Musical Instruments Recognition based on
Convolutional Neural Networks

CiLi Mengdi Xue
cil@kth.se mengdix@kth.se

Abstract

In this project, we use Convolutional Neural Networks (CNNs) and try different
parameter settings to build and train a model for music instruments recognition. We
build a base model which consists of two convolutional layers, two max pooling
layers, and a fully connected layer. We use the NSynth dataset, which is developed
by Google containing high-quality musical notes. We then train the network
based on two evaluation methods and finally test the model on real music. As for
evaluation, we use accuracy, cross-entropy loss and confusion matrices to measure
the performance of our model.

1 Introduction

Recently, with the development of digital music creation, there are a large amount of music audio
data collected and restored by many organizations. Thus, it is very important to figure out methods
to make use of these music data and help people to retrieve the digital audio signal and analyze
the content of audio data. Music instrument recognition is one part of these. It is one aspects of
audio content analysis, which has a lot of approaches, such as singer recognition, audio information
extracting, audio coding, etc. Also, it has a lot of applications, for example, it can be used in
content-based music transcription, structured music coding, and music recommending and query
engines, etc. So in this project we want to recognize different music instruments due to the above
reasons. In previous research on music instrument recognition, models like logistic regression, K-NN,
SVM [1], Naive Bayes model, multilayer perceptron (MLP), Radial Basis Functions (RBFs) [2],
quadratic discriminant analysis [3]], etc. are applied. As for feature extracting, Mel-frequency cepstral
coefficients (MFCC) features, linear prediction cepstral and delta cepstral coefficients are commonly
used in musical instrument recognition . But MFCC performs better in music instrument recognition
according to [4]. In our project, we tried another model based on MFCC feature.

Deep Neural Networks (DNNs) is one of the machine learning tools based on multi-layer feed-forward
artificial neural networks. It is designed to imitate human brain structure and is used to recognize
patterns. Convolutional Neural Networks (CNNs) is one variant of DNNs, which is also a kind
of feed-forward artificial neural networks. They are now successfully applied to many scientific
fields and become a new trend because CNNs avoid the complex pre-processing of the image, and
people can use the original image as the input directly. CNNs are also known as shift invariant or
space invariant artificial neural networks (SIANN), based on their shared-weights architecture and
translation invariance characteristics.[S]] As a result, people use CNNs to convolute the image, audio
or video image and try to recognize features based on convolutional parts of the images. They have
outstanding performances in image and video recognition [[6] and successful applications in music
recommending systems [7]] and automatic speech recognition (ASR) systems [8]. CNNs have also
been successfully applied to musical instrument recognition in real-world polyphonic music [9]. But
it also has limits that it needs a large amount of computational resources to run, which has not yet
been solved.

Since CNNs has been successfully applied to image recognition systems, ASR systems and even
musical instruments recognition systems, in our project, we applied CNNs architecture on MFCC

feature of the audio data of different instruments with variant notes and tried to classify their music
instruments family. The goal of our project is to build models to recognize music instrument with
CNN:s, try different parameter settings to see their performances and apply the model on real data.
We will use the same CNNss architecture to train our model and evaluate how they perform based on
their accuracy, loss and confusion matrices. In Section 2, we describes our CNNs architecture and
data representation. Next, we show details of our experiments in Section 3 and the performances of
the experiments in Section 4. Finally, Section 5 contains our discussions and conclusions based on
our experiments.

2 Method

2.1 Model Architecture

As mentioned earlier, CNNs are successfully applied to ASR and image recognition fields. That
is because, in the image and speech domain, using traditional neural networks will consume too
much computational resources. Usually, the size of MFCC feature of an utterance is a two-dimension
matrix that has length of the time length (assume it’s ¢ here) and width of /3 according to MFCC
feature extraction. If a traditional fully connected network structure is used, which means the nerves
in the network will be connected to each neuron on the adjacent layer, then each layer of the network
will have 13*¢ neurons (t=299 here). Assume we have m hidden nodes and have output size of n, then
the size of weight parameter we need will be 13*t*m*n, which will be too large if we have long time
sequences and too much classes to recognize. However, CNNs will solve this problem.

