability to run on multiple CPUs and GPUs and
has support for general-purpose computing these utilizing CUDA [17]], which we utilize to run our
computations faster.

1.2 Keras

Keras [18] is a high-level open source neural network API written in Python, able to run on top of
Tensorflow. It focuses on offering developers a minimal, modular and extensible interface enabling
fast experimentation through layers of abstraction in deploying neural networks.

1.3 TIMIT dataset

The TIMIT dataset [15]] provides speech data for acoustic-phonetic studies, and is one of the most
commonly used datasets for evaluation and development of ASR systems. The dataset contains
recording from 630 speakers of various dialects, and hand verified corpus transcriptions for the
sentences read by the speakers and includes time-aligned transcriptions for each utterance. The
dataset was produced in a collaboration between Massachusetts Institute of Technology (MIT), SRI
International (SRI) and Texas Instruments, Inc. (TT).

2 Method

2.1 Data preprocessing

We have preprocessed the TIMIT dataset for MFCC feature extraction. The speech for each utterance
is analyzed in a 20ms hamming Windows with 10ms frame rate, and the feature vectors are computed
by an Fast Fourier Transformation, mel filterbank log spectrum and with cosine transform and liftering
- as well as the first and second temporal derivatives. Furthermore, all data is normalized to have
p=0ando = 1.



Using the first 13 coefficients, this gives us an input vector of 39 features for each frame with the
first and second temporal derivative included. The three features is split up into three different
arrays, giving us frames f € R'3*3, The frames are partitioned into windows of some odd width N,
giving us new data pomts € R13#32N yith labels correspondlng to the central frame. Following the
transformation, the size of our data is represented as seen in figure[l]

Data-set Data points Frames Features Dims
Train 1359661 N 13 3
Validation 147731 N 13 3
Test 1527014 N 13 3

Figure 1: Table over data dimensions

Where the corresponding labels data are represented as (len(data) - 64), where 64 is the number of
unique phonemes to be classified from the TIMIT dataset.

2.2 Convolutional Neural Networks

A CNN differs from a basic DNN in that each layer consists of a 3-d tensor of neurons that is
convolved over the input data rather than a matrix multiplication with a 2-dimensional tensor of
neurons, as seen in ﬁgure

CNNs were originally used in image recognition with the width and height of the input volume
corresponding to the width and height of the image. The depth of the volume would represent the
different color channels, most commonly red, green and blue.

Each neuron is only connected to a local area of the input area (though the entire depth). This
vastly reduces the number of weights in the network and diminishes many of the negative effects of
increased data size. For ASR we use locality in the MFC Coefficients and time rather than spatial
locality which is used when the input data is an image.
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Figure 2: Typical CNN Architecture [19].

2.3 Model

We implemented our network using Keras running an CUDA [[I7]-powered Tensorflow
back-end.

Our model will consist of C' convolutional layers where each layer ¢; consist of k filters with size m;
x n;. Each filter will be convolved over the input from the previous layer with a step size of 1. For
each convolution layer there will be an pooling layer consisting of a mp; X np; max pooling layer,
applied with a step size one on the features from the convolution layer. Following the convolution
layers is an S deep fully connected MLP with ReLU activation functions were layer s; will have
h; hidden units. Finally the estimated distribution over the states will be calculated as the softmax
function of the output of the MLP. Our loss is calculated as the cross entropy between our prediction
and the true labels.
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Figure 3: A Convolutional Neural Network with full weight sharing

2.4 Model optimization

The optimal CNN architecture search began with an initial 1-layer CNN model. Thereafter, we
continuously incremented the complexity of the model while carefully monitoring the accuracy and
loss values on the validation and test set. During this process, SGD, Adagrad, RMSprop were used
as optimizers interchangeably and independently evaluated. The optimal network architecture and
hyper-parameter settings were found using random search [20].

3 Experiments

As mentioned in@ our initial model consisted of a 1-layer CNN, and from this initial model we
iterated over more complex models by continuously adding layers, in order to achieve improved error
rates. Models with increased accuracy were naturally given more complexity in the search for higher
performance. Our final models are presented in table[T] and the intermediary models were omitted
for the sake of clarity. All network evaluations were conducted on the full TIMIT dataset.

As seen in table[2] the impact of increased the context input window length also drastically increases
the size of the dataset due to the linear increase in data size. This could of course be avoided by
creating the context windows on the fly. Naturally, the execution time for each epoch is increased
accordingly as well. Given restricted computational power, restricting the context input window
length to a upper bound might be necessary.



