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Abstract

The focus of this paper is on the various state-of-the-art techniques
being used for multiple-source separation, with the aim of improving speech
and speaker recognition in the classic Cocktail Party problem. Speech
recognition in multiple-source problems focuses on accurately distinguishing
the utterances coming from the various sources; whereas the speaker
recognition problem attempts to assign the separated utterances to the
corresponding sources. Solving these issues would prove to be particularly
interesting for applications in transcribing meetings and conversations in
a multiple-speaker scenario, where recognizing both the content of the
speech and the speaker producing that speech are of similar importance.
Some of the techniques that we will be discussing in this paper includes
methods for both single and multiple channel conditions, such as Geometric
Source Separation (GSS), Missing Features, Bi-directional Long Short-
term Memory (BLSTM) and Supervised Non-negative Matrix Factorization
(SNMV).

1 Introduction
The Cocktail Party problem is defined as “our ability to listen to, and follow, one
speaker in the presence of others”, by British cognitive scientist Colin Cherry
in 1957. The main issue revolves around separating overlapping signals to
their component parts to be recognized as separate coherent speech. There
are already well-documented methods to perform stationary noise separation
such as spectral subtraction and noisy modelling. However, non-stationary noise
is more difficult to model statistically, making it a much bigger challenge to
separate. The problem of non-stationary noise is further exacerbated when the
interference signal is similar to the signal of interest, as in the case of another
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speaker speaking at the same time. This paper shall attempt to review the latest
techniques designed to address this problem. The well established method of
independent component analysis (ICA) will only be mentioned here due to the
fact that there is exhaustive previous research within the area. Instead we will
shed some light on more resent approaches calling for further investigation. For
clarity, the techniques described will be segmented into two main types, namely
single-channel and multi-channel methods. Multi-channel techniques such as
sound source localization and beamforming aim to determine the number of
speakers speaking at each time interval and their positions, and to use that
information to separate the signals. On the other hand, single-channel techniques
learn the characteristic features of the sound and use that to separate the signals.

2 Geometric source separation (GSS)

2.1 Sound source localization in general
Localizing a sound source is greatly facilitated by using multiple sensors often
referred to as a microphone array. This is because a microphone array enables
measurement of sound waves from the same source, but at different distances
causing differences in amplitude and time delay, among other phenomena. Using
binary omnidirectional audition it is possible to locate a speaker in one dimension,
e.i. the angular direction in the plane of the microphones, in combination with
active behaviour to distinguish between front and rear. Adding one microphone
in another plane gives you the complete 3D direction of the speaker but the
distance is still ambiguous. If several speakers in the same direction, one could
have even more microphones to estimate the distance. Some work has been done
to show that the distance can be estimated using particle filter and a circular
array of 8 microphones [1].

If we assume the impinging sound waves at different microphones, but from
the same source, to be parallel the time delay of arrival (TDOA) τ is given by

τ =
d sin θ

c
, (1)

where d is the distance between the microphones, θ the angle between the
symmetry line of the microphones and the source and c the speed of sound.
This delay corresponds to the factor e−jωτ in frequency domain, where ω is the
frequency of the emitted signal.

The localization problem is now reduced to figuring out what parts of the
separate signals from each microphone correspond to the same sound wave from
the common source. This is hampered by aliasing, repeats in the source signal,
indirect repeats caused by reverberation and noise. The most common way of
tackling this issue of estimating the time delay is using the cross-correlation
between the signals [2]. The cross-correlation between signal a(t) and b(t) is
given by

Rab(τ) = E[a(t)b(t+ τ)]. (2)
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But because of disturbances just described we may only make an estimation

R̂ab(t, τ) =
1

T

∫ t+T
2

t−T
2

ra(u)rb(u+ τ)du, (3)

where ra and rb are the measurements that approximate the sound signal of
the source. In modern applications, however, the calculations are performed in
frequency domain

Rab(τ) =

∫
Sab(ω)e

jωτdω. (4)

using the cross-spectrum Sab. The true delay τd corresponding to the distance d
between the microphones is then found as

