
A comparison of phoneme recognition for deep neural
networks and recurrent neural networks

Axel Karlsson
axelkarl@kth.se

Yiru Lyu
yiru@kth.se

Abstract

Hidden markov models(HMM) have historically commonly been used for auto-
matic speech recognition(ASR). More recently different deep learning models have
been tried either by themselves for the same purpose or in combination with HMM
models. In this paper the performance of different deep neural networks and recur-
rent neural networks are compared for ASR when they are combined with an HMM.
The experiments show that the recurrent neural network generally performed better
and that a model with one recurrent layer and two dense layers achieved a very
good accuracy of 0.85 when classifying frame by frame at the phoneme level while
still being much faster to train than more complicated recurrent models.

1 Introduction

As a traditional speech recognition method, the hybrid system composed of a deep neural network
(DNN) and a Hidden markov models (HMM) has been playing a dominant role in the ASR field, and
it still provides very good results [1]. Considering that speech data has rich temporal correlation,
and recurrent neural network (RNN) has a strong advantage in dealing with sequential data, the
RNN-based model has also begun to be applied to speech recognition [2]. Except for DNN and RNN,
convolutional networks are also examined in such research [3].

More recently, end-to-end systems have also been reported on. In these cases, HMM is replaced by
using networks with Connectionist Temporal Classification (CTC) object function [4, 5], so training
an HMM can be avoided. The development of high performance computing and end-to-end deep
learning approaches are providing better speech recognition results. Based on this, an attention-
based mechanism have also been introduced [6], which makes good use of features from previous
alignments.

The goal of this paper is to compare the performance of DNN and RNN layers in a hybrid system.
In the following sections, different DNN and RNN implementations in combination with HMM for
phoneme recognition will be compared and evaluated.

An example of previous research in this area is seen in [7]. That paper does describe the performance
of RNNS and DNNs for ASR however it is focused on the evaluation of training principles and not
evaluations of performance with regards to RNNs or DNNs. The results of that paper showed a
marginally lower phone error rate for DNNs.



2 Background

2.1 Hidden Markov Model

In the experiments used for this paper viterbi approximation is used and defined as follows with the
notations:

N : number of states
πi: a priori probability at state si
αij: transition probabilities from state si to state sij
logφj(xi): observation log likelihood for each Gaussians

Forward probability formula:

logα0(j) = logπj + logφj(x0)

logαn(j) = log(
∑M−1

i=0 exp(logαn−1(i) + logαij)) + logφj(xn)

Viterbi approximation formula:

logV0(j) = logπj + logφj(x0)

logVn(j) = maxM−1i=0 (logVn−1(i) + logαij) + logφj(xn)

2.2 Deep Neural Network

Deep neural networks consist of a multilayer perceptron with multiple layers of hidden units [8].
With notation such that the input layer is layer zero and the output layer is layer L in a L+ 1 layer
DNN are the first layers:

vl = f(zl) = f(W lvl−1 + bl), for 0 < l < L

zl =W lvl−1 + bl ∈ RNl×1,W l ∈ RNl×Nl−1 , bl ∈ RNl×1

Different activation functions can be used such as the hyperbolic tangent function or the
rectified linear unit function. For the multi-class classification tasks each output neuron represents a
class i ∈ {1, ..., C}

2.3 Recurrent Neural Network

Recurrent neural network (RNN) is a kind of neural network that can be used to model time-dependent
data. The specific manifestation is that the network will memorize the previous information and
apply it to the calculation of the current output, ie, the nodes of the hidden layer not only connect to
the input layer nodes but also output of hidden layer nodes at previous time step.

Long-short-term memory(LSTM) is a special type of RNN that can learn long-term dependency
information. A common architecture is composed of a memory cell, an input gate, an output gate and
a forget gate. [9, 10]

xt ∈ Rd : input vector
ft ∈ Rh : activation vector of the forget gate
it ∈ Rh : activation vector of the input gate
ot ∈ Rh : activation vector of the output gate
ht ∈ Rh : output vector
ct ∈ Rh : cell state vector
W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh} : The weight matrices and bias vector paramaters that are
updated during the training of the models.

2



ft = σg(Wfxt + Ufht−1 + bf )
it = σg(Wixt + Uiht−1 + bi)
ot = σg(Woxt + Uoht−1 + bo)
ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)
ht = ot ◦ σh(ct)

Figure 1: LSTM cell [11]

3 Method

All data used in the models is from the TIDIGIGTS dataset[12].