In this project, we applied a typical CNNs architecture on our MFCC features. It is composed of two
convolutional layers, two max pooling layers, one fully connected layer with softmax, as in Figure [T}
We will introduce them in detail in the following.

/ -
MFCCs Convolutional Max pooling Convolutional Max pooling Full Dropout
input layer 1 layer 1 layer 2 layer 2 connection

Figure 1: CNNs architecture overview

Firstly, the convolutional layer is accomplished by applying a number of filters, which is also called
kernels, to the input matrix. It convolves the input matrix with each filter, slides the filter over all
spatial locations in image and outputs one number each time, which is the dot product between
the filter and the convolved input matrix that has the same size of the filter. Then, the features are
correlated in each output and the outputs will be stacked together. This means the convolutional
kernels can extract, or detect specific features of the original input and stacking all they learned
together to get a global result. Usually, we use the first convolutional layer to find basic features and
apply the second convolutional layer to find some relatively complex features based on the basic
features. Bigger size of convolutional kernels will embody more detailed features of the input. In our
architecture, the two convolutional layers both have filter size of 5 by 5. The first layer has 32 filters
and the second layer has 64 filters.

Then, after each convolutional layer, a pooling layer is applied to each window to return a more
independent value of each filter as the output. The commonly used pooling methods are finding
the maximum value, average, or median value. The goal of pooling is to extract the independent
features that are more representative so that after subsequent calculations, the size of the feature map,
the size of parameters, and the amount of calculation are reduced, but the effect is not lost. In our
architecture, we applied max pooling as usual to extract the largest value of the window to represent
each window. So, using this CNNs network, the size of the weight parameter we need is 5*5*32 in
the first convolutional layer and 5*5*64 in the second convolutional layer. The original input here is
299%*13. After the convolutional part, the output is 73*2. So the parameters for fully connected layer

is 73*2*m*n. We can see that the amount of parameters we need here is much less than only using
fully connected network, which needs 13*299*m*n.

After the second max pooling layer, usually, a fully connected layer with softmax will be used to
classify. The output of the second max pooling layer will be flattened to vectors and used as input
of the fully connected layer. In our architecture, we applied one fully connected layer with 1023
hidden nodes and a softmax output. And we added a dropout layer with value of 0.8 to improve the
generalization of the network [10].

To evaluate the network, a cross entropy loss was applied to calculate the loss of training set and
validation set. In neural networks, cross entropy function is usually used with softmax classifier.
Softmax classifier calculates the probability vector the network assigns to the input for each class,
and cross entropy loss computes the negative log-likelihood of the training data, as in Equation|[I}

1 exp(sy)
L(D,W,b) = —— loa(_CTP(sy) 1
|) 1D (I%:GD 09(25:1 ewp(skr)) M

As for the gradient optimization, Adam optimizer is applied in our architecture. It is a method
for efficient stochastic optimization that only requires first-order gradients with little memory
requirement.[[11] It is based on stochastic gradient descent, which is more efficient, more suit-
able for solving optimization problems with large scale data and parameters, more suitable for solving
problems with high noise or sparse gradients, and needs less adjustments of parameters.

2.2 Data Representation

2.2.1 The NSynth Dataset

The NSynth[12] is an audio database released by Google containing high-quality musical notes. The
NSynth has 1006 standard instruments with totally 11 instrument families including Bass, Brass,
Flute, Guitar, Keyboard, Mallet, Organ, Reed, String, Synth Lead, and Vocal. Each family includes
different audio samples with different velocities ranging over different pitch of a standard MIDI piano.
Each audio file contains four seconds audio of the corresponding instrument with multiple features
in note. The NSynth provides data in two formats: one is tfrecord, which can be directly used in
Tensorflow, and another is raw audios in format of wav files. There are totally 289,205 samples in
training set, 12,678 samples in validation set and 4,096 samples in testing set.

