
Combining LSTM and Convolution Neural Networks
for Phoneme Recognition

Eysteinn Gunnlaugsson Pierre Sevestre
eysgun@kth.se sevestre@kth.se

Abstract

In this project we evaluate the effect creating a network for phoneme classification1

which consists of a combination of Dense, Convolutional, and Recurrent layers. We2

start by creating baseline Convolutional and Recurrent models and evaluate their3

performance on the TIMIT dataset. We then create a model which is a combination4

of the baseline models and measure if there are any improvements. Experimental5

results show that the combination of the two leads to significant improvements for6

all metrics used for evaluation.7

1 Introduction8

Phoneme recognition has been performed for a long time by the combination of Gaussian Mixture9

Model (GMM) and Hidden Markov Model (HMM), maximizing the likelihood of feature emitted10

by a state of the HMM that is modeled with a GMM. Recent advances in deep learning lead to11

the emergence of Deep Neural Network (DNN) combined with HMM, with DNN maximizing the12

probability of being in a certain HMM state given the input feature.13

However, these DNN don’t have the ability to model dependency within speech and thus don’t take14

full advantage of the dynamic feature provided as input.15

Hence, Convolution Neural Networks [1] (CNN), commonly used in computer vision, can be used to16

process this temporal local dependency and extract feature to feed the neural network.17

Similarly, Recurrent Neural Networks (RNN) proved to be efficient to model sequences [2], especially18

Long-Short Term Memory (LSTM), introduced in [3], are able to reveal wider dependencies.19

In this paper we analyze the combination of the two methods stated above, resulting in a20

Convolutional LSTM, as in the papers [4] and [5].21

22

2 Method23

2.1 Implementation24

All our neural-networks were built using Python. We utilized the Keras library, running on a25

Tensorflow back-end, which allowed us to built complex architectures in a sophisticated and simple26

manner. We ran all our experiments on a cluster hosted by Amazon Web Services(AWS). The27

cluster used has a NVIDIA Tesla K80 GPU which allowed us to train relatively complex models in a28

reasonable amount of time.29

2.2 Neural network training30

To train multiple iterations of similar networks with different hyper parameters we structured our31

code in a manner that allowed us to create a queue of model structures that were to be trained. We32
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stored the resulting models in a .h5 file that could later be loaded by Keras. We then evaluated all33

our trained models using the methods described in 3.234

35

To optimize our training procedure we added both early-stopping(ES) and learning rate36

reduce on plateau(LRRP). LRRP reduced the learning rate of the model by a factor of 0.4 for37

every epoch where the validation-loss did not decrease. ES stopped training if the validation loss38

had not decreased for 4 consecutive epochs. The combination of these two methods made sure our39

models did not over-fit to the training data and allowed the models to train for a few epochs longer,40

achieving a better overall performance.41

2.3 Feature selection42

Speech samples are divided into Hamming windows 25 ms, with 12.5 ms overlap. These frames43

are transformed to MSPEC using Fourier transform and Mel Filterbank. The MFCC features are44

generated by compressing the MSPEC with a cosine transformation to reduce covariance between45

coefficients that is usually an assumption for GMM models. However, previous work shows that46

neural networks benefit from using less handcrafted features[6], as some information might be lost in47

the process, and in this case, a persisting correlation is not detrimental to DNN efficiency, we decided48

to use the MSPEC features for all our training.49

These features were then normalized using the mean and standard deviation of the training dataset50

Eq.(1).51

xi − µ(xtrain)

std(xtrain)
(1)

2.4 Convolution Neural Network52

CNN’s were introduced in [1] to deal with images and allow the network to extract features from the53

inputs. Since then they have become very popular with all sorts of classification tasks, especially54

image recognition. Human speech is a sequential signal with local correlations in both time and55

frequency and it can be transformed in to a feature map similar to an image, making CNN’s an ideal56

candidate for the task of phoneme classification.57

It has been the recent trend to create very deep convolational models for speech recognition [7] with58

very good results. However the authors of [8] suggest that even adding 1 or 2 convolational layers59

before fully connected layers can greatly improve the networks performance, chapter 2.6 discusses60

the importance of this fact further.61

62

2.5 LSTM and BLSTM63

LSTM networks were introduced in [3] to solve the Recurrent Neural Network issue of vanishing and64

exploding gradient, while capturing long term and short term dependencies. This is achieved with65

units called memory block in the hidden layer. Each memory block has an input gate and an output66

gate. These gates control the error flow going in and out of the cell. A forget gate was then added in67

