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Abstract

A Direct Numerical Simulation (DNS) of a flat plate boundary layer subject to
freestream turbulence was performed. The freestream turbulence was modeled
by a superposition of a number of eigenmodes of the Orr-Sommerfeld and Squire
equation to meet a certain inlet energy spectrum. Together with an efficient spec-
tral solver for the incompressible Navier-Stokes equations, a robust algorithm to
perform simulations of transitional boundary layers was devised.

For the main computation, a freestream turbulence intensity of 4.7% was stud-
ied. The development of laminar streaks within the boundary layer could be
observed. The breakdown of the streaks to form turbulent spots and eventually
fully developed turbulence was also clearly captured by the simulation.

The averaged results of the simulation, like the skin friction coefficient or the
evolution of the kinetic energy within the boundary layer, show good qualitative
and quantitative agreement to both experimental and numerical studies.

A clear sign of a regularly oscillating secondary instability of the laminar
streaks prior to their breakdown could be observed, although no conclusive classi-
fication of these instabilities can be given at the present time.



iv Abstract



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Disturbance Growth . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Streak Breakdown . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Experiments and Numerical Simulations . . . . . . . . . . . . . . . 5
1.3 Aims and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Formulation 7
2.1 Orr-Sommerfeld / Squire Equation . . . . . . . . . . . . . . . . . . 8

2.1.1 Eigenvalue Spectrum . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Solution via Eigensolver . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Solution for Continuous Spectrum . . . . . . . . . . . . . . 13

2.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Statistical Quantities . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Homogeneous Isotropic Turbulence . . . . . . . . . . . . . . 17

2.3 Modeling of Freestream Turbulence . . . . . . . . . . . . . . . . . . 20
2.3.1 Isotropically Distributed Wavenumbers . . . . . . . . . . . 20
2.3.2 Scaling of the Eigenmodes . . . . . . . . . . . . . . . . . . . 23

3 Numerical Method 25
3.1 Computational Domain . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Velocity - Vorticity Formulation . . . . . . . . . . . . . . . 27
3.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Fringe Region . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Forcing of Continuous Modes . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



vi Contents

4 Validation 35
4.1 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Continuous Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Full Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Orr-Sommerfeld Mode . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Squire Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Two Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Results 43
5.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 T3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Freestream Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Decay of the Energy . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Energy Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Averaged Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Streaks and Spots . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Streaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.2 Spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.3 Secondary Instability? . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions 71
6.1 Present Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Acknowledgement 73

Bibliography 75

Appendix 77

A Boundary Layers 77
A.1 Boundary Layer Equations . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Blasius Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3 Integral Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.4 Wall-Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Figures

1.1 Illustration of transient growth . . . . . . . . . . . . . . . . . . . . 3

2.1 Typical spatial spectrum for Blasius boundary layer flow . . . . . . 11
2.2 Typical example of a continuous eigenmode (via eigensolver) . . . 13
2.3 Typical example of a discrete eigenmode . . . . . . . . . . . . . . . 13
2.4 Typical example of a continuous eigenmode . . . . . . . . . . . . . 16
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Chapter 1

Introduction

The behavior and properties of flowing fluids in different technical applications is
an important issue of the industrial world today. The most important character-
istic of a flowing fluid is the flow state in which it is moving; laminar, turbulent or
the transitional state in between. A laminar flow is a well structured, layered flow
(latin lamina: layer, sheet, leaf), which exercises a less frictional resistance to a
solid wall in comparison to the chaotic fluid state of a turbulent flow. Thereby, lam-
inar flow is an important factor in aircraft design due to the fact that the reduction
of the skin friction is one of the major challenges in this area. The turbulent flow
has on the other hand a very good mixing ability due to the stochastic movements
of the fluid elements, which laminar flow cannot provide. Therefore, turbulent
flow is for instance required in chemical reactors and combustion chambers, where
the mixing of the flow is the main issue of the design.

1.1 Transition

The evolution of an initially laminar flow into a fully developed turbulent flow is
called laminar-turbulent transition or simply transition. This process and espe-
cially the triggering mechanisms of transition are even today not fully understood.
The history of transition research begins with the classical experiments made by
Reynolds at the turn of the 19th century. He discovered that for the flow in a
tube the shift from laminar to turbulent flow is basically dependent upon the non-
dimensional Reynolds number Re = Ur

ν , but it is also sensitive to disturbances in
the fluid before entering the tube. Here, U denotes the fluid velocity, r the tube
radius and ν the kinematic viscosity.

Today, the transitional process is commonly divided into three stages: recep-
tivity phase, disturbance growth and turbulent breakdown.

The receptivity phase describes the different ways, how disturbances can origi-
nate in a given flow. In the case of boundary layers, physical factors as freestream
turbulence or surface roughness can generate small perturbations in the boundary
layer which could eventually lead to a turbulent breakdown. The occurrence and
the form of these disturbances are statistical. The prediction of boundary layer
receptivity is still a topic of research.



 Introduction

1.1.1 Disturbance Growth

As soon as disturbances are present in the flow, they can either grow or decay. If
they are growing enough, they can finally reach a such high level, that the initially
laminar flow breaks down into turbulence.

In the case, where the disturbances are originated by freestream turbulence,
two different scenario can be distinguished. If the outer disturbance level is rela-
tively small, the transition process can be considered as governed by the classical
linear stability theory. That means that the basic flow equations (Navier-Stokes
equations) can be linearized around the mean velocity yielding the important Orr-
Sommerfeld stability equations (for further explanation refer to chapter 2)[(

∂

∂t
+ U

∂

∂x

)
∇2 − u′′ ∂

∂x
− 1
Re

∇4

]
v = 0. (1.1)

These equations describe the evolution of (two-dimensional) disturbances in time
and space. From the individual form of the least-stable (least-damped) solution
to the Orr-Sommerfeld equation it can be decided whether the flow is stable or
instable in the sense of linear stability. Exponentially growing solutions of (1.1)
are named Tollmien-Schlichting (TS) waves in honor of their discoverers, although
their theoretical prediction of the TS waves in 1929 was not experimentally verified
until twenty years later. Transition due to the exponential growth of TS waves is
commonly referred to as natural transition.

If on the other hand the outer disturbance level is rather high (Tu� 1%),
transition is caused by a different process than the exponential growth of TS waves.
In contrast to the natural transition governed by the linear stability theory, the
so called transient growth of disturbances can lead to turbulence at much lower
Reynolds numbers. Therefore, it is sometimes called bypass transition to express
the fact, that natural transition via TS waves is bypassed. Basically, rather than an
exponential growth as in natural transition an algebraic (linear) growth mechanism
is acting on the streamwise velocity component.

To understand the mathematical concept behind the bypass transition process
(see also section 5.4.1), it is important to consider the three-dimensionality of
the initial disturbances. Therefore, an equation similar to the Orr-Sommerfeld
equation can be derived for the normal vorticity η = ∂u

∂z − ∂w
∂x[

∂

∂t
+ U

∂

∂x
− 1
Re

∇2

]
η = −U ′∂v

∂z
, (1.2)

which is called the Squire equation. The forcing term −U ′ ∂v
∂z in the Squire equation

can be considered as vortex tilting [28], i.e. the spanwise vorticity associated with
the mean shear layer is tilted in the wall-normal direction under the influence of
streamwise vorticity from disturbances present in the boundary layer. Together
with the theory of shear sheltering [16], whereupon low-frequency disturbances of
the freestream turbulence can penetrate the boundary layer, a theory of generating
normal vorticity within the boundary layer can be derived. This effect is normally
referred to as lift-up effect.



1.1 Transition 

Figure 1.1: Simple illustration of transient growth using two non-orthogonal vectors:
Although both vectors decrease from left to right, their common sum is
growing.

A physical explanation of the transient growth process was first described by
Landahl 1975 [17]. The basic idea is, that a wall normal displacement of a fluid
element in a shear layer will cause a perturbation in the streamwise velocity com-
ponent, since the fluid element will initially retain its horizontal momentum. The
lift-up mechanism in three-dimensional flows will lead to algebraic growth of the
normal vorticity η generating streaky structures which are elongated in the stream-
wise direction; so called streaks [21]. In this context, the freestream turbulence
is important both in the initial formation of the streaks as well as during later
growth phases since a constant forcing of the streaks is exercised [7]. As pointed
out in [16] and [28], these laminar streaks play an important role in the bypass
transition process.

It is important to note that streaks are still a phenomena of laminar flow; the
skin friction coefficient cf for example is only increased by a few percent compared
to the Blasius flow. Moreover, the above presented mechanism is basically invis-
cid. The same mechanism will also be important with viscosity acting, although
viscous effects will eventually damp the disturbances, if they are not forced in any
way. Consequently, the disturbances can exhibit a transient growth, before viscous
damping makes the unforced disturbances decay. The maximum growth rate of
so-called optimal disturbances is derived in [3], showing that the spanwise width of
such disturbances falls in a tight range. However, in the case of a boundary layer
subject to freestream turbulence, it was proposed that the disturbances within the
boundary layer are continuously forced by the outer turbulence [6], [7]. Therefore,
a direct comparison of the disturbances to the optimal disturbances proves to be
difficult. Even so, the spanwise wavelength derived for the optimal disturbances
can be considered an estimate of the average spacing of laminar streaks [15]. Re-
cent investigations of the nonlinear effects involved in the streak formation can be
found in [7] and [6].

Mathematically, the solutions to the coupled system (1.1) and (1.2) consist of
non-orthogonal eigenfunction [14]. As earlier noted, traditional stability analysis
only considers the least stable mode, from which it is determined whether a flow
is stable or not. However, even if all eigenmodes are stable and the amplitude
of each individual mode is decreasing, the sum of them can transiently exhibit
energy growth due to the non-orthogonality of the eigenmodes [21] (see figure
1.1). Therefore, the energy of general disturbances (e.g. freestream turbulence)
considered as a sum of eigenfunctions can increase linearly in time/space although
all modes individually are stable.
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1.1.2 Streak Breakdown

The streaks can reach a considerable strength of up to fifteen percent of the
freestream velocity without breaking down to turbulence [1]. In contrast, natural
transition due to exponential growth of TS waves occurs with amplitudes nearly an
order of magnitude smaller. The breakdown of laminar streaks according to [16] is
largely due to interactions of low-speed streaks in the upper part of the boundary
layer with large-scale eddies in the freestream. The question of whether or not the
streaks undergo a distinct secondary instability before their breakdown is not yet
clarified. Although theories of secondary instabilities exist (for example [4]) and
experimental observations seem to prove their presence ([19], [1]), the numerical
calculation of [16] did not show any distinct secondary instability.