2.2.2 Feature Extraction

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an Mel-
frequency cepstral (MFC) which is a representation of the short-term power spectrum of a sound.[13]]
MFCCs is one of the audio features usually used in Speech Technology and music genre classification.

MFCCs is generated by 6 steps shown in Figure 2] Firstly, it enframes the input to extract frames of
samples over time from the input speech sample taking the value of frame length in samples and the
shift of consecutive windows in samples into account. Next, the pre-emphasis step is a high frequency
filter to emphasize the energy of high frequency which is suppressed by the pronunciation system
in each frame. Next step of spectral shaping is to apply hamming window to the frames of speech
signal in order to smooth the values and reduce spectral leakage. Then, it comes to spectral analysis
part. Fast Fourier transform(FFT) converts the signal in time domain to energy distribution in the
frequency domain. Different energy distribution can represent different characteristics of different
voice. However, human ear is sensitive to different frequency bands. So the Mel filterbank log
spectrum can help the signal fit the property of non-linear human ear perception of sound. The last
part is parametric transform. After discrete cosine transform(DCT), the energy will focus on the
media and the low frequency part, so it is common to use the top 13 coefficients as the result of DCT.
Finally liftering function is used to correct the range of the coefficients.

Speech samples

Pre-emphasis

Spectral
Shaping

Hamming window

Fast Fourier Transform

Spectral
Analysis

Mel filterbank log spectrum

Cosine Transform

Parametric
Transform

Liftering

MFCC

Figure 2: MFCC process

3 Experiments

In this section, we will present our result of the experiments using tensorflow to build CNNs on the
MFCCs features of the NSynth dataset. We will also provide results of some variations of the model
in section 2 to try to analyze the influences of different parameters.

3.1 Data Pre-processing

The overall data processing is as following. We read the sampling rate, musical instrument family
and audio data from the tfrecord file of each dataset. Then we calculated the lifted MFCCs of each
utterance using their audio data and sampling rate and stored them with their target instrument family.
So we have 289,205 samples in training set, 12,678 samples in validation set, and 4,096 samples in
testing set.

Secondly, all the samples in the dataset contains 4 seconds of records with 1 second silence in the
end. At first, we used the whole sample for experiment including the last second of silence, but we
found that the network gave random predictions sometimes. We think it is because the training data
has too much low frequency component, which is the silence part. So we decided to use the first 3
seconds of each sample for experiment to have more accurate results.

The training dataset has 289,205 samples in total but the data for each classes are unbalanced as
shown in Table[T] It is known that machine learning classifiers may fail to deal with imbalanced
training datasets because they are sensitive to portions of different classes. So we pre-processed
the training set in order to have balanced data for training. In order to achieve this, we randomly
sampled 10,000 utterances with replacement from each class for training and shuffled the examples
for the network to convergence faster. Eventually, we have 110,000 training data in total. Also, we
normalised over the whole training set, calculated the means and covariances and stored them to
normalise the validation set and testing set when using them.

3.2 Experimental Setup

In our experiments, we used Tensorflow to build our CNNs architecture for training. Tensorflow is a
deep learning framework provided by Google, which supports multiple platforms. It can run both on
CPUs and GPUs and provides rich libaries for different algorithms, architectures and frameworks. As
a result, we used it to build CNNs and run our model on GPUs. CNNs need a lot of computations
based on matrices and convolutions, so GPUs can help CNNs to compute much faster than CPUs.

Our MFCCs record has size of 299 by 13. The basic settings we used is the typical 32 kernels for
the first convolutional layer and 64 kernels for the second convolutional layer, which are all of size

Table 1: NSynth: size of each class in every dataset

Dataset Bass Brass Flute Guitar Keyboard Mallet

train 62836 11789 8303 30609 49417 33538
test 2638 886 470 2081 2404 663
valid 3481 1155 650 2733 3170 865
total 68955 13830 9423 35423 54991 35066

Dataset Organ Reed String Synth Vocal

train 32879 13191 18660 5501 9804
test 1598 720 814 0 404
valid 2100 955 1120 0 545
total 36577 14866 20594 5501 10753

5 by 5. And we used two max pooling layer of size 2 by 2 after each convolutional layer. So the
output of our convolutional part is 73 by 2. Then we used mini-batch training with Adam algorithms
to train. As for evaluating, we calculated the cross entropy loss for both training set and validation
set. We only sampled 200 samples from validation set each time to save calculation time because the
validation set is too large here. Eventually, we calculated and output the final accuracy and loss of the
training set, the validation set and the testing set.