[9] to form the cell used here. Equations governing timestep t can be found below :68

it = σ(Wihht−1 +Wixxt) + bi

ft = σ(Wfhht−1 +Wfxxt) + bf

ot = σ(Wohht−1 +W[ox]xt)bo

ct = ft � ct−1 + it � tanh(Wchht−1 +Wcxxt + bc)

ht = ot � tanh(ct)

Where i, f, o and c stand for input gate, forget gate, output gate and cell activation vectors, and h69

the cell output. W refers to weight, b biases for each gate, and x the input for the given time step.70

� correspond to element-wise multiplication, and σ the sigmoid activation function. These input,71

output, forget and memory elements can be seen in the Figure 1.72

2



Figure 1: Single memory block with on cell cited from [9]

Bidirectional Recurrent Neural Network (BRNN) were then introduced by [10] to allow the RNN to73

take advantage of future frames. As can be seen in Figure 2, it consist of two RNN connected to the74

same outputs, but with flow going in the two opposite direction, forward and backward. Using this75

model for speech takes advantage of the intuition that it is as relevant to use future frames to predict76

the present phoneme as it is to use past frames.77

78

Figure 2: General structure of Bidirectional RNN for 3 steps cited from [10], with black box as
output, grey box as hidden state and striped box as input

LSTM were first used to perform framewise phoneme classification in [11], where they demonstrate79

the ability of this architecture to capture context, fundamental in speech processing, resulting in80

slightly higher accuracy than RNN. Bidirectional LSTM (BLSTM), also proved to be much more81

efficient than direct LSTM, from 64.6% accuracy for LSTM up to 68.9% for BLSTM on the TIMIT82

dataset in [11].83

2.6 Combining LSTM and CNN84

A motivation to combine CNN and LSTM is to benefit from the local and long term patterns of the85

sequence. The authors of [4] suggests the convolution layers help reduce the frequency variance of86

the input frames, making it easier for the LSTM to learn the temporal dependency. The output of the87

CNN is also fed into a fully connected layer in the intend to reduce the temporal variation and reduce88

the computational cost.89

This ability of the CNN-DNN to discriminate features can be observed on Figure 3.90

91

Previous comments motivate the architecture represented on Figure 4, with inputs feeding two92

convolutions layers, followed by a dense layer before two LSTM layers. This choice of two layers93
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Figure 3: Comparison of raw FBANK (left) and features learned from ResNet cited from [12],
obtained projecting FBANK and output of average pooling layer from ResNet using t-SNE

for the convolutions and LSTM was justified by [12] highlighting a relative better performance of 294

layer models over single layer models.95

Figure 4: CNN-LSTM architecture

3 Experiments96

3.1 TIMIT dataset97

We used the TIMIT [13] dataset to perform our experiment. This dataset contains sentences from 63098

speakers in American English, from eight different dialects, each repeating ten sentences composed99

of 65 phonemes, with high phoneme variability. 462 speakers are used to from the training dataset,100

and 168 for the testing. The sentences are sampled at 16 KHz.101

102

3.2 Model evaluation103

To train our models we split the train set in two parts, 90% for training and 10% for validation. We104

used the full test set to measure the performance of our trained models.105

Since some phonemes are more dominant in the dataset then others, accuracy is an unreliable metric106

[14] and is therefore not used to evaluate the performance of our models on the test data. In fact, our107

first models showed that dominant classes, especially silence, had very good results compared to108

poorly represented classes, that was not reflected in the accuracy.109

To evaluate our trained models we use both F1-score and Phone Error Rate (PER). The formula for110

F1-score can be seen in Equation 2 while the PER is the average number of corrections(insertions,111

deletions, substitutions), normalized, that need to be done to the predicted phonemes of an utterance112

to generate the correct one. The PER is computed on merged prediction where adjacent identical113

phoneme are merged together. Both of these methods provide a reliable performance measurement of114

a model where there are dominant classes.115

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2)

