
Sound synthesis with Generative Adversarial
Networks

Alexandros Ferles Christos Matsoukas George Zervakis Matthaios Stylianidis
ferles@kth.se matsou@kth.se zervakis@kth.se matsty@kth.se

Abstract

The concept of sound synthesis is of high interest in the Digital Signal Processing1

domain. Many methods can be found in related research, from traditional wave2

processing to Machine Learning techniques such as the Hidden Markov Model.3

With the recent advancements in the field of Deep Learning, research on generative4

networks for sound synthesis has emerged. Generative Adversarial Networks5

(GANs), have constituted the main architecture for the most recent methods con-6

cerning data-driven synthesis of sounds through Artificial Neural Networks. In this7

work, we present a pure end-to-end Generative Adversarial Network that trains an8

efficient Generator model, which is able to produce small unique sound frames by9

using strictly raw dataset samples as input. We evaluate our results on the Speech10

Commands dataset through the behavior of the loss evolution of the GAN model,11

and human-based judgment on the generated sounds.12

1 Introduction13

From Digital Signal Processing to Speech and Speaker recognition and Natural Language Processing,14

the concept of sound synthesis is of great interest, accounting for years of research. Traditional15

signal processing methods have been applied through the years in order to produce rule-driven and16

data-driven applications that can generate artificial speech and audio sounds. Due to the advancements17

in the Deep Learning domain, progress has been reported on the way a model can actually be trained18

for sound synthesis. In the majority of related applications, a deep neural network is trained with a19

supervised learning technique. Unfortunately, such an approach demands the use of a large amount20

of labeled transcribed recordings, while leaving untranscribed audio unexploited. Incorporating21

an unsupervised setting in the training model, could result in learning the network to synthesize22

beforehand and thus, reducing the amount of required data. Finally, due to the nature of audio signals,23

the selected training scheme has to be able to operate in high dimensional space[5].24

Latest approaches for generating high-dimensional audio signals, consider the use of generative25

models such as the Generative Adversarial Network (GAN)[9]. This is an unsupervised machine26

learning network that aims to estimate generative models, based on an adversarial mechanism; that27

is, a generative model G (Generator) and a discriminative model D (Discriminator) are trained at28

the same time, with the goal of maximizing the total score of both G and D. More specifically, the29

former model is trying to mimic the data distribution, while the latter predicts the probability that30

a sample belongs to the (original) training data rather than the fake ones generated from G. The31

problem formulation is similar to the minimax game of two players where the optima -under to the32

zero-sum-games concept- is the Nash equilibrium[9].33

In this project, we delve into the theory of Generative Adversarial Networks, in order to understand34

how GANs can be used for the task of sound synthesis. We initially built our network architecture35

following the framework proposed by Donahue et al.[5] and used the Speech Commands dataset[2]36

as well as a collection of bird vocalizations to train and evaluate it.37

Submitted to CSC/Speech, Music and Hearing, DT2119 Speech and Speaker Recognition (2018). Do not
distribute.

1.1 Traditional speech-synthesis methods38

The task of speech synthesis has been a popular field of research that encapsulates, more or less,39

the area of Text-To-Speech synthesis (TTS). Originally, TTS systems are distinguished between40

parametric and concatenative. The former category, is trying to encode properties of speech within41

the text, based on predefined Rules, while the latter concatenates small segments of recorded speech42

taken from a lexicon[14]. Within the content of TTS, we come across many approaches to synthesize43

speech. The very first attempt of speech synthesis, has its roots back in 1939, when Homer Dudley[6]44

presented VODER (Voice Operating Demonstrator) at the World Fair in New York. Many approaches45

to generate audio took place over the years, including synthesis using Hidden Markov Models [23] that46

caught the attention of many people in the field. To this point, deep neural networks are considered47

state-of-the-art systems in speech synthesis e.g. the convolutional neural network WaveNet[15] which48

is capable of generating raw audio samples with autoregressive models, while Mehri et al.[12], Chung49

et al. [4] actually trained recurrent autoregressive models for this task. Moreover, WaveNet was50

suggested by Engel et al.[7] as an autoencoder for synthesizing audio recordings.51

1.2 Artificial Neural Network based methods52

Sound synthesis methods have been proposed in many forms (e.g. text-to-speech) in the field53

of Artificial Neural Networks. In the domain of audio synthesis, the Sample Recurrent Neural54