• tidigits/disc_4.1.1/tidigits/train/ data is used for training

• tidigits/disc_4.2.1/tidigits/test/ data is used for testing.

Furthermore training is also split into a training and a validation set where six male and six female
speakers are used for validation. The features are then transformed into their dynamic representation
by stacking seven of them symmetrically for each utterance and timestep around the current timestep.
Feature normalization is done by normalizing over the whole training set.

As a comparison/baseline, we use the combination of DNN and HMM to decode input features after
feature extraction. In this process, we tried different DNN system parameters and chose suitable
ones, such as learning rate and optimization method. In the following part of the experiment, we
can see that for different input characteristics and network structure, we have established four DNN
control groups. Our goal is to compare the performance differences between the RNN and DNN used
for feature decoding in similar situations. Therefore, we replace the DNN in the speech recognition
process with the RNN, that is, replace the Dense network layers with the LSTM network layers.
Since the LSTM requires the input data to contain timestep, we perform a translation on the time axis
of all the features on the basis of the original data, that is, each frame feature is associated with three
frames before and after, so that each input feature obtained has a dimension of seven Timestep.

Different models for DNN and HMM were built where different hyperparameters were tested. The
tested hyperparameters are shown below in the experiments section.

4 Experiments

As shown in the Table below, DNNs and RNNs with different settings are evaluated based on our
prepared datasets. Variates including network structure, number of hidden layers, input feature type.

3



Network Train loss Train acc Valid loss Valid acc
DNN_1hl 1.3357 0.5965 1.3485 0.5922
DNN_1hl_dy 0.7775 0.7448 0.8115 0.7315
DNN_1hl_dy_mspec 0.7263 0.7649 0.7562 0.7527
DNN_3hl_dy 0.6894 0.7729 0.7495 0.7513
LSTM_1l 0.3587 0.8819 0.7433 0.7865
LSTM_1l_mspec 0.3787 0.8749 0.6946 0.7934
LSTM_1l_dy 0.2147 0.9249 0.6511 0.8184
LSTM_1l+DNN_2l 0.3763 0.8737 0.7088 0.7955
LSTM_3l 0.2872 0.9044 0.6974 0.8051

Dense layers with 256 units for each hidden layer are applied to all the DNNs. All networks are
trained with stochastic gradient descent, with learning rate 0.02 and momentum 0.9. The activation
function for hidden layers used here is ReLu and softmax for the output layer. Some tests were done
where ReLu and sigmoid activation functions were compared for very simple networks however since
ReLu gave better results in those simple cases all experiments discussed in this paper use ReLu as the
activation function. As to the LSTM layers, the optimizer used is adam, which provides a relatively
better training result. The number of nodes in hidden layers are 256 each, the same as DNNs, and the
output layer of the network is also same as DNNs. All the results in the table are calculated after 10
epochs of training.

5 Results

From the result of “DNN_1hl_dy” and “LSTM_1l”, we can find that the latter network performs
better both in training and validation accuracy. In these two cases, the DNN network take the dynamic
features as input, which include time evolution with features at time [n-3:n+3]. The LSTM network
also include the same range of time information by using time steps of [n-3:n+3], but gives better
training results. If we use the dynamic feature as the input of LSTM, we can get even better results,
as “LSTM_1l_dy” shows.

Since we using DNN or LSTM we do not require the independence between feature dimensions,
we also used mspec as input feature for both networks. Comparing ”DNN_1hl_dy” with
“DNN_1hl_dy_mspec” and “LSTM_1l” with “LSTM_1l_mspec”, it is obvious that mspec performs
better than lmfcc. This is understandable because lmfcc contains less feature information than mspec.

4



The graphs show training and validation accuracy at a certain epochs for the different networks
Top-left: DNN with 1 dense hidden layer, using dynamic lmfcc features Top-right: RNN with 1
LSTM layer, using lmfcc features
Bottom-left: RNN with 1 LSTM layer and 2 dense hidden layers, using lmfcc features
Bottom-right: RNN with 3 LSTM layers, using lmfcc features
Note that the validation accuracy stagnates while the training accuracy continues to increase due to
overfitting.

Detailed evaluations are done for the classification performance on the test set with our selected DNN
and RNN networks.

