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Abstract

In this project we try to generate piano music by using a Recurrent Neural Network
architecture. More precisely, we feed the network with a dataset of piano music
in the MIDI (Musical Instrument Digital Interface) file format, following a note-
by-note approach. Our aim is to get a sound comparable to the original one from
the dataset and in order to achieve this goal we made use of an architecture of
Recurrent Neural Networks (RNNs) called Long Short-Term Memory (LSTM).
The reason of choosing this architecture stems from the ability of these networks
to remember states from the past, a property that is especially important when
working with time sequences.

1 Introduction

Within deep learning, the RNN architecture is gaining wide interest. The essence of RNN and the
interest in it is due to the fact that unlike traditional deep neural networks, RNNs maintain an internal
memory. The ability to maintain a memory of relevant information from the past makes them well
suited to learning sequential data such as speech processing, music, or handwriting. Our interest in
this paper is exploring the effectiveness of a specific architecture of RNNs called LSTM in generating
piano music given a dataset of piano music in the MIDI format.

The problem with the traditional RNN architecture is that they are difficult to train when dealing
with learning long-range dependencies. Backpropagating errors over many time steps leads to either
vanishing or exploding gradients [12]. LSTM handles the vanishing and exploding gradients by
maintaining a long-term memory and short-term memory. Most of the recent progress using RNNs
has been specifically using LSTM.

Before we go deeper about RNNs, it is good to mention that instead of Deep learning there are other
ways to generate music as well. One of them was mentioned in [15] and it is about using Markov
Models to generate music. The authors used HMMs (Hidden Markov Models) in order to make the
music of two instruments consistent; for the rhythm and melody modeling prediction-suffix trees are
used.

For music generation, there are six major projects both open and closed source [4]. The projects
either use MIDI file note sequences or raw audio. Of particular note are Google’s Magenta project
which uses MIDI files but only generates a single stream of notes and DeepJazz which can generate
chords as well but converts the file to a single pitch and single instrument. Both of these projects use
LSTM for training. Another project of note is Google’s WaveNet which processes raw audio and
uses Convolutional Neural Networks (CNNs) for learning.

Researching for this paper, we found previous work of note that related to our project. Nayebi and
Vitelli [14] attempted to model recurrent music sequences by operating on raw audio waveforms and
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using them as inputs. To achieve this goal, they used LSTM as well as the Gated Recurrent Unit
(GRU) which is another RNN variant that is similar conceptually to LSTM.

In addition, Mozer in [13] used RNNs to synthesize music using a note-by-note approach. He
inferred that RNNs are not such a good approach to finding long-term dependencies in data (vanishing
gradient problem) and said "the compositions suffer from a lack of global coherence". The problem
of vanishing gradients seems to be solved by the use of LSTM, as it can be seen in [8] where Eck and
Schmidhuber used LSTM networks to analyze the structure of Blues songs. They used binary vectors
to model individual notes which appear in a fixed sequence. As they mentioned, a feed-forward
network would have no chance of composing music in this way. Without the ability to store past
information, a network like this would be unable to keep track of where it is in a song. Finally, they
inferred that LSTM networks were able to learn the global musical structure and use it to compose
new pieces.

Later, Eck and Lapamle [7] described a method of using LSTM in combination with an
autocorrelation-based predictor of metrical structure. The unconventionality here was in the ad-
dition of “time-delay connections that correspond to the metrical hierarchy of a particular piece of
music”. They claimed that in this way the network was able to learn even more correlations in the
input. Furthermore, Chung et al. in [10] used GRU networks to model polyphonic music sequences
using MIDI datasets and found these networks’s performance to be similar to that of LSTM.