Network[13] is an unconditional audio generation model which combines autoregressive multilayer55

perceptrons with recurrent neural networks in a hierarchical structure, and achieves generation of56

audio samples. The work in [20] extends SampleRNN by adding phonemes and F0 prediction57

models in order to provide for local conditioning. In general, GANs can be trained to address several58

problems in the field of speech technology such as voice conversion (Hsu, Hwang, Wu, Tsao, &59

Wang, 2017) [11] from source-to-target speaker or speech enhancement (Pascual, Bonafonte, & Serrà,60

2017)[16] that improves the intelligibility and the quality of the sound.61

One notable network architecture is that of WaveNet[15], which is a fully probabilistic, autoregressive62

model for generation of raw audio waveforms. Based on the examples of [21], van den Oord et. al63

introduce causal convolution (the audio-equivalent of masked convolution) which corresponds to64

shifts of the normal convolution output for one-dimensional audio data. As a result, the estimated65

predictions are independent of future timesteps. The WaveNet architecture is comprised by stacked66

convolutional layers (with the absence of max pooling layers), plus a softmax layer. The target of67

WaveNet is the optimization of the log-likelihood of the data with reference to the parameters, through68

hyperparameter tuning in the validation set. WaveNet has served as the basis for other architectures69

that achieved state-of-the-art performance in text-to-speech applications, such as Tacotron [22] and70

Tacotron 2 [19]. In fact, WaveNet was the main idea behind WaveGan[5], which constitutes the71

starting point of our work and is fully explained in the Method section.72

1.3 Structure of this paper73

The rest of this paper is structured in the following way: In section 2 we describe the method that was74

used for sound generation, including a comparison with the work of Donahue[5] which constituted75

the main idea for the design of our GAN architecture. In section 3 we present the experimental76

procedure that we followed during this work. The results obtained from the experiments, are listed77

in section 4. Finally, in section 5 we present our assumptions over the results and discuss on future78

work which will assist in the improvement of our method.79

2 Method80

2.1 Formulation81

The idea behind Generative Adversarial Networks originated from zero-sum games. GANs concen-82

trate in training two distinct Artificial Neural Networks, namely called Generator and Discriminator.83

The Generator Network is originally fed a prior distribution pz of latent variables (i.e variables which84

are inferred rather than observed) z, and is trained to uncover the underlying distribution behind85

known, true data x. On the other hand, the Discriminator is fed with both the real data x and the86

fake data G(z) produced by the Generator, and its purpose is to distinguish whether each sample was87

2

produced by the Generator or belongs to the true data. Each network participates in this game by88

optimizing its own, unique objective function. However, it has been reported that the concept of a89

zero-sum game (thus setting anti-symmetric objective functions between each network) is not the90

optimal one [8].91

Placing the above description in a formal manner,the generator G : Z → X , can be defined as a92

differentiable function that maps from the latent space Z to the data space X . The discriminator93

D : X → [0, 1] is also a differentiable function that outputs a scalar, which is the probability that an94

input x was generated from the data distribution X rather than the distribution ofG. Thus, to approach95

the Nash equilibrium, both G and D are trained at the same time with the goal of minimising and96

maximizing respectively, the following value function:97

98

min
G

max
D

V (D,G) E
x∼px

[logD(x)] + E
x∼pz

[log(1−D(G(z))] (1)

However, applying the above formulation on finite datasets, is in practice, computationally unfeasible99

and it leads to severe overfitting [9]. Instead, in order to train the network, an iterative numerical100

procedure can be applied [9].101

Training a GAN with the objective to satisfy equation (1) is equivalent to minimising the Jensen-102

Shannon divergence[8], between the data distribution and the distribution of the generator. Neverthe-103

less, this approach do not guarantee converge since, each model updates its cost independently [9].104

Furthermore, this formulation could result to the vanishing gradient problem on the discriminator or105

lead to "Mode Collapse" i.e. the generator always produces same outputs. To overcome these issues,106

Arjovsky, Chintala & Bottou[3] suggested minimising the Wasserstein-1 distance between the two107

distributions, as an alternative to the Jensen-Shannon divergence:108

W (px, pz) = sup
‖f‖L≤1

Ex∼px [f(x)]− E
x∼pz

[f(x)] (2)

where ‖f‖L≤1 is the set of all 1-Lipschitz functions.109

The discriminator Dw : X → R now assists in computing the Wasserstein-1 distance rather than110

identifying if a sample is sampled from the true distribution of the generated one. Thus, the111

formulation of the problem described by (1) is now altered to:112

min
G

max
D∈D

E
x∼px

[Dw(x)]− E
x∼pz

[Dw(G(z))] (3)