DNN_3hl_dy, Frame by frame at the state level: The classification accuracy on the whole test dataset
is 0.74107375570

DNN_3hl_dy, Frame by frame at the phoneme level: The classification accuracy on the whole test
dataset is 0.839466435802

LSTM_1l_DNN_2l, Frame by frame at the state level: The classification accuracy on the whole test
dataset is 0.770662875389

LSTM_1l_DNN_2l, Frame by frame at the phoneme level: The classification accuracy on the whole
test dataset is 0.85487428406

6 Discussion and Conclusions

1. When implementing the RNN, we extend the time step of the dataset by shifting all the
feature vectors along the frame axis, that is, using features at time [n-3:n+3] as the time
steps of the input features. This helps increase accuracy in practice but may cause errors at
the frames where pronunciation changes. As we have analysed, if we can extend the time
steps more detaily by shifting the features for each phoneme, we may get more accurate
result.

2. With the same number of layers and the same number of nodes in each layer, LSTM trains
much slower than DNN. Besides, in our experiments, one LSTM layer with 2 dense hidden

5



layers provides a similar training and validation accuracy compared to 3 LSTM layers, but
the former structure trains much faster.

3. Whether we use a DNN or LSTM to solve classification problems, we cannot avoid using
HMM to generate the targets. However, this process is not reliable. The objective function
used to train the networks is different from the whole transcription accuracy. In our experi-
ments, we assumed a SGMM as the emission probability of HMM. More commonly, the
output of the DNN or RNN will be formulated as the emission probability, which will lead to
an iterative procedure. Based on these two main problems, end-to-end RNN has been used in
speech recognition in [4]. Their system is a combination of the deep bidirectional LSTM and
the Connectionist Temporal Classification object function. The network is trained directly
on the text transcripts and no forced alignment is required to provide training targets.

4. The reason this topic of research(Comparison of DNN and RNN performance) was selected
was due to interest in how the temporal behaviour of RNNs would affect performance for
ASR. Before conducting the experiments it was hypothesised that this would positively
affect performance since time was assumed to be an important dimension in ASR. The final
results showed that this previous assumption was correct and that creating a model that takes
the temporal aspects of ASR into consideration has positive effects.

References
[1] Edmondo Trentin and Marco Gori. A survey of hybrid ann/hmm models for automatic speech recognition.

37:91–126, 04 2001.

[2] A. Graves, N. Jaitly, and A. r. Mohamed. Hybrid speech recognition with deep bidirectional lstm. In 2013
IEEE Workshop on Automatic Speech Recognition and Understanding, pages 273–278, Dec 2013.

[3] O. Abdel-Hamid, A. r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional neural networks
for speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(10):1533–
1545, Oct 2014.

[4] A Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural networks.
5:1764–1772, 01 2014.

[5] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong
Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin, and Zhenyao Zhu. Deep
speech 2: End-to-end speech recognition in english and mandarin. 12 2015.

[6] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Y Bengio. Attention-based
models for speech recognition. 06 2015.

[7] Oriol Vinyals, Suman V. Ravuri, and Daniel Povey. Revisiting recurrent neural networks for robust
asr. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4085–4088, 2012.

[8] Dong Yu and Li Deng. Automatic Speech Recognition: A Deep Learning Approach. Signals and
Communication Technology. Springer, London, 2015.

[9] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with
lstm. Neural Computation, 12:2451–2471, 1999.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. 9:1735–80, 12 1997.

[11] A. Graves, A. r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6645–6649, May
2013.

[12] R Gary Leonard and George Doddington. Tidigits speech corpus. Texas Instruments, Inc, 1993.

6



7 Appendix with changes from peer review

The peer review feedback that suggested changes are listed here followed by short explanations of how the
suggested change was done or explanations of why it was not done.

- Does not really include any previous work:
An additional reference is added and discussed at the end of the introduction in order to make sure that previous
work is considered in the paper.

- In abstract the results need to presented with values, like what your best accuracy was and what network:
This has been added to the abstract.

- On page 4 you describe the network settings with activation function being relu and so forth. Might be ease the
read by moving this to section 3 method instead. Did you use any other activation functions?
We argue that the things described here are related to the particular experiments run for this paper and thus
belong in the experiments session. So we did not make this suggested change. However the description of use of
activation functions in the experiments was clarified due to the question.

- I think the discussion should be extended a bit, maybe discuss what results you expected, why and how it
compares to what you got.
This is added at the end of the Discussion and Conclusions section

- In the discussion you maybe wanna take up the fact that the training accuracy increases but the validation
accuracy seems to be stagnant.
This is added as a comment below the description of what the graphs depict in the results section.

7


	Introduction
	Background
	Hidden Markov Model
	Deep Neural Network
	Recurrent Neural Network

	Method
	Experiments
	Results
	Discussion and Conclusions
	Appendix with changes from peer review