Our paper will use a note-by-note approach rather than processing raw audio due to its computational
complexity [4]. Although raw audio can be used to create a wider range of sounds, its inherent
complexity and computational expense made it unsuitable for this time constrained project. In
addition, there are examples of good results having been produced using a note-by-note approach in
DeepJazz and Magenta and so it is still a worthy task to explore. There are various LSTM architectures
to choose from. The paper by Greff et. al [11] shows that none of the variants demonstrate significant
improvement upon the standard LSTM architecture. Therefore, we decided upon using the standard
version in order to gain a deeper insight into the architecture. For implementation we used the Keras
library built upon TensorFlow and the Music21 library for extracting notes from MIDI files [3][5][6].

The rest of the paper will be divided into sections: Method, Experiments, Results, Discussion and
Conclusions, and Future Work. In the Method section we explain our feature extraction, learning,
and evaluation methods. In the Experiment section, we will detail our experimental setup and the
various experiments we will attempt to obtain the best performance. After that, we will provide
the obtained results from the experiments in the Results section and discuss the insight gained,
areas of improvement and further future work in the Discussion and Conclusions and Future Work
respectively.

2 Method

The present section provides specific information about our project implementation, as well as the
reasoning behind all technical decisions made during the process. More specifically, the section is
divided in two parts. First, in 2.1 data representation and feature extraction is explained. Second,
Section 2.2 summarizes the network’s architecture used to tackle the problem of automatic music
generation.

2.1 Data Representation and Feature Extraction

The dataset used for training is composed by files in MIDI format. The decision of working with
this format stems from the fact that MIDI files offer a set of advantages with respect to other audio
extensions such as WAV or MP3 that are very convenient for our specific problem.

MIDI can be understood like the digital alphabet for music. This format encodes a series of messages
that tell an electronic device how to generate certain sounds. Thus, since no actual sounds are stored,
MIDI files have a very small size. When working with big datasets, file size is obviously a critical
aspect, especially if the data needs to be transferred to a remote server. Furthermore, with MIDI
format all aspects of the sound can be edited. More specifically, with MIDI format features such
as the pitch, the velocity, the volume, or the different instruments can be isolated and modified
independently. That allowed us to define to a very high degree of precision to which type information
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our network had to be exposed (i.e. only chords; chords and notes; chords, notes and measures).
Finally, MIDI guarantees no interference or background noise in the data.

With the aim to easily manipulate and create MIDI files, the Python-based package music21 was
used as one of the main pillars of our implementation. Music21 contains a set of tools that has been
around since 2008 and permits the study of large datasets of music and in our case, isolate sequences
of piano chords and generate new melodies with individually generated chords.

Hence, with the help of the aforementioned Python package, the first steps in our implementations
were to import the files from our dataset one by one and, for every timestep, obtain the chords and the
notes to play, as well as the measures (key and time signature). This combination of metrics can be
understood as one state in a time series. In the following step, by concatenating the information from
all different piano pieces in our dataset, we obtained the total sequence of states we would use to
train our LSTM network. Currently, different songs are concatenated without any type of transition.

Also, inputs and outputs in LSTM architectures are normally defined as a series of one-hot representa-
tions. Hence, it was necessary to generate a dictionary containing all unique combinations of metrics
in the dataset to easily convert sequences of states into sequences of vectors of one-hot encodings.
Another dictionary, where keys and values were interchanged with respect to the first one, was also
defined in order to re-build state sequences given a series of network outputs in one-hot encoding.

2.2 Long short-term memory architecture

An LSTM network has been used to predict the following states of a piano song given a sequence of
previous states. Previously, this LSTM network has been trained with a dataset of piano music. In
this section, further details will be explained about the technical decisions made regarding LSTM.

As mentioned in earlier sections, an LSTM network follows an RNN architecture. RNNs are networks
specialized in processing sequential data. Given an input and a state, a RNN generates an output
which corresponds to the following state. With respect to other types of RNN, LSTM networks
introduce a memory cell that allows to store old information to better capture long term dependencies.
Their internal architecture permits to remove or add information to the memory cell to keep the most
relevant information.