Where, D is the set of 1-Lipschitz functions and in order to enforce the Lipschitz constraint, [3]113

proposed weight clipping to ensure the compactness of the space.114

[10] showed that the weight clipping proposed by [3] is problematic and proposed an alternative115

implementation to enforce the Lipschitz constraint which penalties the gradient norm of random116

samples x̂ ∼ Px̂. These are, uniformly sampled lines between pairs of points sampled from the real117

data and the generator. Thus, the new objective function is [10]:118

min
G

max
D∈D

E
x∼px

[Dw(x)]− E
x∼pz

[Dw(G(z))] + λ E
x̂∼px̂

[(||∇x̂Dx̂||2 − 1)2] (4)

Where λ is the penalty coefficient usually set to 10 [10]. Finally, [10] argued that this GAN119

formulation is no longer valid for normalization schemes which take into count the correlation120

between examples(i.e. Batch Normalization).121

2.2 WaveGAN122

Donahue et. al et al.[5], proposed two end-to-end approaches for sound synthesis under a gener-123

ative adversarial neural network framework. The first one, named WaveGAN, requires no signal124

preprocessing and it is a pure end-to-end approach. In detail, the input to the Discriminator is the raw125

signal and therefore the Generator should be able to produce raw signals as well. The second one,126

named SpecGAN, reprocess the raw signal and transforms it to the frequency domain, using standard127

techniques (e.g. frame sampling and DFTT), before feeding it to the Discriminator. Therefore, the128

output of the Generator in this case is in the frequency domain. We implemented and tested the first129

approach i.e. WaveGAN, as the authors of the original paper [5] argued that it produces more realistic130

signals and because it is a completely plug-and-play approach.131

3

WaveGAN is based on DCGAN’s architecture [17]. Deep Convolutional Generative Adversarial132

Network (DCGAN)[17] is a convolutional network (CNN) with the addition of some architectural133

constraints, that can be trained under an unsupervised setting. DCGAN has been known for its success134

in using GANs for image synthesis[5]. However, in the context of WaveGAN certain modifications135

are made to DCGAN in order to make it able to operate on raw audio samples. This mainly involves136

the enlargement of the receptive fields of the DCGAN generator[5, 15]. In detail, Donahue et. al137

et al.[5], replaced the 5x5 two-dimensional filters by one-dimensional filters of length 25 for the138

generator with increased upsampling up to 4 for each layer. The authors of WaveGAN [5] reported139

that the best upsampling procedure is to just add zeros as it is more computational efficient and140

produces more realistic results than other interpolation methods. Furthermore, to eliminate artifacts141

caused by the transposed convolutions of the Generator and make the Discriminator not able to142

learn and these patterns, Donahue et. al et al.[5] introduced a phase shuffle to the layers of the143

Discriminator. The phase shuffle operation randomizes the phase in each channel by [-2,2] samples144

using reflection. Finally, [5] reported that the objective function which produced the best results145

was the Wasserstein loss with gradient penalty [10] and thus we implemented this in our model.146

The architectural details of the Generator and the Discriminator are summarized in table 1. For147

the Generator all convolution operations have stride 4 whereas, all convolutional operations of the148

Discriminator have stride 2. After all layers, a ReLu activation function is applied for the Generator’s149

network, and a Leaky-ReLu with α = 0.2 for the Discriminator’s network, except from the last layer150

of the Discriminator where no non-linearity is applied and the last layer of the Generator where a151

tanh activation is applied. Finally, for the Discriminator, after each layer a phase shuffle of [-2,2] was152

applied, except from the last layer.153

154

Generator Architecture Discriminator Architecture
Layer Type Filter Shape Output Size Layer Type Filter Shape Output Size

Input: Uniform(-1, 1) 100x1 Input: Real Data 16384x1
Dense 16384x1 16384x1 1D Convolution 25x1x64 4096x64

Reshape 16x1024 1D Convolution 25x64x128 1024x128
1D Transpose Conv. 25x1024x512 64x512 1D Convolution 25x128x256 256x256
1D Transpose Conv 25x512x256 256x256 1D Convolution 25x256x512 64x512
1D Transpose Conv 25x256x128 1024x128 1D Convolution 25x512x1024 16x1024
1D Transpose Conv 25x128x64 4096x64 Reshape 16384x1
1D Transpose Conv 25x64x1 16384x1 Dense 16384x1 1x1

Table 1: The architectural details of the Generator/Discriminator as proposed by [5].