These metrics were computed over a reduced number of phonemes, as suggested in [12] to correspond116

better to the real signification of these phonemes. The original 61 phonemes resulted in 39 categories.117

The phonemes that have been merged can be found in Table 1, with one relevant example being118
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the merge of er (bird) and axr (butter), or the merge of closure intervals and pauses into a silence119

category.120

Table 1: Classes of merged phonemes from TIMIT for evaluation

Phoneme category List of merged phoneme
aa aa, ao
ah ax, ax-h, ah
er er, axr
hh hh, hv
ih ih, ix
l l, el
m m, em
n n ,en, nx
ng ng, eng
sh sh, zh
uw uw, ux
sil pcl, tcl, kcl, tck, bcl, dcl, gcl, h#, pau, epi

3.3 Baseline models121

To ease the process of building our CNN-LSTM models we first train four different CNN models and122

seven LSTM models. This allows us to try out more hyper-parameter settings on smaller networks,123

before trying to integrate them into the more complex CNN-LSTM models. The results of these124

models, found in 4.1, also serve as a baseline for the performance we want to improve with our125

CNN-LSTM.126

Since the goal of this paper is not to create the best CNN/LSTM models, but rather to see if the127

performance would improve by combining the two we limit the number of hidden layers to two128

layers for all of our baseline models.129

130

Two different context length are used to compare our models, 17 and 31, as suggested in [12].131

For our CNN models we try different settings for the number of filters, strides and context length.132

The size of kernels was set to (3,3) with no pooling layer, motivated by its ability to capture high-level133

representations with less computational complexity than traditionally used (6,6) kernels [4]. Feature134

map of size 32 and 64 were used, smaller than traditionally used, 256 in [5] for example, but it135

proved to be necessary for computational reason given the limited time frame of the project. A fully136

connected layer with 128 nodes was added to reduce the number of parameters and thus facilitate137

the combination without loss of information, as shown in [15]. The ReLU activation function,138

x = max(0, x), was used for the hidden layers, as in [12][4] and the Adam optimizer [16] with a139

learning rate of 0.001.140

For our recurrent models we try different context length values, both for LSTM and BLSTM models.141

The number of units used, 32 and 64 for both models result from a trade-off between model complexity142

and the need of computation. This number of unit is far from the one found in the literature, from143

256 up to 1024 in [12] and [5]. All layers used the tanh activation function, as in [17], x = 1−e−2x

1+e−2x144

and the RMSProp optimizer, introduced by Geoffrey Hinton in the Coursera course Neural Networks145

for Machine Learning, with a learning rate of 0.001.146

4 Results147

4.1 CNN & LSTM148

CNN Table 2 shows that the number of filters slightly improves the model performance, as should149

be expected since the number of parameters to shape the model increases.150

Larger context lengths also prove to have a positive effect on the models performance, especially a151

significant increase in the PER, indicating that predictions are more stable, meaning that predicted152

adjacent phonemes are less likely to be different.153
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By increasing the stride sizes in our convolutional layers we are reducing the output space of each154

layer. While this reduces the training time of the model, it is not worth it since the performance of the155

model suffers.156

Table 2: CNN training results

layers filters kernel sizes strides dense layer size context length f1 PER
2 32 (3,3) (1,1) 128 13 0.72 0.62
2 64 (3,3) (1,1) 128 13 0.73 0.61
2 32 (3,3) (1,1) 128 31 0.71 0.58
2 32 (3,3) (2,2) 128 31 0.71 0.62

LSTM Table 3 shows that larger context window greatly improves the efficiency of LSTM. While157

it could be argued that LSTM inherently capture temporal dependency of sequence, and should learn158

the context, using multiple frames as input actually helps it capture dependency.159

Increasing the number of units to 64 sightly improves the PER while leaving the f1_score unchanged.160

The second model, 32-units with 31-context reaches 72.6% accuracy, that can be compared the161

the results obtained in [12], where 256-units and 512-units models end up with 78.2% and 79.6%162

accuracy respectively. While increasing units greatly improves accuracy, it seems that the PER score163

does not improve as much. Because of the trade-off between performance and model complexity, and164

the fact that this project intents to discuss model architecture rather than give state of the art results,165

we will use the 32-units model for our combined model evaluation.166

167

Table 3: LSTM training results

layers units context length f1 PER
2 32 13 0.72 0.54
2 32 31 0.72 0.46
2 64 13 0.72 0.52

