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Abstract

This work aims at obtaining a clean isolated signal containing the vocals informa-
tion from an arbitrary song. The isolation is performed by a Deep Recurrent Neural
Network, which receives the mixed signal coefficients as input and produces the
vocal coefficients in the output. Both choices of Mel-Frequency Ceptrum Coeffi-
cients (MFCC) and Short Time Fourier Transform (STFT) coefficients are explored
for the network input. After training and evaluation of the proposed network on the
MIR-1K dataset, vocal separation of moderate performance was achieved.

1 Introduction

Monoaural music source separation has become increasingly relevant in recent years [1], [2]. More-
over, latest Deep Neural Network (DNN) architectures have shown to yield more robust results than
conventional methods [3], [4].
The task of music source separation belongs to the field of Music Information Retrieval (MIR).
The motivation for this task is to achieve a clean separation of the vocals signal from the rest of
signals contained in a monoaural music source. The vocals signal usually contains most of the
information that is relevant for MIR-related applications, such as singer identification or automatic
lyrics transcription. However, blind separation, i.e. without previous knowledge of the source content,
is a challenging task, partly because of the similarity between the spectra from human singing voice
and some voiced musical instruments, such as piano.

In one of the recently proposed deep learning architectures, trying to solve the singing voice separation
problem, a U-net network is used [3]. The U-net architecture is based on both fully convolutional and
deconvolutional networks, with additional skip connections between layers at the same hierarchical
level. The network output is a soft mask that is applied to the mix signal in order to separate the voice
component from the instrumental one. Simpson et al trained a deep convolutional neural network,
consisting of around 1 billion of parameters, in order to produce a probabilistic binary mask that
separates the vocal components from the mixed signal [5].

The current project is inspired by the work presented in [6]. In this paper, the option of deep recurrent
networks is explored. More specifically, standard RNN and DRNN with temporal or full recurrent
connections are studied. Both discriminative functions and generalized Kullback-Leibler divergence
criteria are explored as an option for the network optimizer function. The RNN layers are jointly
optimized, alongside with the masking function which has been added as the last layer. The network
input corresponds to the magnitude spectral features, extracted by Short Time Fourier Transform. The
network produces the magnitude spectral coefficients of both the vocal and instrumental components.
Subsequently, the corresponding time domain signals are produced, using the inverse Short Time
Fourier Transform.



2 Method

In the core of the proposed methodology lies a Deep Recurrent Neural Network (DRNN). The basic
Recurrent Neural Network (RNN) consists of an infinate number of layers, which introduce a memory
from previous timesteps. In that way, the correlation between audio coefficients from different time
steps is captured. The introduction of multiple RNN layers leads to hierarchical processing of the
input. That way, more information about the correlation between the audio signal coefficients is
captured. The main difference with the main reference work [6] is that the proposed architecture
tries to learn only the vocal signal, with the purpose of decreasing the computational time of training.
Additionally, the time masking layer is not applied, since both the vocal and instrumental components
are needed.

2.1 Preprocessing

In this work we have explored several approaches for the input features to a Deep Recurrent Neural
Network (DRNN) model. In an attempt to discriminate between human voice and the rest of
instruments in the music source, we experiment by feeding Mel-Filterbank Cepstrum coefficients
(MFCC). The main advantage of using these features is the reduced dimensionality, facilitating the
training with a DRNN. Following the work in [6], we also feed our model with different number of
Short-Time Fourier Transform (STFT) coefficients (129, 257, 513).

To facilitate comparison of the different input feature settings, the same procedure parameters (frame
length, overlap, FFT lenght, etc.) are used in the extraction of Mel-Filterbank Cepstrum Coefficient
(MFCC) and STFT features.

2.1.1 Mel-Filterbank Cepstrum Coefficient

The Mel-Filterbank Cepstrum Coefficient (MFCC) vector cy(n) extraction procedure from an audio
signal s(n) is described in Figure 1. We assume that the signal s(n) has already been enframed,
to ensure that frequencies are stationary over a very short period of time. In our case, since all
data audio files were sampled at 16 kHz, we have chosen a frame size of 512 samples, with a 50 %
overlap. After enframing, the first step consists in amplifying higher frequencies, which usually have
smaller magnitudes, an operation called Pre-emphasis. This will help in posterior steps by balancing
the frequency spectrum and improving the Signal-to-Noise Ratio (SNR). Because the Fast Fourier
Transform (FFT) operation assumes that the data is infinite, previous to the FFT we apply a Hamming
window to the, still, time series signal. The conversion from time series to frequency domain is
made by an FFT. The magnitude of FFT output is then extracted and squared to obtain the power
spectrum. This step involves information loss, since we discard the phase. Once we have the power
spectrum, we apply a set of triangular filters, typically 40, on a Mel-scale to the power spectrum. The
Mel-scale is a non-linear frequency scale that resembles human ear perception of sound: it is more
discriminative at lower frequencies and less discriminative at higher frequencies. Finally, we can
apply Discrete Cosine Transform (DCT, type II) to decorrelate the filter bank features, previously
taking the natural logarithm of them.