τd = argmax
τ

Rab(τ), (5)

i.e. the match is found by maximizing the correlation between the signals.
Finally, the angle of incidence θ is found as

θ = cos−1(
cτd
d

). (6)

There are, however, many ways of computing the cross-spectrum depending on
what physical phenomena are taken into consideration. As an example, one could
consider multiple but mutually uncorrelated sources, including noise. Allowing a
single reflection we arrive at an expression for the auto-spectrum at microphone
a, namely

Saa =

n∑
i=1

[Ssisi(ω) + Ssiri(ω) + Srisi(ω) + Sriri(ω)] + Snana
(ω) (7)

where n is the number of sources, Ssisi the auto-spectrum due to the source
itself, Sriri correspondingly for the reflection and the cross terms are complex
conjugates. The last term is due to the noise. Keeping microphone a as the
reference the auto-spectrum for microphone b becomes

Sbb =

n∑
i=1

[Ssisi(ω) + αiSsiri(ω)e
jω(τsi−τri )+

+αiSrisi(ω)e
−jω(τri−τsi ) + Sriri(ω)] + αiSnbnb

(ω)

(8)

where τsi and τri represent the delay of the direct sound si and reflected sound
ri at microphone b compared to microphone a. The ai correspond to the
attenuation at mic b compared to a. This results in the cross spectrum

Sab =

n∑
i=1

Ssisi(ω)e
−jω(τsi + αiSsiri(ω)e

−jωτri+

+Srisi(ω)e
−jωτsi + α2

iSriri(ω)e
−jωτri

(9)
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Delay and Sum MVDR MUSIC
1 speaker 0.7035 0.1012 0.0851
2 speakers 0.4992 0.4990 0.1903

Table 1: RMSE in angle for different localizers and number of sources [5].

where the noise terms has vanished due to the assumption of uncorrelation and
infinitely long averaging.

The output of the GSS still contains background noise and also interference.
One drawback of using several microphones is that the multiple channels exhibits
spectral leakage between one another. This issue can be tackled by postfiltering.
It has been shown, especially when decomposing the noise into both stationary
and transient components for each source, that the performance is improved by
using a postfilter [3].

2.2 Beamforming
If the direction of the sound source is known one may use the technique of
beamforming which is a means of emitting, or as in this case receiving, signals
directionally [4]. More precisely, the signals from the different microphones are
combined in such a way as to amplify or attenuate signals depending on the
direction of arrival. The simplest beamformer (Delay and Sum) delays each
signal corresponding to the individual distance to the source and then adds them
up. This distance can be estimated using any sound source localization technique.
In fact, beamforming itself can be used for source localization by scanning all
direction by shifting the delays and seek maxima in output energy. This simple
technique, called steered beamformer, combined with reliability weighted phase
transform (RWPHAT) has shown an accuracy better than 1 degree and only
10% RMS error for the distance in the context of conferance calls [1]. The
RWPHAT helps reducing the influence of noise and reverberation by giving the
corresponding frequency bins less weight.

By adding a constraint to minimize the power of angles different from the
source angle we get the more advanced beamformer called Minimum Variance
Distortionless Respons (MVDR).

Another possible solution is to use Eigen Value Decomposition to work in
separate signal and noise subspaces. This method is called Multiple Signal
Classification (MUSIC) and has been shown to outperform both Delay and Sum
and MVDR in measures of RMSE of the estimated direction [5]. One drawback,
however, is that the number of sources need to be specifically stated for MUSIC
to work.

3 Missing features
By using probabilistic to estimate the reliability for measurement in the time-
frequency plane one may set a threshold as to what data should be considered
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too unreliable and ignored as noise. For conventional missing feature estimation
Hidden Markov Models (HMM) are used. The output emission probabilities are
then modified to only keep the reliable distributions. It is suggested that the
HMMs are trained on clean data to recognize true speech. The discrete missing
feature mask is computed as follows without any explicit modeling of noise. First
a noise surpression post-filter is applied. Then, for each mel-frequency band,
that feature is considered reliable if the ratio of the post-filter output energy
over the input energy is greater than a chosen threshold. One could also use a
continues mask instead of an absolute threshold. It has been shown that using
postfilter can reduce the relative recognision error rate by 24% alone, and 42%
when combined with a missing feature mask on average for a humanoid robot
using source separation [3].