3.3 Experimental Parameters

Since we used CNNs in our experiments, the main parameters for setting is the filter size, batch size,
step size, learning rate, and number of epoches.

In the following section, we will present the results based on different batch sizes. However, for other
parameters, we have the following settings as default settings:

learning_rate = le — 4
training_epochs = 70

steps = train_data_size/batch_size

4 Results

4.1 Base Result

Our basic architecture has the same parameters as described in 3.3. Then we computed their loss
trends and accuracy trends of the training set and the validation set during training.

In our experiment, the accuracy is computed based on the top probability and top two probabilities
among the predictions. We calculated the accuracy based on the top two probabilities because there
are 11 classes in total so that a certain extent of errors are allowed. The result based on the top
probability is as in Figure [3|and the result based on the top two probabilities is shown in Figure 4]
The shadow orange line is the original loss calculated based on each training batch and the orange
line is the smoothed trend of the training loss. Similarly, the shadow blue line is the original loss
calculated on 200 sampled validation data and the blue line is the smoothed trend of the validation
loss. It can be seen that the trends of accuracy and loss are the same within two evaluation methods.
The validation loss is decreasing along the time, which means that the model does not overfit. The
result accuracy of the these two different evaluation methods are shown in Table 2]

Table 2: Accuracy based on two evaluation methods and different batch sizes

Methods Training Validation Test

Batch size 200, Top one probability 94.57% 41.40% 42.45%
Batch size 200, Top two probabilities 97.75% 59.88% 60.175%
Batch size 400, Top one probability 97.07% 37.37% 37.20%

Accuracy Cross-entropy loss

—— training
1.00 6.00 set
0.800 | validation
set
0.600 4.00
0.400
2.00
0.200
0.00 0.00
0.000 4.000k 8.000k 12.00k 0.000 4.000k 8.000k 12.00k

Figure 3: Accuracy and loss curve of results based on top probability on validation and testing sets

Accuracy Cross-entropy loss
—— training
1.00 6.00 set
0.800 validation
4.00 set
0.600
0.400 2.00
0.200
0.00
0.00
0.000 4.000k 8.000k 12.00k 0.000 4.000k 8000k 12.00k

Figure 4: Accuracy and loss curve of results based on top two probabilities on validation and testing
sets

Accuracy Cross-entropy loss

1.00 —— ftraining
o set

0.800 00 A
. validation

0.600 8.0 set

0.400 400

0.200 200

0.00 0.00

0000 4000 8000 1.200k 1.600k 2.000k 0000 4000 B800.0 1.200k 1.600k 2.000k

Figure 5: Accuracy and loss curve of results based on top probability on validation and testing sets
with batch size 400

From the accuracy table we can see the test accuracy based on top two probabilities is 60.175%
while the accuracy based on top one probability is 42.45%. This means that the probabilities of the
right answers appear in the top two probabilities is 60.175% in total. It is about 6.6 times to random
guesses, which is 1/11 (about 9.10%). So we think the result is relatively good.

Then we changed the batch size bigger to 400 and use the same settings for other parameters. The
result accuracy and loss is as in Figure[5] The result accuracy of this model is also in Table 2} We can
see that the behavior of this model is worse than the model using batch size of 200.

4.2 Confusion matrix

We also computed the confusion matrices of the predictions using the testing set. The result based
on the top one probability is shown in Figure|6| In this figure, lighter nodes means more gathered

predictions. We can see from the figure that it performs a diagonal line which means that most of
the predictions corresponding to each class are right. Since there is no data for class 9 in testing set,
which we can see from Table[I| before, there’s no prediction corresponding to class 9. We can also
see from the confusion matrix that Bass, Guitar, Keyboard, Organ and String, are the classes that
have higher classification accuracy.

