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Abstract

In this work we adapt WaveNet, an innovative deep neural network for generating
speech, to automatic speech recognition tasks. After establishing an appropriate
architecture, we first train the network to model the posterior probability of every
possible letter at a given time step of the input sequence. Thereafter, the network
is trained to model phoneme posterior probabilities after having translated the
text transcriptions from the original dataset into phonetical transcriptions. All
learning was made using data from the LibriSpeech corpus. The acquired results
suggest that WaveNet might be a plausible candidate for ASR. Additionally, they
indicate that WaveNet’s training behavior when using phonemes is similar to the
behavior obtained with characters. Finally, they show that the conducted phoneme
augmentation did not have any major positive effects.

1 Introduction

Automatic speech recognition (ASR) has seen many changes in the course of its history, going
from template-matching-related techniques [1] to end-to-end training methods using recurrent neural
networks [2]. Traditionally, mixture models have been used to compute emission probabilities for
training with a Hidden Markov model (HMM) [3].

Neural networks (NNs) have been successfully used in the ASR field, mainly as acoustic models when
combined with a HMM [4]. The use of deeper models such as deep feedforward neural networks
(DNNs) has yielded significant improvements for the acoustic modeling part of ASR tasks [5]. A
new kind of ASR systems entirely based on NNs has recently emerged and breaks free from HMMs:
end-to-end NN-based models, in particular end-to-end recurrent neural networks (RNNs) [2].

The goal of the work was to work with the adaption to the ASR field of an end-to-end generative
model called WaveNet [6], which was originally designed for speech generation and has proven to
be very successful for this task [7][8]. The authors shortly described the possibility to perform the
adaptation of the network [6] and announced promising results on the TIMIT dataset. This created
motivation to explore this path, along with WaveNet’s ability to embed a good internal representation
of speech.

To achieve our goals, we used Connectionist Temporal Classification (CTC) [9] as a training method
that allows to work directly with text transcriptions without requiring any alignment between input
sequences and target sequences. CTC has demonstrated state-of-the-art performance when used in
conjunction with RNNs [10][11]. In addition, we replaced the original raw waveform input used by
WaveNet by mel-frequency cepstral coefficients (MFCCs) [12]. MFCCs allow us to decrease the
dimensionality of the input while ensuring that we use an efficient representation of the speech.

2 Method

The implementation was conducted by reimplementing the original architecture but feeding MFCCs
as input and providing character or phoneme probabilities as the output. The phoneme probabilities
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could then be used to generate a predicted text via lookup in a phoneme-to-word dictionary. For
an overview of the implementation the reader is encouraged to consult figure 1 which provides an
overview of both the character-level and phoneme-level implementations.

Figure 1: An overview of the two implementations considered in this work.

The LibriSpeech dataset was used for training [13]. This dataset contained raw audio files as well
as character-level labels. During the preprocessing, all of the audio files where encoded as vector
sequences of 20 MFCCs. While the initial idea behind the paper we took inspiration from [14], was
to make inference from raw audio, the authors of this implementation decided to use MFCCs as
input because of hardware limitations. Because of time constraints and as MFCCs have proven their
efficiency in the ASR field, we decided to explore this approach too. To only keep 20 coefficients
rather than more or less of them was motivated by earlier work suggesting that only a couple of the
first coefficients are enough for ASR and that varying the number of coefficients does not result in
a strong performance impact [15]. Additionally, all labels were converted from character level to
phoneme level using CMUdict [16].

2.1 MFCCs – Extracting Relevant Features

When sound is created by a human it is filtered by the shape of the vocal tract, the tongue and the
front of the mouth. By determining the shape of these it would in theory be possible to acquire a
good idea about which phonemes are being uttered. The shape of the vocal tract is represented by the
envelope of the short time power spectrum of the sound [17]. To extract this property, what is referred
to as MFCCs has been developed. The procedure for extracting MFCCs is summarized in figure 2.

Figure 2: The process of extracting MFCCs from raw audio.