3 Experiments155

3.1 Speech Commands dataset156

In the context of this paper, we used a subset of the Speech Commands dataset. The Speech157

Commands dataset was collected by Google and consists of 64, 727 WAVE audio files. Each one of158

those files corresponds to an utterance of one out of thirty distinct words. From all the audio files we159

discarded those that did not correspond to the words from zero to nine. This subset is also known as160

the Speech Commands Zero through Nine dataset (SC09). The reduction to the SC09 dataset resulted161

in a total of 23676 samples and was done so that the work presented in this paper is comparable with162

others such as the one in [5].163

3.2 Bird vocalizations dataset164

This dataset consists of 80 in-the-wild recordings of birds manually selected from [1]. This collection165

includes recordings from approximately 20 different species of birds from different parts of the world.166

4

3.3 Preprocessing167

The digital signals contained in the datasets we use do not share the same length. This is an issue168

for our model which expects inputs of fixed length. In order to tackle this problem, we use a single169

preprocessing step and feed the data to the network in a suitable format. We define a fixed signal170

length of 16384 and for each digital signal, we either add padding or remove samples from its171

beginning and ending points, depending on whether it is smaller or larger than the given fixed length.172

The fixed length of 16384 was chosen according to the sampling frequency of each digital signal, so173

that each input corresponds to roughly one second of audio. In addition to padding and cropping, we174

also normalize the samples of each digital signal to [−1, 1].175

The bird vocalization dataset had one extra step of preprocessing. In particular, because the audio176

recordings were quite long, reaching the length of a minute, we enframed each recording with a177

window length of 16384 and an overlap between windows equal to 0.125 times the size of the178

window (i.e. 2048). However, there were two issues with following this procedure. First, in the bird179

vocalizations dataset, the audio recordings did not share the same sampling frequency. The sampling180

frequencies differed and were as high as 44kHz while in the Speech Commands dataset they were181

always 16kHz. As a result, enframing those samples so that each frame has 16384 samples resulted182

in frames that corresponded to less than half a second of audio. To deal with this problem, all the wav183

files were downsampled in order to make their sampling frequency equal to 16kHz. We expected that184

this would greatly reduce the quality of the originally high-pitch sounds the birds make. Nonetheless,185

after this step the audio recordings sounded indistinguishably similar to their original versions.186

3.4 Technical details187

For the initial sanity checks and fine tunning, we conducted our experiments using a Personal188

Computer with NVIDIA 960M graphics card. The extended experiments on our final models were189

carried in a Virtual Machine instance in the Google Cloud platform were we used the NVIDIA Tesla190

P100 graphics card. All of the experiments implemented and run using the TensorFlow library, where191

we were able to save checkpoints of trained networks up to a point and use them for inference and192

improvements in our work.193

3.5 Evaluation194

Our evaluation concentrates on two distinct phases:195

• Human-based evaluation, where subjects will be asked to hear our final results and discuss196

in whether they think that a sound was generated from a computer or it belongs to human197

speech. To facilitate blinding, we mixed some of the real samples with the generated samples198

from our trained network, and asked for results in binary form; 0 when the listener thinks199

that a sound was artificially made or 1 when she thinks that it belongs to speech of a human.200

• Visualization of the results derived during checkpoints of our experiments. We present a201

comparison between the true and generated sounds, in terms of waveform and spectogram202

plots.203

The steps required for the visualization phase consist of traditional signal processing techniques204

(enframe, preemphasis, windowing, signal transforms, spectrogram creation) that create the required205

waveforms and spectrograms of the audio files available.206

4 Results207

This section presents the two-phase evaluation of our work in the SpeechCommands dataset, as208

explicitly explained in Section 3.5. Our trained network was derived through 2.5 days of extensive209

training. We focus our evaluation in the SpeechCommands dataset, since the results derived from the210

birds vocalization dataset showed us that special preprocessing steps need to be applied in order to211

mimic bird sounds through our network. Nevertheless, generated sounds of birds will be included in212

later versions of our work.213

5

4.1 Human-based evaluation214

For the human based evaluation, we select a sample of 100 generated sounds from our network along215

with the original audio sounds that were fed to the generator in order to create them. The source of216

each sample is hidden, so as to allow for a fair judgment through blinding.217

We define two metrics for the accuracy of the first phase: i) by measuring the accuracy of our generated218

sounds: # of generated sounds that were labbeled as human speech
of total generated sounds and ii) by comparing this proportion219

to the corresponding proportion of the true signals:# of true sounds that were labbeled as human speech
of total generated sounds .220