Confusion matrix

Bass 0.03 001 004 014 009 0.06 001 002 0.07 0.04 400
Brass 4 0-04 0.02 010 0.06 003 001 007 006 005 0.05
350
Flute 4 007 001 031 004 005 008 009 008 004 007 017
300
Guitar | 012 0.04 003 [0.33 028 007 003 001 000 0.08 001
Keyboard { 011 0.02 003 013 JUEEN 010 003 005 001 007 0.02 250
2
© Mallet 4 014 000 000 017 014 030 007 000 000 014 002
g - 200
E
Organ - 0.07 0.04 0.04 0.03 0.05 0.08 0.06 003 007 011
I 150
Reed 4 0.12 005 002 008 004 005 005 037 005 017 002
String{ 016 001 001 003 004 004 001 003 0.09 0.04 I 100
Synth - 0.00 0.00 0.00 000 0.00 000 000 000 000 000 0.00
- 50
Vocal4 009 008 001 012 011 011 009 011 003 002 022
‘ T T T T T T T T T T —Lo
5) e £ S & N N
o o & <2 S o2 2 2 & > (4,
F oL ¥ F e P S Y
&

Predicted label

Figure 6: Confusion matrix of results based on top one probability on testing sets

4.3 Play with real world music

In order to test our model with real world music, we choose three different music files for testing.
They are piano music from Days playing by PianoBoy, bass music from Pacific playing by Rim
Ramin Djawadi and violin music from The Four Seasons (Spring) playing by Joshua Bell. After
playing with the music, we got some practical results and did analysis based on it.

Table 3: Accuracy of three music based on top1 probability

Music Name Bass Brass Flute Guitar Keyboard Mallet
Organ Reed String Synth Vocal

Days (Piano) 5.86% 10.03% 6.02% 9.57% 12.50% 231%
2.78% 15.28% 22.69% 5.56% 7.41%

Pacific (Bass) 15.07% 0.66% 2.10% 14.95% 14.40% 7.64%
7.75% 12.74% 5.31% 9.63% 9.75%

Spring (Violin) 10.11% 7.74% 3.95% 12.32% 7.90% 6.64%
4.11% 4.27% 24.33% 9.00% 9.64%

In order to recognize real world music, we need to consider the stride of the sliding window which is
used to read the music and generate the predictions. The sampling rate of NSynth Dataset is 16,000
and each piece of available data has length of 3 seconds, which is 48,000 data in total. Thus, we use
the same sample rate to read the record and the sliding window of our real music test is 3 seconds in
order to generate one MFCCs feature since the data we used for training are all 3 seconds data. We

Table 4: Accuracy of three music based on top2 probabilities

Music Name Bass Brass Flute Guitar Keyboard Mallet
Organ Reed String Synth Vocal

Days (Piano) 7.25% 5.86% 3.24% 10.03% 17.60% 2.47%
5.40% 14.97% 24.07% 2.78% 6.32%

Pacific (Bass) 16.17% 1.77% 1.22% 11.96% 10.85% 9.41%
17.39% 9.75% 2.44% 8.19% 10.85%

Spring (Violin) 13.27% 8.85% 5.06% 12.16% 9.32% 5.53%
3.95% 9.48% 1943% 5.85% 7.11%

then calculate the average time cost for computing one MFCCs features using our CNNs network. It
is about 0.007 secs to generate one prediction in our network so that the stride should be no larger
than this value. Thus we decided the stride of the window is 1 second which is easier to calculate.