The first step of the MFCC extraction procedure is to conduct pre-emphasis. Afterwards, the signal is
enframed into short frames. This is because the signal is considered quasi-stationary during short
periods of time [17]. Thereafter, a power spectrum is calculated for each frame by taking the square
of the absolute value of the Fourier transform. This power spectrum mimics the behavior of the
human ear in the sense that it identifies which frequencies are present in the sound. In the human
body this is conducted by the cochlea which contains hair cells that vibrate at different frequencies
which in turn fires neural signals which travel to the primary auditory cortex located in the temporal
lobe [18].
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The next step is to apply a bank of filters that are evenly spaced on the mel scale to extract the energies
in different frequency regions [17]. The mel scale is a modification of the frequency scale adapted
to the fact that humans do not hear on a linear scale but instead closer to a logarithmic one [18].
Thereafter, the discrete cosine transform (DCT) of the logarithm of the filterbank energies is taken.
The DCT is used to decorrelate the energies from each other [17]. Finally, only a specified number
of the first coefficients are kept (depending on how coarsely or finely the MFCCs should represent
the signal) and the remaining are discarded. This is motivated by the property of DCT that the first
coefficients model slow changes in the filterbank energies whereas the last model fast changes and
that these fast changes have been shown to not facilitate ASR in any particular way [17].

2.2 CMUdict – Word-to-phoneme Conversion

CMUdict is a free pronouncing dictionary for North American English maintained by the Speech
Group in the School of Computer Science at Carnegie Mellon University [19]. The dictionary contains
over 134,000 words as well as their corresponding pronunciation. The pronunciation consists of
phonemes from the ARPAbet phoneme set and thus contains 39 phonemes where vowels can have
three different stress levels. These stress levels are marked with 0 for no stress, 1 for primary stress
and 2 for secondary stress. Since the data structure for the dictionary is easily handled, the dictionary
can not only be used to convert words to phonemes but also to convert phonemes back to words.
However, the latter requires more computational resources than the former.

To allow the network to train on the phoneme level, all the labels of the LibriSpeech dataset were
translated to phonemes using CMUdict. Phonemes were thought to be favorable to use instead of
characters since one phoneme always has the same pronunciation whereas a character can be pro-
nounced differently depending on the context. For example, the character "a" in "family" and "face"
are pronounced differently but the a sound is mapped by different phonemes. This transformation
was believed to facilitate the learning for the network in the sense that it would remove ambiguities
since each output token would only map to one sound. However, this proved to introduce other issues,
such as phonemes mapping to the same word since two words could be pronounced in the same way.
For example, the words "Eye" and "I" had the same pronunciation. To solve this issue, our conclusion
was that a lexical model would be needed. However, that was out of the scope for this project and
was thus left as a challenge to address in future work.

2.3 WaveNet – The Generative Model for Raw Audio

WaveNet is a generative model based on dilated and causal convolutions [6]. It was primarily designed
for TTS applications but has proved to perform well for music generation and speech recognition as
well. Its architecture is built out of residual blocks. An illustration of a residual block can be observed
in figure 3. These blocks consist of a dilated causal convolution layer whose output is fed into a
gated activation block, another convolution whose product is sent back to the input of the dilated
convolution via a 1x1 convolution. The input is firstly fed into a convolutional layer. Thereafter, the
output goes through a hyperbolic tangent function and a sigmoid function. Then, the output of these
are multiplied element-wise. Thereafter the product is sent back to the input of the convolutional
layer. This process is repeated K times and is what is referred to as a residual block.

The convolutions in the convolutional layer are causal and dilated. The causal aspect of these
convolutions comes from the fact that the successive stacked layers are not allowed to model
dependencies on future timesteps, while the dilated aspect is due to their ability to expand the
receptive field(The coverage of the input elements mapping to one output element) of the network by
skipping timesteps of the input. The network is thus capable of modelling long-term dependencies in
a cheaper way.