With or without distinct secondary instability, a streak breakdown forms local-
ized turbulent spots moving downstream with about half the freestream velocity.
The spots merge with other spots to form a fully developed turbulent boundary
layer. As mentioned earlier, the breakdown into turbulence in the bypass transi-
tion scenario occurs at much lower Reynolds numbers (Reθ = O(100) based on the
local momentum thickness θ) than in natural transition (Reθ = 5000). It has to be
mentioned, that – up to now – no complete theory of turbulent breakdown of lam-
inar streaks exists, e.g. the transitional location cannot be generally predicted,
although some experiments e.g. [28], [1] show good agreement to the proposal
given by [2] that the transitional Reynolds number Rex,tr scales with the squared
inverse turbulence intensity Tu−2.
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1.2 Experiments and Numerical Simulations

Extensive experimental data of transient growth of disturbances in boundary layers
is given in [28]. In this report, relatively low turbulence intensities of Tu = 1.5%
were examined giving important results considering the scales of streaks and break-
down locations. Moreover, a proper specification of the inflow spectrum has been
described.

Larger turbulence intensities of 3% resp. 6% in the freestream for boundary
layer transition have been studied experimentally in the ERCOFTAC test cases
T3A and T3B [10]. Comparisons to these cases will be made throughout this
report. Numerical data is available from ERCOFTAC [20] directly referring to the
test cases T3A and T3B (see also section 5.1.1).

A recent experimental description of boundary layer flow subjected to free-
stream turbulence in the range from 1-6% is presented in [19] and [1] together with
a characterization of the freestream turbulence in terms of spectra. Furthermore,
qualifications of the streak growth and their spanwise scales are given.

An extensive numerical study of transition in boundary layers subjected to
free-stream turbulence is given in [16] and [15]. In that report, the freestream tur-
bulence is assumed as a superposition of continuous modes to the Orr-Sommerfeld
equation (see chapter 2). Good agreement of the simulations to the test cases T3A
and T3B [10] as well as to [28] is shown.

1.3 Aims and Overview

The aim of the present thesis is to perform a numerical simulation of transition
in a boundary layer subject to free-stream turbulence. As pointed out earlier, the
understanding and prediction of transition is even today not yet understood and
relies mainly on experimental data or numerical simulations. The postprocessing
of such data allows a deeper insight into the vast field of transition and transition
scenarios and – eventually – to find theoretical ways to predict the behaviour of a
flow.

This report consists of six chapters. In chapter 2 the basic mathematical and
physical formulations are developed and the modeling of the freestream turbulence
is derived. Chapter 3 gives details about the numerical code used in the simulations
and the implementation of the freestream turbulence is described. The validation
of the numerical code with the superimposed Orr-Sommerfeld / Squire eigenmodes
is shown in chapter 4. Chapter 5 presents the results, which were found during
this study together with theoretical indications. Concluding remarks are given in
chapter 6. The appendix shortly describes the derivation of the boundary layer
equations and the Blasius solution.
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Chapter 2

Theoretical Formulation

The governing equations for general incompressible flow problems are the equation
of continuity and the Navier-Stokes equations. In nondimensional form they read

ui,i = 0 (2.1)
∂ui
∂t

+ ujui,j = −p,i +
1
Re

ui,jj (2.2)

where ui represents the i-th component of the velocity vector, p the pressure,
t the time and Re the Reynolds number. For indices, the Einstein summation
convention applies and an index after a comma means differentiation with respect
to that direction. Throughout this text, the subscripts 1, 2 and 3 correspond to
the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. By
common convention, the velocities in the respective directions will also be denoted
by u = ux, v = uy and w = uz.

Dimensional and non-dimensional variables are related by

ũi = Ũref · ui
x̃i = L̃ref · xi
p̃ = ρ̃Ũ2

ref · p

t̃ =
L̃ref

Ũref

· t,

where the tilde (̃·) denotes a dimensional quantity. Ũref , L̃ref , ρ̃ and ν̃ represent a
characteristic velocity, length, density and kinematic viscosity, respectively.

The definition of the Reynolds-Number is given by

Re =
Ũref L̃ref

ν̃
. (2.3)

In general, the Reynolds number describes the ratio between the inertial and vis-
cous forces in a flow. Therefore, it is an important measure of the characteristics
of a flow.
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2.1 Orr-Sommerfeld / Squire Equation

In all real flows, known and unknown disturbances are present. These disturbances
can grow and finally lead to the breakdown of the initially laminar flow. The
growth (or alternatively decay) of small disturbances in a viscous boundary layer
flow can be described using the linear stability theory. The Orr-Sommerfeld /
Squire equations, which will be derived in this chapter, are a means to specify the
downstream evolution of instabilities in a flow.

Together with an appropriate set of boundary and initial conditions, the Na-
vier-Stokes equations (2.2) and the equation of continuity (2.1) form an ellip-
tic/parabolic system to describe an incompressible flow. In order to derive evolu-
tion equations for small perturbations, consider a basic state (Ui, P ) satisfying the
Navier-Stokes equations. With this basic state, perturbations can be seen as the
difference between the local quantities and the basic flow (ui−Ui, p−P ) = (u′

i, p
′).

Applying this difference to the above equations and omitting the primes yields the
nonlinear evolution equations

ui,i = 0 (2.4)
∂ui
∂t

+ Ujui,j + ujUi,j + ujui,j = −p,i +
1
Re

ui,jj. (2.5)

The boundary conditions to this set of equations have also to be written with
respect to the disturbance formulation.

Consider a parallel flow in x-direction only dependent on the wall normal co-
ordinate y as basic state

Ui = Ui(y)δ1i

with δij as Kronecker symbol

δij =
{

1 i = j
0 i 
= j

(2.6)

Inserting this base flow into the evolution equations (2.5) and neglecting all
nonlinear terms gives

∂ui
∂t

+ U
∂ui
∂x

+ δ1iu2U
′ = −p,i +

1
Re

ui,jj (2.7)

together with continuity (2.4). Here, the prime denotes differentiation with respect
to the wall normal direction (·)′ = d(·)

dy .
These equations can be rewritten using a variable substitution for the normal

velocity v = u2 and for the normal vorticity η = ∂u
∂z − ∂w

∂x yielding the velocity-
vorticity formulation [14][(

∂

∂t
+ U

∂

∂x

)
∇2 − u′′ ∂

∂x
− 1
Re

∇4

]
v = 0 (2.8)[

∂

∂t
+ U

∂

∂x
− 1
Re

∇2

]
η = −U ′∂v

∂z
. (2.9)
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Again, boundary and initial conditions for v and η have to be supplied, e.g. for
solid walls and the undisturbed far field, the boundary conditions read

v = v′ = η = 0. (2.10)

Following the notation of [14], the introduction of wavelike solutions of the
form

v(x, y, z, t) = ṽ(y)ei(αx+βz−ωt) (2.11)
η(x, y, z, t) = η̃(y)ei(αx+βz−ωt) (2.12)

finally results in a pair of equations for ṽ and η̃[
(−iω + iαU)(D2 − κ2)− iαU ′′ − 1

Re
(D2 − κ2)2

]
ṽ = 0 (2.13)[

(−iω + iαU)− 1
Re

(D2 − κ2)
]
η̃ = −iβU ′ṽ. (2.14)

Herein α and β represent the streamwise and spanwise wavenumber, κ =
√

α2 + β2

and ω denotes the (temporal) frequency, D stands for differentiation with respect
to the normal direction. Consequently, the boundary conditions at solid walls and
in the undisturbed free stream read

ṽ = Dṽ = η̃ = 0. (2.15)

In order to invert the substitution of the velocity components u and w (respec-
tively ũ and w̃), they can be computed using the equation of continuity and the
definition of η̃,

ũiα+
∂ṽ

∂y
+ w̃iβ = 0 (2.16)

η̃ = ũiβ − w̃iα, (2.17)

yielding an expression for ũ and w̃

ũ =
i

κ2
(αDṽ − βη̃) (2.18)

w̃ =
i

κ2
(βDṽ + αη̃). (2.19)

Equation (2.13) for the normal velocity ṽ is called the Orr-Sommerfeld equa-
tion, whereas equation (2.14) for the normal vorticity η̃ is referred to as Squire
equation.

The Orr-Sommerfeld and the Squire equation are coupled through the source
term −iβU ′ṽ. They form together a complete eigenvalue problem for three-
dimensional disturbances. In the general case (coupling term nonzero, β 
= 0),
the solution consists of fluctuations in all three velocity components

Full mode (β 
= 0): ũOS/SQ, ṽOS/SQ, w̃OS/SQ. (2.20)
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In the case of β = 0, the two equations lose their coupling term and can therefore
be solved independently. The Orr-Sommerfeld equation for this case will lead to
two-dimensional disturbances in ũ and ṽ, whereas the Squire equation will govern
the behaviour of η̃ and w̃.