The latter method might seem strange, but the speech commands dataset does not contain clear sound221

samples (which also affected our results as discussed later in section 5), and we expect a few of them222

to confuse the listeners.223

Our sample space consisted of two equal parts of real and fake recordings, thus 50 samples for each224

case. The listeners that participated in the first phase of the evaluation, corresponded that in total225

11 out of the 50 fake samples were human recordings, while they classified 2 out of the 50 real226

samples as "generated by a computer". By using the accuracy measures as defined above our network227

succeeded in 22% of the cases, compared to a 96% success on the true samples.228

4.2 Evaluation through signal comparison229

The following figure represents the loss evolution during the training phase of the Generator and the230

Discriminator.231

(a) Total Losses (b) Enhanced losses over the first 25000 steps

Figure 1: The loss evolution of the Generator and the discriminator for (a) 30000 iterations and (b)
25000 iterations (enlarged to the stable state of the training)

As we can see from the figure 1 the loss evolution presents typical GAN loss behavior with stable232

training phases followed by unstable ones. This usually caused because one of the two models233

outperform by far the other one which in return makes the second one perform extremely badly. This234

makes the system completely unstable and some relaxation time is needed until the training becomes235

stable again. Usually, after this non-stable phase the generated results become better. This might be236

due to the escape of local optima that the system was fallen during its way to the global optima. Thus,237

this instability somehow resets the system but now the initial conditions are in a better place and thus,238

after the relaxation period the generated samples are closer to the true ones.239

In the following plots, we originally show the true signal in comparison with the pure noise that was240

fed to the generator prior to the start of the training process. At this stage, the generated signal, and241

its corresponding spectrogram, has the characteristic structure of white noise as it is nothing more242

that random samples from a uniform distribution in the interval [1−, 1].243

6

(a) Signal (b) Spectrogram

Figure 2: Comparison between the true signal and the synthetic one before training

After 22500 update steps, the generator is able to produce sounds that mimic the original ones. The244

following comparison between the waveforms and spectograms of the true and generated sounds245

validate this assumption:246

(a) Signal (b) Spectrogram

Figure 3: Comparison between the true signal and the synthetic one after 22500 update steps have
taken place

From the figure 3 it is clear now that the signal sampled from the Generator starts to resemble the247

usual structure of speech signals. This is also true for the corresponding spectrogram. Nonetheless,248

we infer that the generated signal is much noisier but, we believe that after considerably much longer249

training time these side-effects will partially eliminated.250

5 Discussion and Conclusion251

5.1 Discussion252

Through this work, we presented a Deep Generative Adversarial Neural Network that after extensive253

training is able to mimic human sounds in a fair degree. Although the performance of our network in254

terms of accuracy might not seem optimal, the fact that more than 20% of our generated samples255

were mistaken as human speech is encouraging. Despite the fact that the available time and resources256

we had at our disposal did not allow for efficiently training our network for the desirable amount257

of time needed, we can report that our implementation of WaveGAN was able to generate spoken258

language utterances, which resemble to the original ones in terms of sound quality, as presented in259

7

section 4.2. In fact, Donahue et. al.[5] suggest that more than 2 weeks of training were required to260

efficiently train their network, while our work was delivered after a training process that ran for less261

than 3 days. Moreover, the deviations between the fake samples and real spoken language can be262

explained because of the use of the Speech Commands dataset, which is claimed to not be a suitable263

dataset, due to the fact that its recordings are distorted by background noise[5]. Furthermore, the264

resemblance between the true sample and the generated one paves the way for more training, where a265

robust audio generator can be reached. To succeed in this task, certain improvements can be tried on266

our network with the scope of enhancing its performance.267

5.2 Future Work268

In the future, we plan to develop our current implementation to the level of performance that similar269

state-of-the-art systems yield today i.e., WaveGAN. To do so, we first aim to train for a prolonged270

period of time our network and observe in what degree its results are further improved. Fine tuning the271

hyper-parameters of our network that affect the training of the model, is also task that can be conducted272

(in a small scale) in parallel with the previous one. The selected hyper-parameters will constitute the273

settings of a second-phase extensive training. Additionally, we intend to explore for potential benefits274

of switching from the time to the frequency domain i.e., through the implementation of SpecGAN[5].275