Special activation units called gated activation units were also used, as they had been observed to
perform better at modeling audio signals than the more traditional rectified linear unit (ReLU) [20].
Finally, the depth of the network is leveraged by the use of residual connections and parametrized
skip connections. These residual connections connect layers that are not successively connected
while skip connections connect the output of the 1x1 convolution to the output pipeline. Residual and
skip connections allow deeper architectures to be trained by facilitating the propagation of gradient
values during backpropagation, avoiding vanishing gradients [6]. Additionally they speed up the
convergence of the network [6].
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Figure 3: A k-layered residual block from the WaveNet architecture [6].

The WaveNet paper did not provide much details regarding how to adapt the network to ASR. To
fill in the blanks, we initially took inspiration from an independent Python implementation based on
TensorFlow [14]. Something that differed in our implementation was that we didn’t apply global and
local conditioning as was done in a more specialized version of the network in the original paper.

2.4 Connectionist Temporal Classification

CTC [9] is a technique which allows alignment-free training of ASR systems. It is indeed traditionally
required to know, for each timestep in the input sequence (which could be a raw waveform or a
sequence of MFCC vectors), what the corresponding character, phoneme or phone state in the target
output sequence is [3][4][5]. This is what is referred to as alignment. For each such timestep and
its aligned target character, phoneme or phone state, the inner model is trained so that it assigns the
highest possible probability to that target character given the input features at that timestep (or vice
versa using Bayes’ rule). This inner model could for instance be a NN or a Gaussian mixture model
(GMM) and is generally used in combination with an HMM [3][4][5]. As ASR datasets usually
give the transcription (made of characters or phonemes) of each audio clip without any alignment
data [13][21][22], a preexisting ASR system must be used to produce this alignment information
provided that its architecture makes such computation possible. For example, in order to develop a
HMM-DNN system, a HMM-GMM model can be used to recover the most probable sequence of
hidden phone states that have generated each input sequence.

CTC makes it possible to break free from this traditional training pipeline. To do so, it requires that
the ASR system being developed respects two constraints:

1. The model that will be trained must be defined so that it outputs, for each input step and
each possible output token (one of the target symbols or the blank token which will be
presented below), the probability that this output token corresponds to the input features at
that timestep.

2. The length of the target sequences must be shorter than the length of the input sequences.

The first requirement can be met by various models, for instance by a RNN. It is met in our case
by the convolutional neural network (CNN) made of causal convolutions (as described in section
2.3) which is featured in WaveNet. WaveNet’s network takes the whole sequence as input and
applies a softmax function at the last layer so that a vector of probabilities can be obtained at each
timestep. These applications of the softmax function are made on a vector whose dimensions match
the size of the token vocabulary, e.g. 26 alphabet letters plus some punctuation signs plus the
blank token. The purpose of this architecture is to enable the computation of the probability of any
possible output sequence (made of output tokens except the blank token) by considering all possible
alignments that lead to this output sequence and using the per-timestep probabilities given by the
network. The alignments use the blank token to represent output sequences that contain the same
token multiple times in a row such as "l" in "hello". This whole process is summarized in figure
4. The second requirement is supposed to be always met in the context of ASR as one phoneme
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(a) Illustration of the concept of alignment.

(b) Alignments with blank tokens.
(c) Process of computing the probability of any output
sequence.

(d) Illustration of the computation of the loss function for one target
sequence (here, "ab") by graph traversal. Each node represents a per-
timestep probability.

Figure 4: Main concepts featured in CTC. Figures obtained from [23].

generally corresponds to many more than one input timestep so that transcriptions are shorter than
input sequences, even with punctuation and spaces taken into account.