Full mode (β = 0) – OS equation: ũOS, ṽOS, 0
Full mode (β = 0) – SQ equation: 0, 0, w̃SQ. (2.21)

Neglecting the coupling term −iβU ′ṽ in the general case (β 
= 0) – which means
not considering the solution of the Orr-Sommerfeld equation for ṽ while solving
the Squire equation – will lead to two sets of eigenfunctions; one for ṽ (from Orr-
Sommerfeld equation) and one for η̃ (from Squire equation). Expanding these two
different solutions individually using continuity (2.16) to all velocity components
yields two different disturbances – Orr-Sommerfeld modes (pure OS modes) only
considering the Orr-Sommerfeld equation and Squire modes (pure SQ modes) only
using the Squire equation

OS-mode: ũOS, ṽOS, w̃OS (2.22)
SQ-mode: ũSQ, 0, w̃SQ. (2.23)

2.1.1 Eigenvalue Spectrum

The solution to the eigenvalue problem of the Orr-Sommerfeld / Squire equation
can either be considered as temporal problem, where disturbances grow (or decay)
in time. This view implies a real streamwise wave number α, but a complex wave
velocity c = ω/α. On the other hand, a spatial eigenvalue problem is given by
choosing a real frequency ω and a complex wave number α. A spatial viewpoint
implies a growth (or decay) of the disturbances in space rather than in time –
exponentially growing modes are thus given by 	(α) < 0. In this report, we solely
concentrate on the spatial approach to the linear stability equations.

The Orr-Sommerfeld / Squire equations (2.13) and (2.14) pose a eigenprob-
lem for – in the spatial approach – the complex streamwise wavenumber α (the
eigenvalue) and the disturbances ṽ(y) and η̃(y) (the eigenfunctions) with given
parameters Re (Reynolds number), β (spanwise wavenumber) and ω (temporal
frequency).

The eigensolutions to these equations in a semi-infinite domain are divided
into two spectra: A set of discrete modes and an infinite continuum of modes.
Figure 2.1 shows a typical distribution of eigenvalues for the Blasius boundary
layer. The form of eigenfunctions of the discrete and the continuous spectrum are
quite different: Modes of the discrete spectrum decay exponentially outside the
boundary layer from an intensity maximum near to the wall, while the continuous
modes seem to be inable to penetrate the boundary layer. This effect has been
described as shear-sheltering [16]. Outside the boundary layer, continuous modes
oscillate sinusoidally.
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Figure 2.1: Typical spatial spectrum for Blasius boundary layer flow with ω = 0.26,
β = 0, Re=1000 (Parameters similar to figure in [14]). Dots computed
with eigensolver (chapter 2.1.2), gray line computed with freestream ap-
proximation (chapter 2.1.3). left: Eigenvalues in complex α-plane. right:
Eigenvalues in complex c = ω/α-plane.

Discrete Spectrum

Eigensolutions of the discrete spectrum are basically confined to the boundary
layer and are much larger near the wall than further out in the freestream. Outside
the boundary layer, they tend to decay exponentially. Therefore, the boundary
conditions at the wall and in the freestream (y → ∞) can be written as

ṽ = Dṽ = η̃ = 0. (2.24)

For these boundary conditions, a (finite) set of eigenvalues and eigenfunctions to
the equations (2.13) and (2.14) can be found. A suitable algorithm to compute
the eigenfunctions of the discrete spectrum would, for example, be the companion
matrix method [15] or standard eigensolver routines (see section 2.1.2).

Typically, the least stable discrete eigenmodes is referred to as Tollmien-Schlich-
ting wave.

Continuous Spectrum

In contrast to eigenfunctions of the discrete spectrum, modes of the continuous
spectrum will not decay to zero outside the boundary layer. Therefore, the bound-
ary condition (2.24) cannot be used as it would prevent the desired oscillations in
the freestream. The outer boundary condition has to be relaxed to

ṽ = Dṽ = η̃ bounded as y → ∞. (2.25)

Solutions of the continuous spectrum can either be found as solution to a
general eigenvalue problem (see section 2.1.2) with an appropriate boundary con-
dition. A second algorithm is shown in section 2.1.3, where an approximation in
the freestream is used.
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2.1.2 Solution via Eigensolver

The Orr-Sommerfeld equation (2.13) and the Squire equation (2.14) have to be
solved complying with the no-slip condition (2.24) at the wall and the boundedness
in the freestream (2.25).

The most straightforward way to do that is solving these two equations without
any simplification. They consist of a generalized eigenvalue problem – fourth order
in the velocity ṽ and second order in the vorticity η̃. Following the analysis of [14],
a transformation of the form(

ṽ
η̃

)
=

(
Ṽ

Ẽ

)
exp(−αy) (2.26)

will reduce the order of the nonlinear eigenvalue problem by two. The introduction
of the vector quantity (αṼ , Ṽ , Ẽ)T leads to a system of first-order differential
equations

 −R1 −R0 0
I 0 0
0 −S −T0





 αṼ

Ṽ

Ẽ


 = α


 R2 0 0

0 I 0
0 0 T1





 αṼ

Ṽ

Ẽ


 (2.27)

with

R2 =
4
Re

D2 + 2iUD (2.28)

R1 = −2iωD − 4
Re

D3 +
4
Re

β2D − iUD2 + iUβ2 + iU ′′ (2.29)

R0 = iωD2 − iωβ2 +
1
Re

D4 − 2
Re

β2D2 +
1
Re

β4 (2.30)

T1 =
2
Re

D + iU (2.31)

T0 = −iω − 1
Re

D2 +
1
Re

β2 (2.32)

S = iβU ′. (2.33)

The boundary conditions are the no-slip condition at the wall (2.24) and the
boundedness in the freestream (2.25). The latter condition was implemented using
the following constraints

Dṽ = D2ṽ = Dη̃ = 0. (2.34)

In the present study, this system is solved using a standard eigensolver (cgeco
from netlib). The spatial discretization is done with Chebyshev polynomials at
the Gauss-Lobatto points. Solutions computed via the eigensolver can be either
member of the continuous or of the discrete spectrum. Figure 2.1 shows a set of
eigenvalues in the complex plane computed using the above algorithm, whereas
figure 2.2 shows a typical eigensolution for a mode of the continuous spectrum.

To illustrate the difference between discrete and continuous modes, figure 2.3
shows a typical example of an eigenmode of the discrete part of the spectrum. As
mentioned above, modes of the discrete spectrum have their maximum amplitude
inside the boundary layer, whereas continuous modes are comparably small near
the wall and reach an oscillatory state in the freestream.
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Figure 2.2: Typical example of a continuous eigenmode ṽr (black) and ṽi (gray). Pa-
rameters were ω = 0.2, β = 1, Re=300, α = 0.20 + 0.0076i, (γ = 1.1116).
Numerical computation using standard eigensolver (see chapter 2.1.2).
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Figure 2.3: Typical example of a discrete eigenmode ṽr (black) and ṽi (gray). Parame-
ters were ω = 0.2, β = 0, Re=300, α = 0.44+0.017i. Numerical computation
using standard eigensolver (see chapter 2.1.2).

2.1.3 Solution for Continuous Spectrum

Similar to the preceding chapter, the Orr-Sommerfeld equation (2.13) and the
Squire equation (2.14) have to be solved fulfilling the no-slip condition (2.24) at
the wall and the boundedness in the freestream (2.25). In contrast to the last
chapter, simplifications will be introduced to derive a solution.

The basic equations (2.13) and (2.14) can be simplified in the freestream, where
the mean velocity U is constant and thereby the derivatives U ′ = U ′′ disappear,
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to [
(−iω + iαU)(D2 − κ2)− 1

Re
(D2 − κ2)2

]
ṽ = 0 (2.35)[

(−iω + iαU)− 1
Re

(D2 − κ2)
]
η̃ = 0, (2.36)

yielding two uncoupled ordinary differential equations with constant coefficients
of forth and second order, respectively.

First, consider equation (2.35). Following the notation of [12], the four expo-
nential solutions can be written as

ṽi ∝ eλiy (2.37)
λ1 = −√

Q λ2 = +
√
Q λ3 = −α λ4 = +α (2.38)

Q = Re(−iω + iαU) + κ2 = −γ2 (2.39)

with γ introduced as wall-normal wavenumber of the perturbations and κ2 =
α2+β2. In the case of spatial evolution the real part αr = �(α) of the wavenumber
α is positive. In order to satisfy the boundedness of the solution (2.38), root four
λ4 has to be discarded, since it is exponentially growing with y. The eigenfunction
in the freestream is thus formed by

ṽ = Aṽ1 +Bṽ2 + Cṽ3 (2.40)
= Ae−iγy +Beiγy + Ce−αy (2.41)

and the eigenvalue α is given as a function of γ by

α =
i

2

[√
(URe)2 + 4(β2 + γ2 − iReω)− URe

]
(2.42)

αr = �(α) =
√
1
2

[√
b2 + ω2Re2 − b

]
(2.43)

αi = 	(α) = 1
2
Re

(
ω

αr
− U

)
(2.44)

b =
1
4
Re2(U2 + γ2 + β2) (2.45)

Equations (2.43) and (2.44) can be used to plot a parametric curve of the freestream
approximation of the continuous spectrum as shown in figure 2.1.

Considering the Squire equation (2.36) simplified for freestream conditions
(2.36), similar results can be found

η̃ = Dη̃1 + Eη̃2 (2.46)
= De−iγy + Eeiγy (2.47)

with the same expressions for α and γ as above.
It is important to note, that using this solution procedure, only pure OS modes

and SQ modes are to be computed. The inclusion of the coupling term −iβU ′ṽ
in the Squire equation could lead to unwanted resonance, although the coupling
term is zero in the freestream. The calculation of coupled eigenmodes needs to be
done using the eigensolver (see chapter 2.1.2).
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Numerical Solution

The numerical approach to solve the Orr-Sommerfeld equation for the eigenfunc-
tions of the continuous spectrum used in [12] and partly in [16] was a 4th-order
Runge-Kutta scheme to integrate the Orr-Sommerfeld equation (2.13) from the
uppermost grid point to y = 0. The theoretical shape of the oscillations in the
freestream is known from the freestream solution (previous chapter 2.1.3), there-
fore providing boundary conditions. This method proved to be successful for suf-
ficiently small ω, but failed due to roundoff error and the inherent stiffness of the
Orr-Sommerfeld equation for general ω [15].