In this project a two layer LSTM has been used. Each of the layers contains 128 hidden nodes and
use hyperbolic tangent as the activation function. Besides, dropout is applied after every layer to
achieve a better generalization. Different architectures can be used. However, this is highly used in
the state-of-the-art approaches [9]. The last layer is a fully connected layer with softmax activation
function that outputs the probability of the predicted chord. This architecture can be seen in Figure 1.

Figure 1: Model architecture

In order to train, sequences of 40 states with a 3 state shift step have been used as inputs to the
network represented in one-hot encoding. The correspondent label in order to perform supervised
learning is the state following the last state of the window. The loss function that the network is
minimizing is categorical crossentropy. It is a multi-class logarithmic loss function that quantifies
the accuracy of a classifier by penalizing false classifications of the following state. For optimizing it,
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RMSProp [16] has been used which is recommended for RNNs. The optimizer divides the gradient
by a running average of its recent magnitude. For its parameters, the recommended [16] settings
have been used, being η (learning rate) a fixed value (selected through validation in Section 3) with
momentum and without decay.

After training, new sequences of states can be generated by the network. To that end, a seed of 40
states is randomly selected from the dataset. A seed is needed because RNN need a previous state to
generate the next one. Then, by using a seed of length 40 we hope that the previous state to the first
generated sample will have successfully summarized the important information along the whole seed
sequence, allowing the network to suggest a suitable continuation.

The output of the network at each generation step is a set probabilities for each possible unique state
that appear on our dataset. Given the set of probabilities of a state, the sample function selects a state
depending on a parameter we called diversity. Variations on the value of this parameter result on
selections of more or less risky states (less likely). In other words, diversity allows to have a wider
variety of songs that would hopefully still seem human-made.

3 Experiments

In order to implement the method mentioned above, Keras high-level neural networks API on top
of TensorFlow API has been used. The final experiments have be executed on K80 nodes of PDC
Center of High Performance Computing.

3.1 Data

For our experiments we have used a dataset consisting of 324 piano songs in MIDI file format that
we acquired from the Classical Piano MIDI page found in [1]. These pieces had been created from
several artists such as Beethoven, Mozart as well as other great artists and come from different time
periods, helping in the generalization of our approach.

From this data, we have generated two datasets, one small dataset of 6 songs corresponding to Mozart
and Bach equally and one bigger of 150 songs correspondent to several authors. The reason of not
using all of the dataset is because the preprocessing part takes really long.

An important reason that we use this specific dataset is that these songs only use one instrument - the
piano - which simplifies the training. The features extracted from each MIDI song are chords, notes,
and measures (key and time signature) for each time step. Typically, these songs had multiple voices
playing various melodies which were then concatenated into one voice. This was to make the data
monophonic which is the simplest type of music structure possible and is similar to what is done in
Magenta which only accepts monophonic MIDI files.

There can be a potential problem with using many different artists from different time periods in that
it introduces complexity that would not be present if trained with only one artist. An experiment will
be done to compare the results in using the entire dataset with all the artists as compared to isolating
a single artist for training.

Another potential problem with these experiments is that the dataset of 324 songs may be too small for
training the network properly but will be done as we are constrained by our computational resources.
A larger dataset would be computationally infeasible to complete within the time limit of this project.

3.2 Hyperparameters

A study done by Greff et. al [11] demonstrated that generally there was no improvement in perfor-
mance using a variant LSTM architectures. The study did 5400 experimental runs various LSTM
networks controlling various hyperparameters. The conclusion of the study was that by far the most
important tuning parameter was that of learning rate accounting for more than two thirds of the
variance in the results. The second most important parameter was the hidden layer size. Another
important conclusion from the study was that there was no demonstrable dependence between the
parameters and therefore the parameters could be tuned independently without expecting any adverse
effects.
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As part of the future work for our project, we would like to experiment with the two most important
training parameters and systematically test the parameters to obtain the best results. To test the
learning rate, we have to follow the method used in the study by Greff et. al : "For each dataset,
there is a large basin (up to two orders of magnitude) of good learning rates inside of which the
performance does not vary much. A related but unsurprising observation is that there is a sweet-spot
for the learning rate at the high end of the basin." And so, to search for a good learning rate, it is
planned to follow the method that "it is sufficient to do a coarse search by starting with a high value
(e.g. 1.0) and dividing it by ten until performance stops increasing." Also due to the low demonstrated
dependence between learning rate and hidden layer size, the best learning rate parameter can be tuned
using a relatively low hidden layer size to save computational time.