The recognition results of the three pieces of music are as in Table [3]and Table d] We calculated the
results of top one probability and top two probabilities for each sliding window of our real music.
Then we counted the number of results of all sliding windows according to their classes and their
portions among all the results as the recognition results. From the two tables, we can see that the
results are relatively good. We know that Days is piano music, which belongs to keyboard family.
Pacific is bass music, which belongs to bass family. And Spring is violin music, which belongs to
string family. The bold results are the three highest classes for each piece of music and the bold red
results are their true classes. We can see that the three highest classes all contains the right class of the
original music. The classes with the highest probabilities of Spring in two tables are all corresponds
to the right class. The right class of Pacific is the highest probabilities in Table[3]and is the second
highest in Table d which is only a little less than the highest one. However, the right class of Days are
always the second highest while the highest is String. So, according to the results of real music, we
conclude that in practice, our network sometimes confuses keyboard with string, but it can recognize
string music and bass music with high probability.

5 Discussion and Conclusions

From the results of our experiments based on the parameter settings, we found that a relatively smaller
batch size performs better. When batch size is bigger, more data will be given to the network to
fit in each iteration. They can both converge to a relative small loss but large-batch methods tend
to converge to sharp minimizers of the training and testing functions, and sharp minimizers lead to
poorer generalization [[14]. Due to time limitation, we didn’t try more batch sizes, but if time allows,
it’s better to try different batch sizes and choose the most suitable one.

In the future, we plan to do some more experiments, such as trying more different parameter settings
or tuning the networks to improve its performance. Also, we are now doing the single instrument
recognition but we are also interested in mixture music instrument recognition. So we plan to add
fusion data, which mixes different music instruments together randomly and has multiple labels, in
order to give model ability of handling mixture music.

Finally, we conclude that CNNs are good models for music instruments recognition and the models
also perform well in real life music. Also, we hope to discover more on this topic in the future.

References

[1] Sell, Greg, Gautham J. Mysore, and Song Hui Chon. "Musical Instrument Detection." Center for
Computer Research in Music and Acoustics (2006).

[2] Deng, Jeremiah D., Christian Simmermacher, and Stephen Cranefield. "A study on feature analy-
sis for musical instrument classification." IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 38.2 (2008): 429-438.

[3] Agostini, Giulio, Maurizio Longari, and Emanuele Pollastri. "Musical instrument timbres clas-
sification with spectral features." EURASIP Journal on Advances in Signal Processing 2003.1
(2003): 943279.

[4] Eronen, Antti. "Comparison of features for musical instrument recognition." Applications of
Signal Processing to Audio and Acoustics, 2001 IEEE Workshop on the. IEEE, 2001.

[5] Zhang, Wei, et al. "Computerized detection of clustered microcalcifications in digital mammo-
grams using a shift-invariant artificial neural network." Medical Physics 21.4 (1994): 517-524.

[6] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems. 2012.

[7] Van den Oord, Aaron, Sander Dieleman, and Benjamin Schrauwen. "Deep content-based music
recommendation." Advances in neural information processing systems. 2013.

[8] Abdel-Hamid, Ossama, et al. "Convolutional neural networks for speech recognition." [EEE/ACM
Transactions on audio, speech, and language processing 22.10 (2014): 1533-1545.

[9] Han, Yoonchang, et al. "Deep convolutional neural networks for predominant instrument recogni-
tion in polyphonic music." IEEE/ACM Transactions on Audio, Speech and Language Processing
(TASLP) 25.1 (2017): 208-221.

[10] Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting."
The Journal of Machine Learning Research 15.1 (2014): 1929-1958.

[11] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv
preprint arXiv:1412.6980 (2014).

[12] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck,Karen Simonyan,
and Mohammad Norouzi. "Neural Audio Synthesis of Musical Notes with WaveNet Autoen-
coders." 2017.

[13] "Mel-Frequency Cepstrum." Wikipedia, Wikimedia Foundation, 12 May 2018,
en.wikipedia.org/wiki/Mel-frequency_cepstrum.

[14] Keskar, Nitish Shirish, et al. "On large-batch training for deep learning: Generalization gap and
sharp minima." arXiv preprint arXiv:1609.04836 (2016).

Appendix — Peer review

1. Relevance for the learning outcomes

We agree with the advice of training network with multi-parameters. So we keep the model
parameter as before and minimize the batch size properly to 200 after that the network finally has
better performance than that with 400 batch size. We have shown the comparison result in report.
But in order to have a more accurate gradient descent, we did not try too small batch size.