In this report, another method was used to compute the continuous modes.
Rather than linearly combine different solutions ṽi resp. η̃i, a boundary value
problem with the collocation method in Chebyshev space was formulated [14].
To solve this problem, four boundary conditions for ṽ and two for η̃ have to be
supplied. At the wall (y = 0), the boundary conditions read

ṽ
∣∣
y=0

= ṽ′
∣∣
y=0

= η̃
∣∣
y=0

. (2.48)

As second condition for η̃ and third for ṽ, an arbitrary normalization is imple-
mented in the freestream (y = ymax)

ṽ
∣∣
y=ymax

= η̃
∣∣
y=ymax

= 1 + 0 · i. (2.49)

The last boundary condition for ṽ should take into account the boundedness of
the eigenfunctions, boundary condition (2.25). Following [16], it can be seen from
equation (2.41) that the expression

ṽ′′ + γ2ṽ = C(α2 + γ2)e−αy (2.50)

holds in the freestream. Thus, evaluating this expression at two points (y1, y2) in
the freestream yields a boundary condition, which upholds the periodicity

ṽ′′ + γ2ṽ
∣∣
y1

ṽ′′ + γ2ṽ
∣∣
y2

= eα(y2−y1). (2.51)

Figure 2.4 shows a typical example of an eigenfunction computed using the
above algorithm. It can clearly be seen, that – beginning at a certain wall-normal
distance – the eigenfunction approaches a pure sinusoidal oscillation according to
equation (2.41).

The qualitative behaviour of the solution to the Squire equation η̃ is similar.

2.2 Turbulence

A turbulent flow is characterized by an apparently random velocity field – in par-
ticular the varying velocity components seem to follow no rules. This phenomena
is apparent to all turbulent quantities like velocity, vorticity, pressure and stress
tensor.



 Theoretical Formulation

����

��

����

�

���

�

���

�

� � �� �� �� ��

������������	���
����
��



��


�
��

�
	
�
��
�
��

�

Figure 2.4: Typical example of a continuous eigenmode ṽr (black) approaching pure os-
cillation in the freestream (gray). Parameters were ω = 0.2, β = 0, Re=300,
γ = π/2, (α = 0.20 + 0.0084i). Numerical computation using the approxi-
mation algorithm of chapter 2.1.3.

2.2.1 Statistical Quantities

In order to allow an analysis of turbulent flows, the use of statistical methods is in-
dicated. The Reynolds splitting of velocities is used to divide a velocity component
into an averaged part ui and a fluctuation part u′

i

ui = ui + u′
i with u′

i = 0. (2.52)

The averaged part ui(x) of the turbulent quantity ui(x, t) can be calculated, de-
pendent on the flow, either by averaging over time

ui(x) = lim
T→∞

1
T

∫ T

0
ui(x, T0 + t)dt (2.53)

or by an ensemble average over a number n of independent realizations

ui(x) = lim
n→∞

1
n

n∑
i=1

ui(x, ti). (2.54)

It is obvious that the temporal averaging is only appropriate for statistical station-
ary (e.g. temporally not decaying) flows. For stationary, but spatially decaying
processes like spatial boundary layer simulations, a combined average in time and
space can be applied. For that, the Taylor Hypothesis is used to convert a time
signal into a spatial signal (and vice versa) with the substitution [27]

t =
x

U∞
(2.55)

with t as time, x as spatial coordinate and U∞ describing the mean velocity.
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Besides the averaged values of a turbulent quantity, its fluctuation intensity is
important. A way to express this is given by the root-mean-square (rms) value of
a velocity component ui defined as

ui,rms =
√
(u′

i)2 ⇒ urms =
√
(u′)2 vrms =

√
(v′)2 wrms =

√
(w′)2

(2.56)

It is important to note, that the term rms-velocity is sometimes used with a dif-
ferent meaning (see for example [27]). There, the definition is given as follows

Urms =

√
u′
lu

′
l

3
=

√
(u′)2 + (v′)2 + (w′)2

3
, (2.57)

providing an arithmetic average of the velocity fluctuations in all directions. To
avoid confusion between the definitions (2.56) of u1,rms = urms and (2.57) of Urms,
the use of the latter definition is indicated by a capital U .

Closely linked to the rms-value of the velocity are the definitions of the turbu-
lence intensity Tu and the turbulent kinetic energy k. The turbulence intensity is
defined as

Tu =

√
u′
lu

′
l

3uiui
=

Urms√
uiui

(2.58)

and allows a comparison of the magnitude of the local turbulent fluctuations u′
i to

the averaged velocity ui.
The turbulent kinetic energy k of the turbulent fluctuations is defined as

k =
u′
lu

′
l

2
=

3
2
(Urms)2. (2.59)

Both, k and Tu are measures for the intensity of the perturbations in a turbulent
flow and are therefore a characteristic quantity for the strength of the turbulence.
Especially in isotropic turbulence, Tu is widely used to express the disturbance
level.

2.2.2 Homogeneous Isotropic Turbulence

Homogeneous isotropic turbulence means, that the statistical average of the tur-
bulence quantities are dependent neither on the spatial location (homogeneous)
nor the direction (isotropic) of the measurement. This assumption leads to sev-
eral simplifications in the calculation of flow quantities like spectra and energies
[23],[27]. Although homogeneous isotropic turbulence is not exactly observable
in nature, turbulence e.g. caused by a grid is sufficiently close to isotropy to be
considered isotropic.

It is obvious that for isotropic turbulence the proportion of the kinetic energy k
and the rms-values is the same for every velocity component, because the influence
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of the different spatial directions should vanish for averaged quantities, e.g.

k1 =
u′

1u
′
1

2
k2 =

u′
2u

′
2

2
k3 =

u′
3u

′
3

2
(2.60)

k � 3k1 � 3k2 � 3k3. (2.61)

Important results can be obtained using Fourier decomposition of the veloc-
ity components. This transformation basically translates velocity fluctuations
from the physical space (x, y, z or via Taylor hypothesis t, y, z) into the spec-
tral (wavenumber) space (α, γ, β or ω, γ, β). Computing for example the kinetic
energy in spectral space will give important information about what scales in the
flow carry which part of the total kinetic energy.

Formally, the process of computing the spectral energy can be described using
the spatial two-point correlation tensor Rr

ij of the velocity [27]

Rr
ij(x, r) = u′

i(x)u
′
j(x+ r). (2.62)

Applying a spatial Fourier transform of Rr
ij over the volume V yields the spectral

tensor φij(κ)

φij(κ) =
1

(2π)3

∫
V
Rr
ij(x, r) exp(−iκr)dr, (2.63)

where φij(κ) is for a fixed location x only dependent on the wavevector κ =
[κ1, κ2, κ3]. The diagonal elements φll/2 of the spectral tensor are directly related
to the kinetic energy through

k =
u′
lu

′
l

2
=

1
2
Rr
ll(|r| = 0) =

1
2

∫
V (κ)

φll(κ)dκ. (2.64)

The components of the tensor φll(κ)/2 represent the energy present in perturba-
tions with the respective three-dimensional wavevector κ. Therefore, information
of the direction of disturbances is still available in φll(κ)/2.

Especially for isotropic turbulence where any influence of the different direc-
tions should be non-existent, the computation of an energy spectrum E(κ) only
dependent on a scalar wavenumber κ is indicated. Since information of all direc-
tions is captured in E(κ) it is called three-dimensional spectrum [27].

Such a three-dimensional spectrum is usually derived using the above intro-
duced three-dimensional spectral tensor φll(κ)/2. Integrating over sphere shells
|κ| = κ gives

E(κ) =
1
2

∮
|κ|=κ

φll(κ)dΩ (2.65)

with dΩ denoting a surface element of the sphere shell. It can easily be seen, that
the integral over E(κ) is the total kinetic energy k

k =
∫ ∞

0
E(κ)dκ. (2.66)
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A possibility to calculate one-dimensional spectra uses only one-dimensional
Fourier transforms. Computing the one-dimensional Fourier transform of the ve-
locity components ui in the xi direction and averaging over the planes orthogonal
to xi will lead to the one-dimensional energy spectrum E1D(κi) of the ith velocity
component. By comparing the spectra of the different directions i = 1, 2, 3 and
the three-dimensional spectrum, a measure for isotropy is given.

A three-dimensional energy spectrum E(κ) and a one-dimensional spectrum
E1D(κi) is known to have a specific shape for non-bounded homogeneous isotropic
turbulence – dependent only on the total energy k and the wavenumber of the peak
energy value. There are many analytical forms of the spectrum. In this work, the
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Figure 2.5: One-dimensional von Kármán energy spectrum according to equation (2.69).
Computed for integral length scale LI = 5 and total energy k = 1.

von Kármán spectrum is used with the following form [15]

E(κ) ∝ κ4

(C + κ2)17/6
. (2.67)

This spectrum is for large scales asymptotically proportional to κ4, whereas it
matches the Kolmogorv-(5/3)-law for small scales [27]. Figure 2.5 shows a von
Kármán spectrum.

Following the construction of the three-dimensional spectrum in [27], an inte-
gral length scale LI of the turbulence is introduced according to

LI =
1.8
κmax

with E(κ = κmax) = max. (2.68)

Together with the constraint (2.66), the following formulation of the energy spec-
trum can be derived from equation (2.67)

E(κ) =
2
3
kLI

1.606(κLI )4(
1.350 + (κLI)

2
)17/6

. (2.69)
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The length scale L11 obtainable from the longitudinal two-point correlation is
related to LI according to

L11 =
∫ ∞

0

u′(x)u′(x+ r)
(u′)2

dr =
3π
2k

∫ ∞

0

E(κ)
κ

dκ ≈ 1.286LI . (2.70)

2.3 Modeling of Freestream Turbulence

To construct a realistic initial flow field for isotropic freestream turbulence, a
similar approach as in [16] is used in this thesis. Section 2.1.1 describes how
eigenmodes of the continuous spectrum reach a sinusoidal oscillatory state as the
wall normal distance increases. Therefore, a three-dimensional wavenumber κ =
(α, γ, β) in the freestream can be associated with every continuous eigenmode using
equation (2.39).

As pointed out in [12], the continuous eigenmodes provide a natural basis
for freestream turbulence. Using these eigenmodes as basis, the expression for a
general disturbance can be written as

ui(x, y, z, t) =
∑
α

∑
β

∑
ω

Φ(α, β, ω)ũi(y, α, β, ω)ei(αx+βz−ωt) . (2.71)

Here ũi describes the solutions of the Orr-Sommerfeld / Squire equations for the
velocity components according to equations (2.11), (2.18) and (2.19), whereas Φ
is introduced as scaling factor for every individual eigenmode.