To minimize the information loss in the inputs and maximize the quality of the reconstructed output
audio signals after separation, we select the full set of cepstrum coefficients for each feature vector.

2.1.2 STFT

The STFT features are extracted simply by performing an STFT operation on the time series audio
signal. We then obtain the magnitude spectrum by performing a modulo (| · |) operation on the
complex output of the STFT.

2.2 Network Architecture

In order to process a song in a neural network, we will need a network that could take time into
account. Therefore, the input at the frame t will not only be the features extracted for that frame by
the preprocessing but we will also include information from the frame t-1, this type of network is
called Recurrent Neural Network (RNN). The following figure 2 illustrates the principle of a RNN.
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Figure 1: Step-by-step procedure for obtaining MFCCs. Source:[7].

Figure 2: Principle of a Recurrent Neural. Network Source: Source:[8]

There are different ways to use a RNN (Figure 3). In this case, we will use the "many-to-many"
way to map input and output. Therefore, by inputting a preprocessed song, we will get another
preprocessed output.

Figure 3: Different usages of a RNN. Source:[9]

This architecture is very simple and presents some limits. The main problem of a RNN network is
the vanishing gradient that can restrain the learning process. One of the common replacement is
Long Short Term Memory (LSTM) [10]. The first advantage of LSTM is that it solves the vanishing
gradient problem. Secondly, an LSTM unit can keep information for a longer period. In the proposed
network architecture, a Gated Recurrent Unit (GRU) is used, proposed by Cho et al.[11]. Like LTSM
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units, GRUs overcome the vanishing gradient problem and can keep information for a longer period.
Additionally, both types of units are equivalent from the perspective of performance. However, the
architecture of GRU units is simpler than the architecture of an LSTM unit. For that reason, they
have less parameters, a fact that leads to higher computational efficiency [12] and less training time.
The fact that GRUs are not characterized by long term memory is irrelevant to the problem of vocal
separation, since the number of past coefficients needed at each step is small. Comparing to RNN
units, GRUs avoid the problem of vanishing gradients, since they consist of both update and reset
step.

In order to overcome some of these limits, we will use what is called Deep Recurrent Neural Network
(DRNN) in order to be able to process more complex data like the feature vector we can get after the
preprocessing. The concept is very simple, after going through a GRU, we use the output as input of
another GRU and so on. In other words, we "stack" the GRU network in order to create a deep GRU
network.

After the DRNN, a fully connected layer was added, with as many hidden units as the number of
input coefficients. The activation function used was ReLu.

2.2.1 Loss function

Given the output of the network y and the target ŷ, we have defined the loss of the network as a Mean
Square Error (MSE):

l = ||y − ŷ||22 (1)

Unlike the original paper [6], the error component regarding the instrumental component is eliminated,
since this is out of the scope of the project. So, the resulting formula of the loss function has a simpler
form.

2.2.2 Optimizer

To minimize this loss, we will use the ADAM optimizer [13]. From our experiences in the field, it
seems that the ADAM optimizer is a good to train efficiently a network from scratch which is our
case.

The ADAM optimizer is less affected by the initialization of the hyper parameters of the network
than a simple stochastic gradient descent (SGD) and, therefore, it is easier to train a network with the
ADAM method. But the ADAM method seems also more likely to reach a local minimum than the
classical SGD.

So in order to have an effective learning in the time allocated for this project, the ADAM solution
seemed to be the best compromise between accuracy and easiness of training.

2.3 Post-processing

The DCT Type II is invertible; there is no loss of information when performing this operation. The
same applies for the rest of the operations in Figure 1, except the Mel-scale Filterbank and the discard
of the phase spectrum. These two steps present a challenge in the task of reconstructing the audio
signal from the outputs of the neural network. To overcome this, we have chosen the following
strategies.

As the method for reconstructing the power spectrum from the MFCCs, we apply the commonly used
l2− norm criteria, analyzed in detail in [14]. After computing the power spectrum, we simply apply
the square root to get the magnitude spectrum of the signal to reconstruct.