For choosing a hidden layer size, the general rule that we are following is that larger networks
perform better but also have a higher computational time and so we will restrict the max value of our
hidden layer size to 1024 hidden units. The potential problem with overly large hidden layer size
is the risk of potentially overfitting the data and so a careful balance must be observed. So far in
our implementation, we manually searched for proper values for the learning rate and the number of
hidden nodes due to time constraints.

4 Results

There is inherent difficulty in evaluating the performance of generated music. There is no objective
way to evaluate how well the LSTM performs. The paper by Allen Huang and Raymond Wu. [9]
evaluated their generated music by asking 30 people to evaluate 3 different sources of piano music
one of which was their own generated source. The results from that study demonstrated that their
network generated what other evaluated as passable music. To evaluate the performance of our own
network, we created a survey [2] in which 26 people rated 6 generated songs.

In Figure 2 we can observe the different training loss for the different experiments. In Figure 2a,
the training has been made with the small Mozart-Bach dataset for 70 epochs. We can see that the
loss is still decreasing. In Figure 2b it has been trained with the 150 songs dataset for 100 epochs.
Keras default parameters have been used, however, as the loss is increasing we can deduce that the η
parameter is too high thus overfitting the results. For that, in Figure 2c it has been trained with the
same dataset with smaller learning rate, however, it would require longer training time resulting in
further decreasing of the loss function value.

(a) Mozart-Bach dataset 70 epochs (b) 150 songs for 100 epochs (c) 150 songs for 50 epochs

Figure 2: Loss function

For evaluation purposes in the poll, a total of 6 songs are generated with the network parameters in
different states of the loss function. In 3 we can observe the representation of the first song.

1. Lowest loss value of the small Mozart-Bach dataset, 50 epochs, Fig. 2a
2. Overfitted estate in epoch 100 of the 150 songs-dataset, Fig. 2b
3. Lowest loss with 150 songs-dataset, epoch 50, Fig. 2c
4. First epoch result with small Mozart-Bach dataset
5. Lowest loss with 150 songs-dataset, epoch 20, Fig. 2b
6. Lowest loss with 150 songs-dataset, epoch 50, Fig. 2c
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Figure 3: Pentagram with the first 10 measures of the song generated after training with 150 songs
for 50 epoch.

The results from the survey can be seen in Figs. 4, 5, 6. From Fig. 4 we can observe the music
education. There is a big percentage with music studies and the rest are interested in music however
there are not a considerable number of experts.

Figure 4: Music eduction

In order to measure the performance of the music generated, we asked to rank how much they like
different songs in the left plot of Figure 5. The songs to be compared are, from left to right, (1), (2),
(3), as previously mentioned. As shown in the graph, the general preference order is the first one
followed by the second. We can then estate that it is easier to generate similar music to a smaller
dataset than a bigger one. In addition, the second one (100 epochs, overfitted) is preferred over the
third (50 epochs) meaning that it is required to train longer (more epochs) to obtain better music.

In the right hand plot in Figure 5, it is asked about how likely is the song generated by a computer.
As expected, the poll suggests that it is very likely on average, but more likely in the first one (4) 1
epoch, over (5) 20 epochs reaffirming that longer training improve results. However, this music is
not passable as real because only 4 people thought that it was low likelihood and 2 thought it was
impossible, while the majority thought that it was very or most likely generated by a computer.