By carefully choosing a finite set of wavenumbers α and β and through equation
(2.39) γ, it is possible to construct an initial disturbance with a given spectrum, e.g.
the von Kármán energy spectrum (2.69). For that, every eigenfunction has to be
scaled by a factor which can be computed from the target spectrum. Furthermore,
as the free stream turbulence has to be isotropic, the wavenumbers which are
included in the summation should be chosen isotropically distributed as well.

2.3.1 Isotropically Distributed Wavenumbers

In order to attain isotropic turbulence, a certain finite number of wavenumbers has
to be chosen out of the infinite domain αmin < �(α) < αmax, βmin < β < βmax,
γmin < γ < γmax, where the minimal and maximal wavenumbers are given by
the desired resolution of the wavenumber space. The basic idea is to divide the
wavenumber space into a set of concentrical spherical shells. On the surface of
each shell a number of wavenumbers should be picked and included in the sum-
mation (2.71) with appropriate scaling. This procedure allows to reduce the task
of choosing the wavenumbers to place a number of points isotropically (regularly)
on the surface of a sphere.

Placing points regularly on a sphere is similar to the problem in classical geom-
etry to construct a regular polyeder. A polyeder is a geometrical volume limited
by plane polygon as faces. A special kind of polyeder are regular polyeder. There,
as further condition all of the limiting polygons need to be congruent and regular
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Figure 2.6: The five only possible regular polyeder: Tetraeder (4 corners), octaeder (6
corners), cube (8 corners), icosaeder (20 corners) and dodecaeder (20 cor-
ners).

on their own. It has been proved by Leonhard Euler in the 17th century, that only
5 different regular polyeder can exist [11] (see figure 2.6).

Regularly distributed points on a sphere can now be calculated using well
known trigonometric relations for the corner coordinates of these polyeder. Addi-
tionally, a random spatial rotation of the points around the center (0/0/0) can be
performed.

<( )®

¯

°

Figure 2.7: Wavenumbers simultaneously included when choosing one wavenumber:
(�(α), β, γ), (−�(α),−β,−γ), (�(α), β,−γ), (−�(α),−β, γ).

Some specializations must be made concerning the distribution of wavenumbers
for the construction of freestream turbulence. First, only half of the sphere must
be considered due to the fact, that the complex Fourier transformation of a real
quantity (velocity) only needs half of the whole wavenumber space [9]. Second, it
can be seen from equation (2.41) that by choosing an eigenfunction with the wall-
normal wavenumber +γ automatically the negative wavenumber −γ is included in
the solution as well. Therefore, only half of the domain in γ has to be included in
the summation (2.71) (see figure 2.7). Thirdly, zero values for α and γ make no
physical sense (standing waves) and must therefore be averted. Through adequate
3-D rotation of the points, this can easily be achieved. The forth specialization is
concerned with the discretization of the numerical domain. As it will be shown in
chapter 3, the flow equations are solved in Fourier space in the spanwise direction
z. Therefore, only β wavenumbers are allowed which are an integer multiple of the
smallest scales in the z-direction.

In the present study, the geometrical form of the dodecaeder (figure 2.6) with 20
corner points was used with a random three dimensional spatial rotation. Hereby
it is ensured, that both �(α) 
= 0 and γ 
= 0.

A second dodecaeder was then superimposed with all points mirrored at the
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( , )® ¯
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Figure 2.8: Simple example showing the importance of the inclusion of the mirrored
geometrical form (see text). The inclusion of the black dots in the sum (2.41)
implies the inclusion of the gray circles (mirrored). To maintain isotropy,
the mirrored triangle (gray) is considered as well.

α/β-plane. This is done to get corresponding points with the negative γ-coordi-
nates in the summation in order to always include +γ and −γ modes, see equation
(2.41). From these 40 points, only the 10 points in the quadrant �(α) > 0 and
γ > 0 were taken and their eigenfunctions were included in the summation (2.71).

Figure 2.8 explains this procedure with the two-dimensional example of a tri-
angle. Consider a triangle (black). By including the two points with γ > 0, the
two gray corner points with γ < 0 are included as well by the means of equation
(2.41). To ensure highly isotropic distribution of the points, the corners of the
gray triangle with γ > 0 are included in the sum as well.

Finally, figure 2.9 shows a typical distribution of points obtained by the above
procedure, seen in a α/γ-plane.
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Figure 2.9: Regular distribution of points on a sphere according to the scheme described
in the text. Points with β ≥ 0 shown in a α/γ plane. Because for one of the
points β = 0, 22 instead of 20 points are drawn.
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2.3.2 Scaling of the Eigenmodes

Once the wavenumbers for the eigenmodes to include in the freestream turbulence
have been identified, the respective eigensolutions to the Orr-Sommerfeld / Squire
equations need to be calculated. In section 2.1.2 and 2.1.3 two solution procedures
have been introduced: The computation via eigensolver and the calculation using
the solution in the freestream. It has been found, that the eigensolver will –
at least for some wavenumbers – not find oscillatory solutions in the freestream
due to the boundary condition imposed at the upper boundary. Therefore, for
the construction of the freestream turbulence, the calculation using freestream
approximation (section 2.1.3) was used in the present thesis. Since this algorithm
complys with continuity, the summation of eigenmodes provides a disturbance
which satisfies continuity as well.

As pointed out in section 2.1.3, the algorithm only provides pure Orr-Sommer-
feld and Squire modes with neglecting their coupling term. Therefore, for a given
wavevector, both an Orr-Sommerfeld and a Squire mode was calculated

OS-mode: ũOS, ṽOS, w̃OS (2.72)
SQ-mode: ũSQ, 0, w̃SQ. (2.73)

On both solutions, an arbitrary phase shift was applied before adding them to-
gether with random weights to form the final disturbance at a given wavenumber

ũ(y, α, β, ω) = cos(r1)ei·r2 ũOS + sin(r1)ei·r3 ũSQ (2.74)
ṽ(y, α, β, ω) = cos(r1)ei·r2 ṽOS (2.75)
w̃(y, α, β, ω) = cos(r1)ei·r2w̃OS + sin(r1)ei·r3w̃SQ (2.76)

with r1, r2 and r3 denoting random numbers in [0, 2π) and i as the complex unit.
In order to construct an energy spectrum according to equation (2.69), each

disturbance (ũ, ṽ, w̃) needs to be scaled to the required energy. The most straight-
forward way to do that is numerically calculating the energy of such a disturbance
and normalize it to unit energy. In this study, this is done by calculating the
energy per unit volume in a test volume V

k∗ =
u′
lu

′
l

2
=

1
2
1
V

∫
V
(ũ2 + ṽ2 + w̃2)dV (2.77)

and scaling every eigenfunction by
√
1/k∗ to get unit energy. To meet the spectral

energy given by (2.69), a further scaling with a factor
√
ψ has to be performed

according to

ψ(κ) = E(κ)
∆κ

ni
. (2.78)

Here, E(κ) is the desired energy spectrum, κ =
√�(α)2 + β2 + γ2 the wavenum-

ber, ∆κ the difference in wavenumber between to subsequent sphere shells and ni
the respective number of modes on a shell. Hereby it is ensured that∫ ∞

0
E(κ)dκ ≈

∑
κi

ni

[
E(κi)∆κ

ni

]
=

∑
κi

niψ(κ). (2.79)
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The overall scaling for each individual disturbance is thus given by

ũ(y, α, β, ω)∗ =

√
ψ

k∗
ũ(y, α, β, ω) (2.80)

ṽ(y, α, β, ω)∗ =

√
ψ

k∗
ṽ(y, α, β, ω) (2.81)

w̃(y, α, β, ω)∗ =

√
ψ

k∗
w̃(y, α, β, ω). (2.82)

Combining all scaled individual disturbances into the summation (2.71) with

Φ =
√

ψ
k∗ will lead to a disturbance field ui(x, y, z, t) that meets the given energy

spectrum E(κ) (2.69). Figure 2.10 shows the computed spectrum of a disturbance
constructed according to the above procedure. The discrepancy between the mea-
sured spectrum and the desired one for low wavenumbers can be explained by
coarse resolution of the Fourier transform for small wavenumbers.
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Figure 2.10: One-dimensional energy spectrum calculated for superposition of Orr-
Sommerfeld and Squire modes. To compare, the desired von Kármán spec-
trum is shown (gray, see figure 2.5). Parameters: 20 shells with 10 points
each (200 eigenmodes) , k=[0.23, 3], integral length scale LI = 5, total
energy k = 1.

Several tests have shown, that such a disturbance is very isotropic. The rms-
fluctuations in the three coordinate directions urms, vrms and wrms are all within
3% of the mean value (Tu). Moreover, the comparison of different two-dimensional
spectra showed good agreement. Further description of the freestream turbulence
can be found in chapter 4.



Chapter 3

Numerical Method

The numerical solution of the Navier-Stokes equations especially for the simulation
of transitional and turbulent flows requires high numerical accuracy for a large span
of length scales. Since the direct numerical simulation (DNS) approach includes
resolving all these scales without approximations or modeling, it is important
that efficient numerical schemes are applied. Moreover, for fast calculation the
computational domain should be as small as possible and the resolution coarse –
but still as fine as necessary for the desired accuracy/application.

3.1 Computational Domain

The simulations presented in this report deal with the spatial evolution of a bound-
ary layer subject to freestream turbulence. Usually, simulations tend to cover –
like in experimental setups – the whole domain including the location, where the
freestream turbulence is generated, which is usually upstream of the leading edge
and the plate. A lot of valuable computing resources are used to simulate the – in
fact not desired and irrelevant to the boundary layer growth – region upstream of
the leading edge.