4 Bi-directional Long Short-term Memory
We will now explore a few of the latest techniques used for monaural speech
separation. Neural networks have a great potential in today’s society where
more and more data is becoming available. Features not found by GMMs in
the can be discovered by these networks. As pointed out in earlier sections
of this paper, we are faced with a challenging problem of separating multiple
signals of interest from one another, which involves repeatedly focusing on one
particular signal at a time and treating the remaining signals as non-stationary
noise. The main challenge would be that the non-stationary noises would also be
in a similar time-frequency band and share similar characteristics with the signal
of interest, such as their pitch. These constraints would render techniques such
as spectral subtraction and noise adaptation models less effective in dealing with
non-stationary noise segregation. This motivates us to look into a structure based
on recurrent neural networks (RNN) known as a bi-directional long short-term
memory (BLSTM) network. [6]

The BLSTM unit architecture is essentially the same as that of the common
long short-term memory (LSTM) unit architecture, consisting of a memory cell,
a forget gate, an input gate and an output gate which are denoted by ct, ft, it
and it respectively, as shown in Figure 1a. In a conventional RNN, the output
of each hidden layer ht is usually calculated by the equation

ht = f(Wxhxt +Whhht−1 + bh), (10)

where W are the weights, b is the bias vector and xt is the input vector at time
t. Given its ability to retain some information from the past, the RNN is able to
perform learning on time sequential data, as in speech recognition. However, the
limited temporal range of conventional RNNs diminishes its ability to effectively
perform temporal context driven regression and classification over long utterances
with mixed signals from multiple speakers. This is due to the vanishing gradient
problem that affects neural networks using gradient-based learning algorithms,
including RNNs, whereby the gradient-based updates become so small as training
progresses that the weights almost stop changing and training stops prematurely.
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An LSTM network is able to go around this issue by using the backpropagation
through time (BPTT) update rule that does not face a vanishing gradient. The
LSTM also often uses the logistic sigmoid function σ as its activation function.
The hidden layer output ht for an LSTM can then be calculated using these
equations

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (11)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo), (12)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ), (13)

ct = ftct−1 + it · tanh(Wxcxt +Whcht−1 ++bc), ht = ot · tanh(ct). (14)

The main difference between BLSTM and conventional unidirectional LSTM
networks is that normal LSTM networks only take into account past context,
whereas BLSTM also takes into account future context. This is being done by
each BLSTM hidden layer having both a forward and backward layer going in
opposite directions from each other, while also being simultaneously connected
to both the input and output layers, hence the name bi-directional LSTM. An
illustration of a single BLSTM hidden layer is shown in Figure 1b.

(a) LSTM Unit Cell Diagram [7] (b) BLSTM Hidden Layer [8]

Figure 1: LSTM and BLSTM Architecture

There are a few experiments [6, 9] conducted that make use of a BLSTM
network with 2 such hidden layers, as in Figure 2. Although those experiments
were mainly for non-stationary noises in general and are not particularly pertain-
ing to multi-speaker speech separation tasks, the methods are transferable [10].
With just 2 BLSTM hidden layers in [6], they were able to perform dynamic
wind noise reduction off-line, where the network was trained on a mix of clean
and noisy speech. The BLSTM network achieved better source-to-distortion
ratio (SDR) than the LSTM and conventional deep feedforward networks across
nearly all signal-to-noise ratios (SNR). Admittedly, while the BLSTM network
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Figure 2: Bi-directional long short-term memory network, 2 hidden layers [6]

shows promise in non-stationary noise separation, it would still be unable to
address the Cocktail Party problem as a stand alone solution. These networks
would have to be implemented in conjunction with other feature enhancements
or clustering methods before effective speech separation is possible.