Because of the time limitation, we did not do many experiment with different parameter.
2. Literature study

Firstly, we think there’s no need to add performance of other models using different datasets
because different datasets will result in very different results. So we don’t think comparing them with
our model is a good idea.

Then, we’ve add more descriptions about that CNNGs are shift invariant, so that it would be more
logical.

We also add the recommended paper about applying CNN to music samples because we think
this is indeed what was missing before.

About the two assumptions in model architecture, we write the two assumptions according to
our own understanding of CNNs. For the first one, we know convolutional kernels are to extract part
of the image so bigger size means bigger part, thus means more detailed image. As for the second
one, it is the visual explanation of the pooling layer. We think these two assumptions are relevant to
what we explained together with them, so it’s our own understanding and there’s no need to find a
paper and cite them from the paper.

3. Novelty/Originality

There’s no suggestions so nothing to explain here.
4. Correctness

Here are explanations of each comment.

3.1 Data-preprocessing: In order to do data balance, we randomly choose 10,000 samples from
each class with replacement, which has been clarified in the report now. So the whole training dataset
has 110,000 samples and each class has the same number of samples.

4. Result: The figures with accuracy and loss have been smoothed so that we can easier see the
trend of accuracy and loss. We can see that in these two figures, the results of validation(blue line)
vary a lot that is because we randomly chose 200 samples from validation set each time to calculate
the accuracy and loss. It is normal that we got the similar result in testing set and validation set which
means our network works well. We replicated the experiment and found the result are quite similar
so we just show one pair of result in our report. As for the gap mentioned in peer review, we don’t
understand it very much, but we’ve clarified our loss and accuracy curve figure so we think it can
now help you understand.

4.4 Confusion matrix: We have the new confusion matrix after normalization in our report with
label and value which is easier understanding. And we only use the whole testing set to calculate the
confusion matrix now rather randomly selecting samples according to the advice.

5. Clarity of presentation

1. Introduction: According to the advice, we modified our goal more precise and add the point
that we apply our network on real music.

2.1 Model architecture(1): According to the advice, we added the amount of parameters for
CNNs in our paper. We used our own calculation instead of the calculation from the peer review.

2.1 Model architecture(2): We changed explanations about the pooling layer so that it’s more
clear. We also added the detailed value of the settings and include the recommended paper.

10

2.2.2 Feature extraction: According to the advice, when we enframe the samples, we also need
to consider the value of frame length in samples and the shift of consecutive windows in samples.
Now this has already been clarified in our paper.

3.2 Experimental setup: It is true that we finally only has 2 coefficient output after the convolu-
tional network for the second dimension before going into fully connection layer. We think that is
the reason why the performance cannot be improved very well since we lose some information in
this dimension. We agree that reducing the kernel size, adding padding or change the kernel size to
rectangle instead of square can better preserve information, which can be our future work.

4. Results: First we only calculated the accuracy based on the top probability prediction.
According to the advice, we added an evaluation method that calculates the accuracy based on top
two probabilities in prediction. We made comparison of these two evaluation methods. The accuracy
in validation set and testing set has great improvements. The results of confusion matrix of these two
evaluation methods are quite similar, which means those classes with higher classification accuracy
are same, so we only show the result of one in the report.

4.4 Confusion matrix: We’ve add the colormap and class names and generate a more clear
figure of confusion matrix.

4.5 Play with real world music: In the draft, we only describe this part generally because we
hadn’t finished that part of experiments at that time. The sliding window is to recognize the music
because the music is very long while our training data only have 3 seconds. Now the part has been
more clarified. The advice of using smaller windows is good but we didn’t have time to experiment.

11

	Introduction
	Method
	Model Architecture
	Data Representation
	The NSynth Dataset
	Feature Extraction

	Experiments
	Data Pre-processing
	Experimental Setup
	Experimental Parameters

	Results
	Base Result
	Confusion matrix
	Play with real world music

	Discussion and Conclusions