In this report, a technique similar to [16] is used. The disturbances which
form the freestream turbulence are a superposition of eigensolutions to the Orr-
Sommerfeld and Squire equations. As described in chapter 2, these eigenmodes
provide a natural basis for freestream turbulence above a flat plate. Therefore,
it is not required to introduce the disturbances upstream of the leading edge of
the plate and let these disturbances evolve – on the contrary, the computational
domain even starts at a certain distance x0 downstream of the leading edge. This
technique allows that the evolution of the initial freestream turbulence before
the leading edge does not need to be calculated. It is therefore saving a lot of
computational time and memory.

The computational domain basically consists of a three-dimensional cuboid
bounded at the lower edge by the flat plate (see figure 3.1) with a no-slip boundary
condition. The plate boundary layer will evolve in the computational domain
starting with an initial boundary layer thickness δ0 resp. δ∗0 . In the streamwise
direction, the computational domain is bounded by the fringe region (see below),
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x0
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turbulenttransitional

computational domain

physical domain
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1

freestream
turbulence (Tu)

boundary layer

Figure 3.1: Location of the computational domain with respect to the plate, leading
edge, boundary layer and fringe region (not to scale).

whereas the boundary conditions in the spanwise direction are periodic.
The relevant quantities of the flow can be scaled with the inlet boundary layer

thickness δ0, the freestream velocity U∞ and the viscosity ν. The characteristic
Reynolds number based on the displacement thickness at the inlet δ∗0 is given by

Reδ∗0 =
δ∗0U∞

ν
. (3.1)

The distance from the leading edge, x0, can be computed using

x0

δ∗0
= Reδ∗0

1
(1.7208)2

. (3.2)

Typical dimensions of the computational domain are in the present study a
streamwise length of 1000δ∗0 , a spanwise width of 50δ∗0 and a height of 60δ∗0 . The
fringe length accounts for around 10% of the streamwise extent. All simulations
were started from an inlet Reynolds number Reδ∗0 = 300.

3.2 Numerical Scheme

As already pointed out, the use of efficient numerical algorithms is important
due to the immense amount of data to be processed during a direct numerical
simulation. Therefore, spectral methods are a common choice for DNS. In spectral
methods the solution is approximated by an expansion of smooth (global) functions
which provides a fast convergence rate to the approximation of the real solution.
Moreover, higher accuracy per included spectral mode compared to the accuracy
produced by finite-element or finite difference discretizations with corresponding
number of grid points can be reached.

The use of spectral methods in fluid dynamics dates back in the early 1970s. It
was then, when these methods were termed pseudo-spectral methods. The reason
is, that not the whole computation is done in spectral space – the multiplications of
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the nonlinear terms of the flow equations are calculated in physical space to avoid
the evaluation of convolution sums. The transformation between physical and
spectral space can be efficiently done by fast Fourier transform (FFT) algorithms
[8].

The numerical code used for the calculations presented in this study is a variant
of the boundary layer code bla, which has been developed and improved over the
past years at KTH Stockholm. It has been successfully applied in a number of
works, see for example [5], [25] etc. Extensive documentation to the code and the
numerical scheme can be found in [18]. The following adapted description is partly
taken from [18].

3.2.1 Velocity - Vorticity Formulation

The algorithm solves the full three-dimensional incompressible Navier-Stokes equa-
tions and continuity, see equations (2.1) and (2.2). In tensor notation, they read
[18]

∂ui
∂t

= − ∂p

∂xi
+ εijkujωk − ∂

∂xi
(
1
2
ujuj) +

1
Re

∇2ui + Fi (3.3)

∂ui
∂xi

= 0 (3.4)

with ωi as vorticity component i. Fi denotes a body force, which is used for
numerical purposes in the fringe region (see section 3.2.3). εijk is the permutation
symbol defined as

εijk =




1 even permutation of (i, j, k)
−1 odd permutation of (i, j, k)
0 else

(3.5)

A Poisson equation for the pressure can be obtained by taking the divergence
of the momentum equation (3.3)

∇2p =
∂Hi

∂xi
−∇2(

1
2
ujuj) (3.6)

where Hi = εijkujωk + Fi. Application of the Laplace operator to the momentum
equation for the normal velocity v yields an equation for that component through
the use of equations (3.6) and (3.4). One finds

∂∇2v

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y
(
H1

∂x
+

∂H3

∂z
) +

1
Re

∇4v. (3.7)

This equation can, for numerical purposes, be written as a system of two second
order equations

∂φ

∂t
= hv +

1
Re

∇2φ

∇2v = φ, (3.8)
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where

hv =
(

∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y

(
∂H1

∂x
+

∂H3

∂z

)
. (3.9)

An equation for the normal vorticity η can be found by taking the curl of the
momentum equation. The second component of that equation reads

∂η

∂t
= hη +

1
Re

∇2η, (3.10)

where

hη =
∂H1

∂z
− ∂H3

∂x
. (3.11)

Note that the equations for φ, v and η (3.8) and (3.10) have similar form, and
can thus be solved using the same numerical routine. Once the the normal velocity
v and the normal vorticity η have been calculated, the other velocity components
can be found form the incompressibility constraint and the definition of the normal
vorticity.

In the spanwise direction, the boundary conditions are periodic. At the plate
(y = 0), the no-slip boundary condition reads

v
∣∣
y=0

= 0
∂v

∂y

∣∣∣
y=0

= 0 w2

∣∣
y=0

= 0. (3.12)

In the freestream, a von Neumann condition is implemented

∂ui
∂y

∣∣∣
y=yL

=
∂Ui
∂y

∣∣∣
y=yL

(3.13)

with Ui(y) as base flow (Blasius boundary layer, see appendix A.2). It should be
noted, that the code allows the use of many other boundary conditions, but for
the present study the above condition seemed to be reasonable.

The boundary conditions in the streamwise direction have to be treated using
the fringe region (see section 3.2.3).

3.2.2 Discretization

The spatial discretization uses Fourier series expansion in the wall parallel (stream-
wise x and spanwise z) directions. The wall-normal direction (y) is discretized
using Chebyshev series where the Chebyshev tau method (CTM) was applied to
solve for the functions [18].

The time advancement used is a four-step low storage fourth-order Runge-
Kutta method for the nonlinear terms and a second order Crank-Nicholson method
for the linear terms. The non-linear terms are calculated in physical space rather
than in spectral space (pseudo-spectral method). Aliasing errors due to the evalu-
ation in the physical space are removed by the 3/2-rule when the horizontal FFTs
are calculated.
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i an/∆tn bn/∆tn cn/∆tn

1 8/17 0 0
2 17/60 -15/68 8/17
3 5/12 -17/60 8/15
4 3/4 -5/12 2/3

Table 3.1: Time-stepping coefficients for the 4-stage Runge-Kutta scheme (RK3)

The time advancement is carried out by a semi-implicit scheme. The following
equation

∂ψ

∂t
= G+ Lψ, (3.14)

is of the same form as equation (3.8) and (3.10). ψ represents φ or η, G contains the
(nonlinear) advective and forcing terms and depends on all velocity and vorticity
components, L is the (linear) diffusion operator. L is discretized implicitly using
the second order accurate Crank-Nicholson (CN) scheme and G explicitly by a low
storage four stage Runge-Kutta (RK3) scheme. The time discretization may be
written in the following form (G and L are assumed to have no explicit dependence
on time)

ψn+1 = ψn + anG
n + bnG

n−1 + (an + bn)
(
Lψn+1 + Lψn

2

)
, (3.15)

where the constants an and bn are shown in table 3.1. Note that the RK3 scheme
implies that a full physical time step is only achieved every four iterations. The
time used for the intermediate stages are given by t = t+cn, where cn is also given
in table 3.1.

If the time advancement scheme (3.15) is applied to equations (3.8) and (3.10)
we find (neglecting the boundary conditions),

(1− an + bn
2Re

∇2)φn+1 = (1 +
an + bn
2Re

∇2)φn + anh
n
v + bnh

n−1
v

∇2vn+1 = φn+1 (3.16)

and

(1− an + bn
2Re

∇2)ηn+1 = (1 +
an + bn
2Re

∇2)ηn + anh
n
η + bnh

n−1
η . (3.17)

Although no rigorous stability criterion for the Navier-Stokes equations inte-
grated by a Runge-Kutta scheme exists, some insight can be obtained by looking
at model equations [18]. The spectral CFL number is then defined as

CFL = ∆tπmax
i

( |ui|
∆x

+
|vi|
∆y

+
|wi|
∆z

)
(3.18)

with i describing all grid points. The stability analysis for the four stage Runge-
Kutta method shows a stability limit of CFL =

√
8. This is used in the adaptive

time stepping to calculate the maximal stable time step ∆t.
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3.2.3 Fringe Region

Since the boundary layer is developing in the downstream direction, it is necessary
to use non-periodic boundary conditions in the streamwise direction (inflow and
outflow). This is possible while retaining the (periodic) Fourier discretization if
a fringe region is added downstream of the physical domain (see figure 3.1). In
the fringe region disturbances of the physical outflow are damped and the flow
returned to the desired inflow condition. This is accomplished by the addition of a
volume force. The fringe region only increases the execution time of the algorithm
by a few percent [25].

The general form of the forcing is given by

Fi = λ(x)(Uact
i − ui) (3.19)

where λ(x) is a non-negative fringe function which is non-zero only within the fringe
region. Uact

i is the base flow with the superimposed desired inflow disturbances
and also contains the desired flow solution in the fringe. ui denotes the local
(computed) velocity.

The streamwise velocity component Ux of the undisturbed fringe base flow is
calculated as

Ux(x, y) = U(x, y) + [U(x+ xL, y)− U(x, y)]S
(
x− xmix

∆mix

)
, (3.20)

where U(x, y) is a solution to the boundary layer equations (Blasius boundary
layer appendix A.2). xL denotes the extent of the computational domain and the
step function S is given below. Note that x has to be a negative number describing
the distance downstream of the beginning of the computational domain.

In equation (3.20), xmix and ∆mix are chosen so that the prescribed flow, within
the fringe region, smoothly changes from the outflow velocity of the physical do-
main to the desired inflow velocity. The wall normal component Uy is then calcu-
lated from the equation of continuity, and the spanwise velocity Uz is set to zero,
since the base flow U is only two-dimensional. This choice of Ui ensures that for
the undisturbed laminar boundary layer the decrease in thickness is completely
confined to the fringe region, thus minimizing the upstream influence.