Figure 5: Song ranking
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Finally, we asked what are the reasons they thought the music was computer generated. Among other
things in Figure 6, the poll suggests that it is rhythmically monotonous (the length of the notes is the
same), there is no harmony, nor melody and silences are missing. We talk about this improvements in
Section 6

Figure 6: Reasons music is computer generated

Furthermore, the training songs and the generated songs have been visualized in a two dimensional
plot representing how different they are between each other. In order to calculate that, the normalized
number of appearance of each state is used as the feature vector. Then dimensionality reduction
is applied with t-SNE. Despite not being a proper performance metric, it helps visualize that the
generated songs lie, somehow, close to the original songs in the mentioned dimensional space.

Figure 7: t-SNE songs representation resemblance

5 Discussion and Conclusions

In this project, we have implemented a LSTM-based program capable of generating piano music
in an autonomous fashion. We fed our network with time series of music features extracted from
MIDI files expecting to generate new songs with a certain resemblance to the original time series
after training. Despite the fact that further experimentation should be done to reach the optimal
performance of our implementation, results proved that this is a valid approach for music generation.

One of the conclusions that we extract from the evolution of the loss function during training is that
longer training time is required to reach convergence, since the loss function value seems to keep
decreasing after over 20 hours of training on a Tesla K80 GPU.
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One of the consequences of this can be observed in the pentagram (Fig. 3), which displays a song
generated by our network. In there, key and time signature changes occur every few chords/notes.
That phenomenon does not exist in the original songs. It is true, however, that at early stages of the
training process the aforementioned metrics change almost at every time step. By contrast, after
several epochs the networks seems to learn at least to keep the metrics fixed during brief periods of
time. Therefore, we consider that longer training times could help solving this issue. Summarizing,
our assumption here is that further training would result in lower loss values and, consequently, the
resulting network would be able to generate better songs.

In relation to the previous point, one of the problems that we have encountered during this project
was the difficulty of finding a non-subjective evaluation metric to test the quality of the generated
songs. In the present work, we have solved that issue with a survey, using a test group that included
people with different degrees of relation with music.

Finally, time constrain impeded us to introduce several ideas and improvements initially planned.
These improvements, and some others that stem from the results obtained, are explained in the
following section.

6 Future Work

As mentioned in Section 3, the learning rate was obtained manually by trial and error. In the future,
we would like to do a fine search in order to find optimal values for the learning rate η, as well as the
number of nodes in each hidden layer (we agreed on having 2 hidden layers). The problem here is
that due to time constraints we could not manage to complete the search and that is why we leave
it as a work to be done. Initially, Our idea is to set the range of values for the number of nodes in
each hidden layer, (128, 256, 512, 1024). Next, we will pick up randomly the size of each of the
layers regarding the number of the layers we have (2 layers in the current experiment). In each of
these architectures, a grid should be created (for the hyper-parameter η) by sampling 10 numbers
from a normal distribution with mean being the best value of η that we found manually and standard
deviation being the half of that η. Additionally, we will run the search for a few epochs for a subset
of the total dataset (due to memory and time constraints). After this process the best architecture and
the best value of η will be chosen with respect to the loss function. In short, we will keep the size of
the layers and the η of the network which gave us the lowest loss.

Another aspect to be considered in the future is the length of the seed used to generate a new song.
Right now, we work under the assumption that a seed of length 40 states is enough to capture
the important information and the context of the song we want to generate. However, it may not
be the best length choice. Therefore, seed length and the way the seed is generated is another
hyper-parameter that could be optimized in a future implementation of our work.

Also as a future improvement, we will consider modeling transitions between piano pieces in the
dataset with "silence states", since not doing it results in abrupt transitions at the end of the songs.
These abrupt transitions could undermine the performance or the final network. Finally, evaluation
results suggest that including other features such as the duration of the chords/notes in our states
could help in the generation of more realistic piano songs. On the other side, key and time signature
are features that the network should be able to learn autonomously without being specifically included
in the state information. Therefore, further research on the most appropriate features to be considered
should be done.
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