Once we have obtained the magnitude-only spectrum of the signal to reconstruct, we need to find a
way to estimate the time series samples from it. For the case when the phase spectra is not available,
we have selected the Griffin-Lim algorithm [15] for its robustness and applicability. If we have the
phase spectra, we can simply compute the Inverse STFT (ISTFT). To do this, and following the
strategy presented in [6], we recover the previously saved phase spectrum for each song and combine
it with its corresponding reconstructed magnitude spectrum.
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The two different approaches followed for reconstructing the audio signals from the estimated
magnitude spectra, along with the rest of the data pipeline, are presented in figures 4 and 5.

Figure 4: Reconstruction by Griffin-Lim algorithm. Inspired by [6]

Figure 5: Reconstruction by ISTFT algorithm. Inspired by [6]

Our experiments with both Griffin-Lim and ISTFT for the reconstuction showed that Griffin-Lim
proves itself to be a robust algorithm for medium-quality reconstruction from only-magnitude spectra
for the vocals isolation task. On the contrary, applying ISTFT by combining the previously saved
phase spectra with estimated magnitude spectra gave unexpectedly bad results. As a result, we
have chosen to use Griffin-Lim algorithm as the only reconstruction method in our experiments.
Additionally, we tried to initialize Griffin-Lim with the target vocals phase, instead of using the
random initialization of Griffin-Lim algorithm. However, there was not significant improvement in
the reconstruction of the vocals.

2.4 Evaluation method

The evaluation of the proposed vocals isolation system is done after the reconstruction of the predicted
vocal signal, which is compared to the original vocal signal. For the qualitative evaluation of the
reconstruction, the metrics Source to Inference Ratio (SIR), Source to Artifacts Ratio (SAR), and
Source to Distortion Ratio (SDR) are used [16]. The SDR evaluation metric measures the similarity
between the predicted vocal signal and the true vocal signal, while SIR measures the similarity
between the predicted vocal signal and the true instrumental signal. Finally, SAR measures the
dissimilarity of the predicted vocal signal to either original vocal or instrumental components. Ideally,
high SDR, high SAR and low SIR values are the ones desirable. Given a test set, the global SDR,
SIR and SAR can be obtained by computing the weighted average of the individual ratios, using the
length of the signal as weight.

3 Experiments

3.1 Experiment settings

For the experimental evaluation of the proposed system, the MIR-1K dataset [17] is used. This dataset
consists of 1000 clips with duration from 4 to 13 seconds and sampling rate 16 KHz. For each clip,
the mixed, vocal and instrumental signals are provided. This fact constitutes the main reason why
MIR-1K dataset is widely used for the evaluation of blind audio source separation algorithms, since
the dataset is labelled.

The first pre-processing step is splitting the dataset into training, validation and testing set, with
percentages 70%, 20% and 10% respectively. For the purpose of avoiding overfitting, the music
clips, sung by 17 singers, were uniformly distributed into the three sets, in a way that all singers are
represented in all sets.
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The experiments were executed on a hardware with the following specifications:

• CPU Platform: Intel Sandy Bridge 3.60 GHz

• 4 vCPUs, 26 GB memory

• 1 x NVIDIA Tesla K80

3.2 Training of the network

3.2.1 Implementation

To implement the network, we used the Python library Tensorflow [18].

3.2.2 Hyper-parameters

We chose to stack 3 GRU units with 256 hidden nodes each, followed by a fully connected layer
with as many units as the dimesions of the network input. As mentioned before, the addition of extra
GRU layers might improve the generalization performance of the network. However, the risk of
overfitting is higher. So, 3 layers seemed like a good compromise for our experimentation. Regarding
the learning rate, both choices of static and exponential decay were explored. After experimenting
with both options, we came to the conclusion that the use of static learning rate of 0.001 led to a
more stabilized learning curve. Additionally, the option of dropout regularization was explored. After
experimenting with the dropout rate, we decided not to use dropout in our experimental evaluation,
since no significant improvement of the network performance was observed.