Disturbances to the laminar flow can be given as inflow condition with super-
imposing them in Ui to form the actual forcing term Uact

i . This technique is used
to generate the freestream turbulence and will be further discussed in section 3.3.

A convenient form of the fringe function λ is as follows (see figure 3.2)

λ(x) = λmax[S(
x− xstart

∆rise
)− S(

x− xend

∆fall
+ 1)] (3.21)

Here λmax is the maximum strength of the damping, xstart to xend the spatial
extent of the region where the damping function is nonzero and ∆rise and ∆fall

the rise and fall distance of the damping function. S(x) is a smooth step function
rising from zero for negative x to one for x ≥ 1. The following form of S has the
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Figure 3.2: Fringe function used in the simulations according to equation (3.21). Param-
eters are λmax = 0.8, xstart = 910, xend = 1000, ∆rise = 65 and ∆fall = 20

advantage of having continuous derivatives of all orders (see figure 3.3)

S(x) =




0 x ≤ 0
1/[1 + exp( 1

x−1 +
1
x)] 0 < x < 1

1 x ≥ 1
(3.22)
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Figure 3.3: Smooth step function S(x) (equation (3.22)) together with the derivative.
S(x) is used in the fringe function (3.21).

An investigation of how the fringe parameters should be chosen to damp out
disturbances in the fringe can be found in [18]. The parameters used for the
simulations in this study are given in the caption to figure 3.2.
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3.3 Forcing of Continuous Modes

The disturbances, that need to be included at the inlet of the numerical domain,
are derived in section 2.3. Formally, they can be written as a sum of different
eigensolutions ũi(y, α, β, ω) multiplied by an oscillatory exponential function (see
equation 2.71, here rewritten with udist

i (x, y, z, t))

udist
i (x, y, z, t) =

∑
α

∑
β

∑
ω

Φ(α, β, ω)ũi(y, α, β, ω)ei(αx+βz−ωt) . (3.23)

Φ denotes a scaling factor for each individual eigenfunction which is used to get a
specific energy spectrum (see chapter 2.3.2).

With the numerical scheme used in this report, disturbances are introduced as
an additional force in the fringe region (see section 3.2.3). Since the fringe region
describes the change between the outflow and the inflow, the disturbances must be
specified as they were before the zero x-location – that means that the evaluation
of the above sum must be done using negative x values (compare equation (3.20)).
The actual forcing (3.19) uses the disturbed base flow Uact

i which is composed of
the base flow Ui and the disturbances udist

i from equation (2.71) resp. (3.23)

Uact
i (x, y, z, t) = Ui(x) + udist

i (x, y, z, t). (3.24)

The inclusion of the freestream turbulence into the fringe function – especially
the evaluation of the exponential in equation (3.23) – demands a considerable
proportion of the total computer time per iteration step. For the simulations
presented in this thesis, around 30% of the CPU time was needed to perform the
calculations for the freestream turbulence (200 eigenmodes).

3.3.1 Corrections

During the development and testing of the inclusion of the continuous modes into
the simulation code, a few restriction have been found.

Since the eigenvalue α is a complex number with 	(α) > 0 (stable), the negative
x values used for evaluating the fringe forcing term imply an exponential growth of
the disturbance upstream. Depending on the numerical value of 	(α), this growth
can be considerable over the fringe length. Since the maximal possible time step
is chosen according to the CFL number (3.18), stronger gradients in the fringe
region can lead to a decrease of the (adaptive) time step. Eventually, if 	(α) is
large enough for some eigenfunctions included in the sum (3.23), the numerical
scheme could breakdown due to numerical exceptions during the execution of the
code (too big number to be handled by the double float data type).

To avoid such problems, it was studied how important the inclusion of growing
eigenfunction is in terms of the turbulence characteristics at the inlet. Figure 3.4
shows a diagram of the decay of the turbulence intensity Tu. In one case, the
turbulence was created using equation (3.23) with exponentially growing eigen-
functions in x. The other case was computed using an adapted equation

udist
i (x, y, z, t) =

∑
α

∑
β

∑
ω

Φ(α, β, ω)ũi(y, α, β, ω)ei(�(α)x+βz−ωt) , (3.25)
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Figure 3.4: Normalized decay of the turbulence intensity Tu either with accounting for
the exponential grow within the fringe region (black) or with limiting the
eigenmode intensity in the fringe region (grey).

where only the oscillatory dependence on α was considered (neglecting of the ex-
ponential growth with 	(α)). The average time step in the latter case was around
30% higher than using equation (3.23). As there were no significant differences in
the turbulence characteristics at the inlet x = 0, it was decided to use the adapted
form (3.25) for the simulations.

The second problem is concerned with the boundary condition at the top of
the computational domain. The inclusion of the freestream turbulence into the
flow domain was found to cause numerical instabilities near the top boundary,
manifesting themselves as very high normal velocity through the upper boundary.
This could eventually lead to a crash of the iteration. These instabilities seem to
be dependent on the turbulence level of the freestream intensity.

Without further enquiries in the cause of these instabilities, a technique to
circumvent this problem was devised by damping out the freestream turbulence
above a certain height yblend. For every eigenmode included in the sum (3.23) resp.
(3.25), ṽ and η̃ are blended with the smooth step function S(x) (3.22) according
to

η̃(y)blend = η̃(y) · S(y∗) (3.26)
ṽ(y)blend = ṽ(y) · S(y∗) (3.27)

Dṽ(y)blend = Dṽ(y) · S(y∗) + ṽ(y) · DS(y∗) (3.28)

with y∗ = 1− y − yblend

yL − yblend
. (3.29)

The other velocity components ũ, w̃ are computed from ṽblend and η̃blend using
equation (2.18) and (2.19) as explained in chapter 2. Usually, the start of the
blending yblend was chosen 2/3 of the total height yL.
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Chapter 4

Validation

4.1 Numerical Scheme

The numerical scheme and the implementation as presented in chapter 3 and
in [18] has already been used in a number of studies, for example [5] and [25].
Therefore, no further validation of the numerical code has been conducted. A
study concerning the efficiency of the code and the usage on different types of
vector and parallel supercomputers is given in [25].

4.2 Continuous Modes

The superposition of the continuous modes in the fringe region described in section
3.2.3 was tested with a number of different Orr-Sommerfeld / Squire eigenmodes
passing through the flow domain. All simulations were performed in a growing
boundary layer starting with a Reynolds number based on the inlet displacement
thickness Reδ∗0 = 300. The spatial coordinates in the figures of this chapter are
all scaled with δ∗0 . The spectral energy is averaged in the normal direction y and
normalized to total energy one.

4.2.1 Full Mode

The first test case studies the convection of a full Orr-Sommerfeld / Squire mode
according to (2.20) with the streamwise wavenumber β 
= 0. The results are given
in figures 4.1 to 4.4. The parameters of the eigenmode are given in the caption to
figure 4.1.

As it can be seen from equation (2.20), a full Orr-Sommerfeld / Squire mode is
exciting all velocity components u, v and w with different strength. The stream-
wise decay of an eigenmode can be calculated using the linear stability theory
introduced in chapter 2. There, the different eigenmodes are described with the
wavelike formulation given in equation (2.11). Since the eigenvalue α is a com-
plex number, 	(α) describes an exponential variation of the eigenmode over x.
	(α) > 0 indicates a decay of the eigenmode with increasing x (stable mode).
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Figure 4.1: Convection of a full Orr-Sommerfeld / Squire eigenmode with α = 0.2 +
0.0080i, β = 1, ω = 0.2. Diagram shows the decay of the normalized spectral
energy in all velocity components. Normalized to unit total energy at x = 0.

����

���

�

��

� �� ��� ��� 	��
����������	
�����
���	�

��
�


��
�
�	
�


�
��

�
	�


�
��

�
��
�
�
�
�

�
���������
�
���������

�
�����
��

Figure 4.2: Decay of the total spectral energy of the full mode (see figure 4.1), shown
with the fringe region (starting at x = 170). The dashed line represents the
decay rate of the linear stability theory e−2�(α)x.

The energy of a mode is proportional to the square of the velocity. The spatial
dependence of the energy is thus

E ∝ e−2	(α)x. (4.1)

Therefore, the decay rate of the total energy and the energy of every velocity
component on its own should – according to linear stability – follow the decay
law (4.1), if the introduced disturbance is an effective solution to the coupled
Orr-Sommerfeld / Squire equation.
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Figure 4.3: Ratio of the measured spectral decay rate of the full eigenmode (see figure
4.1) and the solution to the linear stability theory 	(α).
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Figure 4.4: Contourplot of the velocity field with the full Orr-Sommerfeld / Squire eigen-
mode (parameters see figure 4.1, shown with the fringe region starting at
x = 170). The spanwise velocity component w is plotted.

For the test case studying the convection of a full Orr-Sommerfeld / Squire
eigenmode, the above conditions are satisfied. The results of the simulations show
exactly the predicted decay, qualitatively and quantitatively for all velocity com-
ponents (figure 4.1) and for the total spectral energy (figures 4.2 and 4.3). The
discrepancy between the simulation and the predicted theoretical decay rate is
mainly below 5%. The main reason for this discrepancy is the influence of the
growing boundary layer near the wall, since the spectral energy is averaged in the
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normal direction y.1

Figure 4.4 shows a visualization of the spanwise velocity component w in a x/y
plane. It can easily be observed, that the disturbance is damped as the spatial
coordinate x increases. As pointed out in section 2.1.1, the eigenfunction shows a
sinusoidal oscillation in the freestream, whereas the disturbance is practically zero
in the region near to the wall.