These two requirements and the process described above (as well as in figure 4) give all the elements
necessary to the construction of both the loss function defined by CTC and the CTC decoder which
is used to perform inference. The CTC loss is made of the negative log-likelihood of the training
output sequences given the input sequences. Each probability is computed by marginalizing over
all possible alignments of the output sequence to the input sequence and, for each such alignment,
computing the probability assigned by the network using a graph traversal dynamic algorithm as in
figure 4d. This is summarized in the following formula:

p(Y | X) =
∑

A∈AX,Y

∏
a∈A

p(a | X)

where Y is some target output sequence, X is the corresponding input sequence, AX,Y is the set of
all possible alignments of Y to X and a is some token from one alignment. For its part, the inference
method is made of a modified version of the beam search algorithm: to know what is the most
probable output sequence given the output of the network for a given input sequence, the graph is
progressively traversed by retaining the n most probable sequences encountered so far. The variations
to the original beam search algorithm are due to the collapsing of the repetitions of identical tokens
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in the n tentative sequences, and to the necessity to properly handle the blank tokens that represent
paths where a token appears multiple times in a row in the output sequence.

3 Experiments

The original WaveNet paper had many crucial details missing. There was no specification on the
number of layers, loss function or dataset. Because of the lack of detail, we relied on community
effort by searching for similar implementations online. We found three credible implementations
[14][24][25], each implementation having a slightly different interpretation of WaveNet. Our final
model consisted of nine three-layered residual blocks in serie and the implementation can be found
on github[26].

The WaveNet model was implemented as a hybrid of Keras and TensorFlow. Due to a documented bug
inside TensorFlow [27], we relied on Keras for the causal convolution modules, and the output of the
model was then fed through TensorFlow’s ctc_loss function [28] and backpropagated. The chosen
optimizer was TensorFlow’s implementation of the Adam optimization algorithm (AdamOptimizer),
as it is an adaptive optimizer and relatively stable. Additionally, it had been observed that numerous
community implementations used the AdamOptimizer and reported good results [29].

The dataset used was the LibriSpeech development set (LibriSpeech dev) [13]. LibriSpeech dev is a
specialized ASR library with 360 hours of labelled speech. The data from the acquired dataset was
converted to 20-feature MFCCs in order to reduce the training time. MFCC conversion was handled
by LibROSA [30].

In the experiment we examined two main different types of data while using WaveNet as an underlying
model. The first model was a character-level model where MFCC inputs were converted straight into
characters which formed sentences. In the second approach we adapted WaveNet to predict phonemes
rather than characters. The phonemes were then converted into words and sentences using language
models. However, due to time constraints, we used a basic language approach based on Levenshtein
distance. Thus implementing the accuracy calculation to be independent of the underlying phoneme
or character architecture.

The accuracy calculations were based on Levenshtein distance lev and were calculated according
to equation 1 where N is the batch size, x is the WaveNet input, fwavenet is the WaveNet output
function and y is the label.

accuracy =
1

N

∑
N

lev(fwavenet(x), y) (1)

In order to train the phoneme-level WaveNet, we used the pronounciation dictionary called CMUdict
through the python library nltk [19]. This allowed us to convert English words into phonemes.
However, some data samples had words with no entry in the dictionary. These samples were
discarded, reducing the available training set from 28,539 down to 17,880 examples. Since CMUdict
was only used for the phoneme-level implementation, the character-level implementation still used
all 28,539 examples for training.

4 Results

This chapter provides the results of our experiments. Initially, the results of the character-level
network are presented. Thereafter, the results of the phoneme-level network are detailed. Finally, a
section provides the results of the augmented phoneme-level network.

4.1 Characters as Labels

In this experiment, we converted our labels into 27-dimensional alphabet labels, and trained the
network with direct character output. The learning rate was set to 0.002 (standard for Adam optimizer).
In figure 5, we see a rapid accuracy increase initially which then begins to plateau around 40%. It has
been reported that Wavenet requires a large amount of data to train and long training time [6]. We
thus believe that with a larger dataset and more computational power our network could continue to
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Figure 5: WaveNet accuracy for the character, phoneme and augmented phoneme model after
700,000 iterations.