BLSTM Results from Table 4 confirm the idea that a BLSTM model outperforms a LSTM model168

with same number of parameters, as 32*2-units 13-context window gives significantly better F1_score169

and PER than the 64-units 13-context window LSTM. An attempt to reduce the number of units to170

16*2 was done to limit the number of parameters for the combined model. First, 16*2-units with171

31-context window length gave poor results, that might be explained by the fact there is less memory172

units than input frames, forcing the network to compress and therefore lose information. The same173

16*2-units model has poor performances with 13-context length window. With these results in mind174

we use the 32*2-units network for the combined model.175

Table 4: BLSTM training results

layers units context length f1 PER
2 16*2 13 0.65 0.58
2 16*2 31 0.65 0.59
2 32*2 13 0.74 0.50
2 32*2 31 0.74 0.39

4.2 Combined CNN-LSTM176

Using our results in 4.1 as a reference, we have a good idea about which settings work best for each177

model. We try two different combined models based on these settings, that have reasonable amount178

of parameters to be able to train in a decent time. Each model consisted of five hidden layers, two179

convolutional layers, a single dense layer and two LSTM layers, followed by a fully connected output180

layer. The convolational and dense layers use the ReLU activation function while the LSTM uses the181

tanh function. All models were trained using the RMSProp optimizer with a learning rate of 0.001.182

Results, displayed in Table 5, show that each combined model outperforms its corresponding isolated183

models. The CNN-LSTM gives better f1_score and PER than any CNN or LSTM model from the184
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previous section 4.1, as well as the CNN-BLSTM for the CNN and BLSTM network. Combined185

models proved to significantly improve the PER score, indicating its ability to capture patterns of186

phonemes. The confusion matrix found in D depicts a more detailed evaluation of our model, for187

what phonemes it performs well and for which it has trouble classifying.188

Table 5: CNN-LSTM training results

conv sizes LSTM sizes dense sizes kernel sizes context length bidirectional f1 PER
(32, 32) (32, 32) (32, 32) (3,3) 31 false 0.73 0.42
(32, 32) (32 * 2, 32 * 2) (32, 32) (3,3) 31 true 0.75 0.36

5 Discussion and Conclusions189

The experiments show that the combination of CNN and LSTM models lead to a much better model.190

Further improvements could be to create larger networks, both CNN and LSTM. That would make the191

networks much more complex and give it more parameters to tune. This was considered out of scope192

for this project, due to the lack of computing power. It would however be very interesting to see the193

effects of adding layers, both to the isolated and the combined models, to see if the combined versions194

would still produce better results then the isolated ones. Moreover, these combined models are created195

using almost raw separate models, that could be further tuned, using asymmetric context windows or196

unrolling features for example, as applied in literature. One could also argue that shift invariance197

property of CNN is questionable in speech as patterns in low frequency differ in meaning from198

patterns in high frequency. Modification over the weight sharing of the kernel could be considered as199

in [18]. Further test could also be performed to evaluate the performances of the combined model in200

comparison with the baseline models, such as its robustness to noise.201
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A Peer review considerations244

We received a very thorough and critical feedback. It is filled with valuable constructive criticism that245

we used to improve our report. Chapters A.1 and A.2 discuss in detail how we changed our report246

according to the review and what parts of the review we considered irrelevant.247

A.1 Incorporated suggestions248

The following sections list the changes made to the paper according to the review.249

A.1.1 Value laden words250

Our reviewer suggested that we removed value laden words like “abundantly employed” and “have251

become immensely popular” to increase readability. We agreed to this suggestion and changed this252

style of writing to a more clear wording.253

A.1.2 Improve the presentation of equations254

The review suggests that we write some of the smaller equations inline instead of referencing them.255

We tried this for the tanh and RElU equations and agree that it does improve the report. We left the256

formulas for the F1-score and data normalization as is since we believe that they are complex enough257

to deserve their own lines. We also centered the LSTM formula as recommended by the reviewer.258