Furthermore, we plan on performing a more extensive evaluation of our model, which includes the276

addition of qualitative measurements e.g. mean opinion score (MOS) for estimating the quality of the277

generated sounds, and the insertion of quantitative evaluation metrics, such as the inception score[18],278

nearest neighbor comparison and upsampling noise measurement. Last but not least, we look forward279

to examine the generalisation capabilities of our refined network on various datasets, beginning with280

the TIDIGITS dataset that includes clearer samples compared to SpeechCommands and the birds281

vocalization dataset, after all necessary pre-processing steps have been taken care of.282

8

References283

[1] Boesman, Peter. bird recordings. https://www.xeno-canto.org/contributor/OOECIWCSWV. Ac-284

cessed at: 2018-05-26.285

[2] Warden, Pete. speech commands dataset. https://research.googleblog.com/2017/08/286

launching-speech-commands-dataset.html. Accessed: 2017-12-15.287

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.288

[4] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on289

sequence modeling. arXiv preprint arXiv:1412.3555, 2014.290

[5] C. Donahue, J. McAuley, and M. Puckette. Synthesizing audio with generative adversarial networks. arXiv291

preprint arXiv:1802.04208, 2018.292

[6] H. Dudley. The automatic synthesis of speech. Proceedings of the National Academy of Sciences,293

25(7):377–383, 1939.294

[7] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck, K. Simonyan, and M. Norouzi. Neural audio295

synthesis of musical notes with wavenet autoencoders. arXiv preprint arXiv:1704.01279, 2017.296

[8] I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160,297

2016.298

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.299

Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680,300

2014.301

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein302

gans. In Advances in Neural Information Processing Systems, pages 5769–5779, 2017.303

[11] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang. Voice conversion from unaligned corpora us-304

ing variational autoencoding wasserstein generative adversarial networks. arXiv preprint arXiv:1704.00849,305

2017.306

[12] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and Y. Bengio. Samplernn:307

An unconditional end-to-end neural audio generation model. arXiv preprint arXiv:1612.07837, 2016.308

[13] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. C. Courville, and Y. Bengio. Samplernn:309

An unconditional end-to-end neural audio generation model. CoRR, arXiv preprint arXiv:1612.07837,310

2016., 2016.311

[14] E. Moulines and F. Charpentier. Pitch-synchronous waveform processing techniques for text-to-speech312

synthesis using diphones. Speech communication, 9(5-6):453–467, 1990.313

[15] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and314

K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.315

[16] S. Pascual, A. Bonafonte, and J. Serra. Segan: Speech enhancement generative adversarial network. arXiv316

preprint arXiv:1703.09452, 2017.317

[17] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional318

generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.319

[18] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for320

training gans. In Advances in Neural Information Processing Systems, pages 2234–2242, 2016.321

[19] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerry-Ryan,322

et al. Natural tts synthesis by conditioning wavenet on mel spectrogram predictions. arXiv preprint323

arXiv:1712.05884, 2018.324

[20] J. Sotelo, S. Mehri, K. S. Kumar, J. F. Santos, K. Kastner, A. Courville, and Y. Bengio. Char2wav:325

End-to-end speech synthesis. 2017.326

[21] A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. In Proceedings327

of the 33rd International Conference on International Conference on Machine Learning - Volume 48,328

ICML’16, pages 1747–1756. JMLR.org, 2016.329

[22] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio,330

et al. Tacotron: Towards end-to-end speech synthesis. arXiv preprint arXiv:1703.10135, 2017.331

[23] T. Yoshimura. Simultaneous modeling of phonetic and prosodic parameters, and characteristic conversion332

for hmm-based text-to-speech systems. Nagoya Institute of Technology, Japan, 2002.333

9

https://www.xeno-canto.org/contributor/OOECIWCSWV
https://research.googleblog.com/2017/ 08/launching-speech-commands-dataset. html
https://research.googleblog.com/2017/ 08/launching-speech-commands-dataset. html
https://research.googleblog.com/2017/ 08/launching-speech-commands-dataset. html

	Introduction
	Traditional speech-synthesis methods
	Artificial Neural Network based methods
	Structure of this paper

	Method
	Formulation
	WaveGAN

	Experiments
	Speech Commands dataset
	Bird vocalizations dataset
	Preprocessing
	Technical details
	Evaluation

	Results
	Human-based evaluation
	Evaluation through signal comparison

	Discussion and Conclusion
	Discussion
	Future Work