4 Results

4.1 Experiments with STFT

After training a network with 3 RNN layers, the trend training and validation losses obtained are
illustrated below:

(a) Training loss (b) Validation loss

Figure 6: Training and validation loss for 3 RNN layers with STFT input

As we can see, the training loss converges approximately at epoch 150, which means that the network
reaches a stable point quite fast. However, the validation loss keeps oscillating throughout the training
phase. This means that the learning procedure is not stabilized. Taking the oscillating validation loss
as an indicator of the network performance, it can be concluded that the generalization performance
is quite poor.
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4.2 Experiments with MFCC

In this case, the MFCC coefficients are used as the network input. After training a network with 3
RNN layers, the following training and validation losses were obtained:

(a) Training loss (b) Validation loss

Figure 7: Training and validation loss for 3 RNN layers with MFCC input

From the figures above, it can be concluded that the quality of learning is even worse, since the
network converges after only 50 epochs, while the final value of training loss is quite high. Comparing
to the previous case of STFT input, the values of both training and validation loss are quite high. This
is unavoidable considering the low dimensionality of MFCC coefficients (49 coefficients), comparing
to the dimensionality of STFT coefficients (257 coefficients).

4.3 Qualitative evaluation of reconstructed vocals

The evaluation of the trained network was done on a test set of 200 songs. For each song, the steps of
pre-processing with either STFT or MFCC coefficients, network evaluation and post-processing with
Griffin-Lim were followed. Subsequently, the evaluation metrics SIR, SAR and SDR were computed
for each song. The resulted weighted average evaluation metrics are presented in the following table:

MFCC STFT

#Layers SDR SIR SAR SDR SIR SAR

1 2.56 2.56 206.35 0.68 0.81 122.06
3 3.32 3.32 204.17 1.35 1.47 115.05

Table 1: Evaluation metrics for architectures with 1 or 3 layers and stft or mfcc coefficients as input.

The qualitative evaluation of our trained models leads to the conclusion that vocal separation of
moderate quality was achieved. Comparing to the results presented in [6], the global SDR, SIR, SAR,
obtained in the present work, are almost 50% worse. In the case of MFCC input, the values of SDR
and SIR are quite close, which indicates that the reconstructed vocals don’t clearly match either the
vocal or the instrumental component of the original song. This is not the case for the STFT input,
where there is a clear distinction between the SAR and SDR values. What is quite surprising, is the
fact that evaluation metrics obtained with MFCC coefficients are slightly higher that the ones obtained
with STFT coefficients. It was expected that MFCC coefficients would not be appropriate for the
problem of vocal separation, since the application of the MFCC pipeline removes the correlation
between the coefficients.
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5 Conclusion

Different conclusions can be drawn from our experiment. First, we have been able to compare two
different pre-possessing and post-processing, MFCC and STFT, over a complete pipeline for the
problem we have chosen. We expected STFT to perform better than MFCC, since the information en-
capsulated in the correlation between the coefficients could be a benefit for the network. Surprisingly,
the use of MFCC features led to better reconstruction than STFT features.

Secondly, we expected to see the effect of deep architectures for such a complex problem as vocal
isolation. We expected that the addition of extra layers will lead to better performance. Our
experiments confirm that expectation to a small extent, since the performance of the network with 3
layers is only slightly better that the performance of the network with 1 layer.

Finally, we have seen the difficulties of the reconstruction process. Our experiments illustrate the
delicate nature of the reconstruction of a signal from its coefficients. Our attempt to apply ISTFT by
combining the phase of the original spectra with vocals magnitude spectra, learned by the network,
was not successful. Our initial assumption about this problem was the different scale between the
original phase and the magnitude learned by the network. However, our second attempt to normalize
the MFCC coefficients didn’t lead to better reconstrunction quality.

One thing that can be done with this project the lyrics recognition. In order to simplify the recognition,
it could be relevant to, first, extract the voice from the audio and then apply a speech recognition
network on the voice. This problem is harder than traditional speech recognition due to the singing
voice but our work is one of the ways to simplify it.

Appendices
In the peer-review phase, the current report was reviewed by 2 different individuals. Both reviews are
summarized below:

• Relevance for the learning outcomes: Both reviewers agreed that the current work is highly
relevant to the content of the course.

• Novelty/Originality: Both reviewers that the level of novelty of the current work is low. We
think that our work is original to some extent, since we modified the architecture proposed
in [6]. Our initial idea of using a custom made dataset of folk songs was not applicable,
since the variety of the available, labeled datasets, which are suitable for this problem, is
small.

• Literature study: Both reviewers made positive comments about the quality and extension
of the literature study presented.

• Outcome correctness: The improvement points proposed by the reviewers were taken into
consideration.

• Clarity of presentation: The format of the evaluation table was corrected, as proposed by
both reviewers. Additionally, more results were added, so that the comparison between the
learning curves is meaningful.

• Overall quality: After taking into consideration both reviewers’ comments, the section of
results was enriched with more experiments. Additionally, some minor errors spotted were
fixed.
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