A.2 Irrelevant criticism259

While overall the peer review had some good suggestions we disagree with some of them. The260

following chapters list notable topics where our opinion or research differs from the author of the261

peer review.262

A.2.1 No forward referencing263

The peer review suggests that we should not reference chapters further down in the report, and only264

reference chapters already seen by the reader. We disagree with this. For example in chapter 2.2 we265

reference the chapter describing our feature extraction 3.2. We feel that this improves the clarity of266

the report and also allows the reader to jump straight to that chapter if he is interested to read that267

part first.268

A.2.2 Suggested references269

Our paper does not intent to discuss state of the art results on phoneme recognition, but to analyze270

the combination of several deep models. Thus, we chose not to include the first suggested paper,271

Phonemes Classification with Recurrent Neural Networks, A. Esposito, R. Ceglia, as they do not use272

MFCC freatures but Rasta-PLP representation, and because the neural network architecture is not273

detailed as it is not the intent of the paper.274

We also chose not to include the paper Comparison of Distance Metrics for Phoneme Classification275

based on Deep Neural Network Features and Weighted k-NN Classifier, as it focuses on distance276

metrics used for k-NN, not evaluation metrics for speech recognition models.277

Moreover, both paper had not been cited a lot, with only two citation for the first and no citation for278

the second, strengthening our decision not to use them.279

B Further review280

Mr. Salvi pointed out the unsuitability of convolution networks shift invariance in the frequency281

dimension for speech recognition. This was a very good observation and we did some research282

regarding this. However due to limited time we did not add any methods described in [18], leaving it283

as future work to analyze these methods further.284
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C Received peer review285

The following sections show the received peer review.286

C.1 Relevance for the learning outcomes287

I feel that the project is highly relevant for the learning outcomes. In order to classify phonemes288

you have successfully compared three models against each other, and also varying the architecture289

of each individual model. Furthermore you have correctly used; "specific analysis and decision290

making methods for recognition of speakers" where you noticed that the phoneme classification is not291

properly measured in terms of accuracy. You have also successfully implemented your own models292

from previous studies which shows of high capability. Great job! 6/6 points293

C.2 Literature study294

To be honest, not many state of the art report are used in this paper. I feel that the relevance is295

somewhat there but not that many in phoneme recognition is present. Obviously neural networks and296

its different parameters are important but using relevant literature in establishing, or comparing those297

parameters would be a nice adding298

** Suggested papers - Phonemes Classification with Recurrent Neural Networks, A. Esposito, R.299

Ceglia They use a recurrent neural network to phoneme recognition from the TIMIT dataset. Detailed300

description of the hyper parameters and number of layers.301

- Comparison of Distance Metrics for Phoneme Classification based on Deep Neural Network Features302

and Weighted k-NN Classifier Although you have successfully identified that accuracy is not a viable303

option. This paper evaluates different metrics for phoneme recognition304

3/6 points305

C.3 Novelty / originality306

The subject is there. But there is always room for improvement in this area. I feel that you have a307

fairly novel approach in combining different architectures and trying different parameters. In my308

opinion the combining part is sufficient as "vanilla" networks seems to have hit its mark. Connecting309

to the literature study I think that there could be more research done on what parameters you use. At310

the moment it seems Ad-hoc and not backed up. But maybe that’s novelty. . . 4/6 points.311

C.4 Correctness312

The overall structure of the report is nice. Good quality figures which are described as well as the313

equations. However, I’m not sure about referencing to something further down the paper. I might be314

wrong, but I think that one reference upwards in the paper. Also, the referencing got a little out of315

hand when defining certain equations. Some of them could have easily been inserted in the text rather316

than linking to the equation a couple of lines down.317

Also, there are some value laden words which can be removed. For example; line 16: ...abundantly318

employed in...., or line 54: ...have become immensely popular... Just some details of course but I319

think it would increase the readability of the report.320

In summary, I like the report and I feel that you have done a great job in the paper. 4/6 points321

C.5 Clarity of presentation322

As stated above, there are some minor corrections to be made. The equation of LSTM could be nicely323

formatted as a algorithm or merely centered for visual pleasantness. The figures are also nice but324

it is clear that they are pasted in rather than built on your own. Obviously this is not needed, but it325

would increase the visual context. I think you have done a great job. If you fix some of the tweaks326

and motivate your choice of particular parameters, architectures and overall settings. Good job! 3/6327

points328
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D Appendix329

Figure 5: Confusion matrix for our best model
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