5 Supervised Sparse Non-negative Matrix Fac-
torization

The sparse non-negative matrix factorization (SNMF) technique is a popular
method for single-channel speech separation, which functions by producing
sparse representations of the mixed signals through estimated dictionaries of the
different speakers. In a supervised SNMF, these dictionaries are obtained from
the various original separated speech signals, which is then used to approximate
the signal of interest from the mixed signal [11]. Consider a non-negative matrix
V of dimension F × N of the mixed speech signal, which we then factorize
approximately into two separate non-negative matrices W and H of dimensions
F × k and k ×N respectively

V ≈WH, (15)

where k represents the number of hidden or latent features that is pre-defind for
the SNMF to find, W represents the dictionary and H denotes the activation
matrix as depicted in fig. 3. The non-negative nature of the matrices mean
that only additive operations are engaged to reconstruct V from the 2 lower
level matrices, forcing the dictionary W to search for the most basic building
blocks comprised in the spectrogram[12]. These building blocks would then
be representative of the most fundamental sounds making up speech from the
respective sources. In supervised SNMF, the first step is to learn the dictionary
W based on the non-mixed speech data by optimizing W and H to approximate
V using a certain optimization function. Popular optimization approaches include
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Figure 3: Decomposition of non-negative matrix V into non-negative matrices
W and H in NMF analysis [12]

the Itakura-Saito distance, the generalized Kullback-Leibler divergence and the
Euclidean distance.[13] After we get a fixed dictionary W , the optimization
function focuses on optimizing H during testing. The ultimate aim is to get a
set of dictionaries and activation coefficients for each of the different sources,
used in conjunction to recreate the separate utterances from the mixed signal.

6 Conclusion
The standard sound source localization method described in section 2.1 us-
ing time delay TDOA is very useful for separating sources far away from the
microphone array and with diverse directions. If the sound sources are too
close to the microphone array some assumptions cannot be made demanding
a more complex model and a higher computational cost. There is also the
problem of spectral leakage between the channels, which can be aided by a mul-
tichannel and multisource postfilter. The use of missing features also drastically
improves the recognition rate when severe interference, like multiple speakers,
are present. If the sound sources are located to near each other one has to
rely on the characteristics of the emitted sound solely, which may be solved
using the single-channel methods described in sections 4 and 5. The BLSTM
network is capable of performing non-stationary noise separation effectively,
which could then be extended to speaker separation. Its main advantage lies
in the powerful temporal context dependency, but a drawback would be that
it must be given the number of speakers beforehand. Similarly to supervised
SNMF, given that the dictionary needs to first be trained, this technique also
requires prior knowledge of the speakers before it can achieve effective speech
separation. Although SNMF has the advantage of not requiring as much data as
BLSTM the training must be performed on a supervised individial level. At this
point, the multi-channel methods such as beamforming come in to solve the issue
of estimating the number of speakers. This could then be an inspiration for a
hybrid system of both single and multi-channel techniques that could potentially
address the challenging Cocktail Party problem.
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6.1 Incorporation of feedback
Jonathan Blixt: First I want to mention that my partner will have his grade
converted to simply Past and Fail for his education in Singapore, so it has mainly
been me who incorporated all the feedback.

The feedback I got in the peer review was simply to add comparisons between
methods and some brief history. I have therefor mentioned the independent
component analysis method and why we chose to focus on other methods in
this report. I have also now compared methods using additional microphones to
show that although we run into the issue of spectral leakage between channels
we can counteract this effect by postfiltering, although this method of course
adds computational cost. I have also added comparison between the already
mentioned methods and motivated the use of neural networks, especially the
BLSTM, in this data rich society. While SNMF requires less data it has a
drawback of having to be trained individually, supervised, for each speaker. I
also heard from my partner that he got feedback conserning the conclusion so
I have added conclusions drawn from missing feature masks. I have tried to
be a bit more concise in the remainder of the text to make room for all the
improvement while not exceeding the already hit limmit of 8 pages. Missing
references to the figures have also been added.

Thank you and have a great summer!
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