Figure 6: WaveNet loss for the character, phoneme and augmented phoneme model.

improve since we can still see that the loss is dropping and accuracy is increasing, albeit very slowly.
Our experiments ran for 500,000 iterations with slowly improving predictions but they were still far
from ideal.

labels : so christie turned a deaf ear [...]
predicted: t e e e e e e e e e e

At the 30,000th update step, the network has learned to match the length of the label

labels : she stood for a moment on the [...]
predicted: esan peo en tono rein en sean te [...]

After 100,000 update steps, the network has learnt to print words that are phonetically similar to the
correct word but has yet to learn many caveats of the English language.

labels : mode put the flour into [...]
predicted: mol a fotflor in oo asan [...]

labels : mister verloc was fully responsive now
predicted: mis o olot wos folonrs ols a
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4.2 Phonemes as Labels

In this experiment, we switched from character level model to phoneme model. There were a total of
70 phonemes in CMUDict, thus our output dimension expanded from 27 in the character-level model
to 70 in the phoneme-level model. Phoneme-level training added an extra layer of abstraction, but we
were hoping that the system would learn better with phonemes by removing the ambiguities due to
the necessity for the network to learn English spelling. However, as shown in figure 5, the accuracy is
comparable to that character-level model. It follows a very similar trend as character-level training.
The accuracy sees an initial quick accuracy jump and begins to learn very slowly after 40% mark.
The loss is distinctively lower than character-level model, but this does not mean better results. This
is because CTC loss is not normalized like many other loss functions, therefore longer sequences
tend to have higher loss.

Phoneme-level training has added complexity as phonemes need to be converted back to words. In
our experiments, we used the phoneme edit distance to pair phonemes to its closest resembling word,
we found that the conversion is slow and difficult to translate when phonemes have greater than two
comparing to dictionary. However, it is possible with more advanced language models to produce
better predictions.

4.3 Augmented Phonemes as labels

In this experiment, we proposed a simple data augmentation technique in order to differentiate
words that have similar pronunciations in hope to achieve better results than vanilla phoneme level
prediction. E.g. One and Won. During the preprocessing stage, instead of sampling the first phoneme
representation, we picked the most unique phoneme representation (The phoneme association with
the least amount of associated words).

The rational behind this technique was that we would be able to teach WaveNet to differentiate
between words with otherwise similar pronounciation. E.g. bass and base can both be pronounced
as "B EY S" but bass can also be pronounced as "B AE S", therefore we favor "B AE S" whenever
we encounter the word bass. The downside of this technique is that the association from sound
samples(or MFCC) with phonemes will be weaker.

In the resulting accuracy of our experiments, which can be observed in figure 5, it can be seen that
the augmented phonemes have similar accuracy growth pattern as the previous two methods, but that
the accuracy is slightly lower than that of the unaugmented phoneme model counter part. Thus it
can be concluded that the trade off of having unique phonemes is not worth having mismatching
phonemes to audio samples.

5 Discussion and Conclusions

In this experiment, we attempted to reproduced the WaveNet [6] architecture. Due to the lack of
transparency from DeepMind, it involved guessing and further research to ’fill in the gaps’. However,
we were able to fill the missing pieces of the puzzle by adding the CTC loss function as well as
training on both character-level predictions and phoneme-level predictions. Our results suggests that
WaveNet might be a plausible solution for ASR. However, comparing our results with the results
from a separate implementation [14], we did not manage to reach their level of precision. We believe
that this might be because we did not let the network train with as much computational resources
(time and hardware) as their network, that there is some significant difference between the VCTK
and LibriSpeech datasets or that our architecture was different from theirs in some aspect. The results
also suggest that the conducted phoneme augmentation did not have any major positive effects.

For future work we would suggest training with other datasets as well as training for longer periods
of time and with various different hyperparameters. We would also suggest tweaking the architecture
by, for example, applying other activation functions as well as residual block layouts. Additionally, it
could be interesting to train the network on raw audio rather than MFCCs. Finally, we would suggest
adding a lexical model to the final step of the prediction procedure as we believe that this could
greatly increase the accuracy of the network.
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