Table 1: Performance on the TIMIT dataset with different CNN models, along with the size of the
context frame and the test error rate. "F’ is the number of feature maps, 'K’ is the kernel size, P’
is the pooling size, "PA’ is a boolean representing if padding is active or not, S’ is the number of
hidden nodes in a fully connected layer. All layers utilize the ReLU activation function, except for
the last layer with a softmax activation function.

Context Input
ID Window Network Structure Test Error rate
Length
Conv({F: 32, K: 1x3}) -> Pool({P: 2x2, PA: True}) ->
! ! Dense({S: 28}) -> Dense({S: 64}) 30.33%
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
2 3 Dense({S: 281 -> Dense({S: 64}) 24.75%
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
3 7 Dense({S: 28}) -> Dense({S: 64}) 21.53%
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
4 13 Dense({S: 28}) -> Dense({S: 64}) 20.1%
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
> 19 Dense({S: 28}) -> Dense({S: 64}) 18.08%
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
6 19 Dropout 10% -> Dense({S: 28}) -> Dense({S: 64}) 17.61%
Conv({F: 32, K: 1x3}) -> Pool({P: 2x2, PA: True}) ->
7 1 Conv({F: 64, K: 1x3, PA: True}) -> Pool({P: 1x1}) -> 27.33%
Dropout 10% -> Dense({S: 64})
Conv({F: 32, K: 1x3}) -> Pool({P: 2x2, PA: True}) ->
8 3 Conv({F: 64, K: 3x3, PA: True}) -> Pool({P: 2x2}) -> 23.08%
Dropout 10% -> Dense({S: 64})
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
9 7 Conv({F: 64, K: 3x3, PA: True}) -> Pool({P: 2x2}) -> 20.21%
Dropout 10% -> Dense({S: 64})
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
10 13 Conv({F: 64, K: 3x3, PA: True}) -> Pool({P: 2x2}) -> 19%
Dropout 10% -> Dense({S: 64})
Conv({F: 32, K: 3x3}) -> Pool({P: 2x2, PA: True}) ->
11 19 Conv({F: 64, K: 3x3, PA: True}) -> Pool({P: 2x2}) -> 18.47%
Dropout 10% -> Dense({S: 64})




Data-set Context Input Window Length Size Epoch Run Time

Train 1 0.45GB 65s
Train 3 1.4GB 68s
Train 7 3.2GB 72s
Train 13 5.8GB 75s
Train 19 8.5GB 117s

Table 2: Dataset size and epoch run time

4 Results

The results from our conducted experiments as presented in table[T] clearly indicates an improvement
in accuracy as the context input window length is increased.

In table 3| we see the average reduction of error rate as the context window is increased. Each entry is
the improvement with respect to the last entry, meaning that when increasing the context window
length from 13 to 19 we see a 1.28% improvement in error rate. It is notable that the improvement is
quite drastic at a small number of context frames and then quickly diminishes.

The performance of model 5 increased by adding a dropout layer, indicating that the model suffered
from overfitting. As seen in figure @ and figure 5] representing the accuracy and loss graphs of the
two models with dropout layers, this is no longer the case and the performance of the two models
increase steadily.

Context Input Window Length Average Test Error Rate Improvement
1 -
3 4.91%
7 3.05%
13 1.32%
19 1.28%

Table 3: Previous TIMIT Phoneme Error Rates (PER).

TIMIT test
Paper
error rate
Ossama Abdel-Hamid et al. [[8]] 20.07%
Ossama Abdel-Hamid, Li Deng, and Dong Yu. [11] 20.05%
Ossama Abdel-Hamid et al. [|10] 19.92%
Oscar Alsing, Felix Engstrom, and Albin Soderholm (this work) 17.61%
Lazlé Téth [21]] 16.50%
Figure 4: Model 6 performance
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Figure 5: Model 11 performance
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5 Discussion and conclusions

In this paper, we have evaluated the performance of stacked CNN layers on the task of classifying
phonemes in the TIMIT dataset using a wide spectrum of architectures on input windows with varying
context lengths. Experimenting with these aspects of our implementation, our results show strong
indications of higher performance with increased depth in the CNN network.

Furthermore, it is clear that the length of the context input window impacts the network performance,
and lower degrees of context frame size lowers the predictive power of the network.

From our experiments, we can conclude that a Deep Convolutional Neural Network performs well on
the phoneme classification task with reasonable architecture depth and context input window length
on the TIMIT dataset given 13 MFCC coefficients with the first and second temporal derivative for
each frame. Furthermore, our results strongly suggests context input window length as an important
aspect for the performance of the CNN model.
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