4.2.2 Orr-Sommerfeld Mode

An Orr-Sommerfeld mode is calculated as a solution to the Orr-Sommerfeld equa-
tion (2.13) with explicitly setting η = 0. Generally, it will consist of fluctuations
in all velocity components u, v and w (2.22). But, in contrast to the coupled Orr-
Sommerfeld / Squire equations described in (2.20), the Orr-Sommerfeld equation
alone does not – in the general (β 
= 0) oblique case – provide a complete physical
solution for the downstream evolution of a disturbance. That is, because there is
vorticity η present in the flow but it is suppressed by the calculation of the initial
disturbance. Therefore, unlike the results presented for the full mode in figure 4.1,
it is expected that the shape of the introduced Orr-Sommerfeld mode will change
in the streamwise direction because of interactions within the flow (influence of
the Squire equation, production of η). Figure 4.5 shows exactly this behaviour;
whereas the decay of v (not directly influenced by the Squire equation) is basically
following the decay law (4.1), the behaviour of the w and especially u component
differs from the exponential decay.
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Figure 4.5: Convection of an Orr-Sommerfeld eigenmode with α = 0.2 + 0.0076i, β =
1, ω = 0.2 and η explicitly set to zero. Diagram shows the decay of the
normalized spectral energy in all velocity components.

1Simulations comparing the decay rate to the linear stability theory performed in parallel
boundary layers (temporal simulation) usually reach higher accuracy (difference below 0.1%)
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Figure 4.6: Convection of an Orr-Sommerfeld eigenmode with α = 0.2+ 0.0086i, β = 0,
ω = 0.2. Diagram shows the decay of the normalized spectral energy in all
velocity components.

Considering a two-dimensional Orr-Sommerfeld mode (that means β = 0), the
Orr-Sommerfeld equation alone governs the fluctuations in u and v (see (2.21)).
The influence of the (now uncoupled) Squire equation is restricted to w, which
stays – if not forced – zero. Therefore, the energy decay of the different velocity
components is expected to resemble figure 4.1 with Ew = 0. Qualitatively, the
theoretical behaviour is confirmed in figure 4.6, showing nearly exponential decay
for both the u and v velocity, whereas w stays zero. The disturbance is thus
two-dimensional throughout the whole flow domain.

4.2.3 Squire Mode

The third test case is the convection of a Squire mode. As described above and in
(2.23), the Squire equation will only govern the u and w velocity components. In a
general three-dimensional case it will not be a physical solution the to downstream
evolution of disturbances. However, in the case of a two-dimensional wave (β = 0),
the Squire equation alone provides a complete solution for only the w component,
whereas u and v should remain zero if not forced.

Figure 4.7 shows basically the theoretically indicated behaviour for the sim-
ulation: The energy in w is following the decay law (4.1). However, u and v is
generated while the disturbance travels downstream; this is mainly due to non-
linear interactions which are not captured in the linear-stability equations.

4.2.4 Two Modes

The freestream turbulence introduced into the flow is composed of a number of
different eigenmodes to the Orr-Sommerfeld and Squire equation (see section 2.3).
Therefore it seemed interesting to examine the downstream convection of two
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Figure 4.7: Convection of a Squire eigenmode with α = 0.2 + 0.0085i, β = 0, ω = 0.2.
Diagram shows the decay of the normalized spectral energy in all velocity
components.

superimposed eigenmodes. By choosing two full Orr-Sommerfeld / Squire modes,
the decay of the total energy in both modes should follow the exponential decay
(4.1) of the linear stability. It is shown in figure 4.8, that the theoretical decay is
confirmed by the simulation.
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Figure 4.8: Convection of two eigenmodes through the computational domain, shown
with the fringe region (starting at x = 170). First mode: α = 0.2 + 0.0076i,
β = 1, ω = 0.2. Second mode: α = 0.4 + 0.0160i, β = 2, ω = 0.4. Dashed
line represents decay rate of the linear stability theory e−2�(α)x.

Figure 4.9 finally shows a visualization of the w velocity component in a x/z
plane.
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Figure 4.9: Contourplot of the velocity field with two propagating eigenmodes (param-
eters see figure 4.8, shown with the fringe region starting at x = 170). The
spanwise velocity component w is plotted.
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Chapter 5

Results

In this chapter, the results of the direct numerical simulation are presented. Ref-
erences to other simulation as well as experimental data will be given throughout
the text.

5.1 Simulation Parameters

One major simulation which eventually reached transition was conducted for this
thesis. The parameters for this case are presented in table 5.1. These parameters

turbulence intensity Tu at inlet 4.7%
Reδ∗0 at inlet (x = 0) 300
Rex0 at inlet (x = 0) 32400
xL (with fringe region) 1000
yL (with blending region) 60
zL 50
fringe start xstart 910
fringe end xend 1000
fringe strength λmax 0.8
∆rise 65
∆fall 20
start of blending yblend 40
Number of modes in x Nx 1024
Number of modes in y Ny 121
Number of modes in z Nz 72

Table 5.1: Parameters for the main simulation

together with the higher turbulence intensity than in T3A and [16] proved to be
sufficient to get turbulent spots and a portion of steady turbulence at the end of
the computational domain. It is important to note that the spanwise width of the
domain is crucial to trigger laminar streaks to break down into turbulent spots;
a simulation with comparable parameters except for zl = 30 instead of zL = 50
showed growing laminar streaks, but lacked their breakdown. An explanation
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for this phenomena could be, that due to the narrow domain the streaks are
too constraint in their shape, resulting in preventing any instability and eventual
breakdown.

Some results are presented depending on different downstream positions. Table
5.2 gives an overview of alternative formulations of these positions.

simulation stations T3A stations
x Rex Reδ∗ Reθ x Rex Reδ∗ Reθ
0 32400 300 114 121 68728 445 177
100 62400 420 164 200 92400 532 225
200 92400 532 225 279 116189 610 272
240 104400 573 250 382 146950 686 323
300 122400 629 284 493 180349 737 385
400 153400 696 332 632 221951 769 456
450 167400 720 360 769 262966 818 539
500 182400 740 389 888 299000 918 628
600 212400 765 440
700 242400 783 493
800 272400 843 562
900 302400 923 618

Table 5.2: Various parameters of the different downstream locations used in the presen-
tation of the results. x denotes the nondimensional streamwise coordinate
used in the numerical code. Rex, Reδ∗ and Reθ are the Reynolds numbers
based on (dimensional) x, the displacement thickness δ∗ and the momentum
thickness θ, respectively.

The computation was conducted on a Cray J932se computer using the code bla
compiled for 12 processors (parallel vector processors with shared memory). The
flow field was calculated up to a (nondimensional) time of 5000 with an averaged
time step of 0.3. The user time needed for this simulation was roughly 400 hours
(4800 CPU hours).

5.1.1 T3 Test Cases

In 1990, the European Research Community On Flow Turbulence And Combus-
tion (ERCOFTAC) set up a database containing experimental and computational
studies of several complex test cases. One of these test cases involved transition
in boundary layers subject to freestream turbulence for levels above 1% such that
bypass transition occurs. The respective case, T3, was experimentally performed
1992 by Coupland [10] and Roach & Brierley [22]. Two different turbulence in-
tensities were studied: Test case T3A with Tu=3% and T3B with Tu=6%. The
freestream turbulence was in both cases isotropic and homogeneous.

The data was recorded using both cross-wire probes for the spanwise and nor-
mal velocity and single-wire probes for the streamwise velocity. The references
made in this thesis all refer to test case T3A, as for that case there are more
experimental stations available.
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5.2 Freestream Turbulence

As described in section 2.3, the inlet disturbance consists of homogeneous isotropic
turbulence. This kind of turbulence can be characterized by the intensity of the
velocity fluctuations Tu and an energy spectrum.

For the cases in this thesis, a von Kármán energy spectrum (2.69) with an
integral length scale LI was used (see chapter 2.2.2) as inlet disturbance for the
simulations. LI was chosen as 5δ∗0 similar to the study [16].

5.2.1 Decay of the Energy

Turbulence is a highly dissipative process due to the strong gradients in the velocity
components. Therefore, unforced turbulence will decay in time and space from
the point where it was created. The decay rate of this loss in kinetic energy
is dependent on many influences, examples may be the way the turbulence was
created, boundaries in the flow domain etc. An important influence is the integral
length scale of the turbulence, that is to say the dimensions of the largest eddies in
the flow. It can be shown through simple inviscid estimations that the dissipation
ε is proportional to [27]

ε ∝ u3
I

LI
(5.1)

with uI as integral velocity. Therefore, it can be concluded that the smaller the
turbulence length scales are the faster it decays. Moreover, it can be shown that
with increasing decay of the turbulence the length scale LI is growing and hereby
slowing down the decay process.

Isotropic grid turbulence is thus know to follow a decay law of the form

Tu ∝ (x+A)B . (5.2)

The decay rate B is, depending on the source, between 0.5 and 1 [28]. As a further
validation of the flow simulation, a least squares fit on the decay of the turbulence
intensity was performed (see figure 5.1) yielding a decay rate B ≈ 0.80. Thus,
the decay of the freestream turbulence is sufficiently similar to the grid turbulence
decay rate.

A measure for the isotropy of the imposed freestream turbulence is given with
comparing the decay rate of the different velocity fluctuations u′, v′ and w′. Figure
5.2 shows the evolution of the averaged fluctuation intensity urms, vrms and wrms

over the flow domain. Within the main portion of the streamwise extent (up to
about Rex ≈ 2 · 105), the maximal variance of the rms-values from the turbulence
intensity is below 3%.

Another measure for isotropy can be obtained looking at one-dimensional spec-
tra (see below) or by calculating different length scales [15]. The dissipation length
scale based on the turbulent kinetic energy is defined as

Lk =
k3/2

ε
(5.3)
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Figure 5.1: Decay of the turbulence intensity Tu at y = 25δ∗0 (solid) and least squares
fit to equation (5.2) with B ≈ 0.80.
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Figure 5.2: Comparison of the decay of urms, vrms and wrms at y = 25δ∗0 .

with ε introduced as the turbulent dissipation. Due to the fact that many experi-
ments only measure the streamwise velocity fluctuations, an alternative definition
of the dissipation length scale based on the decay of the streamwise velocity com-
ponent can be given

Lu =
u3

rms

εx
(5.4)

with εx denoting the x-component of the dissipation. For isotropic flow, the ratio
Lu/Lk reaches the value of

√
2/3. Figure 5.3 portrays the evolution of this ratio

within the flow domain. After a certain inlet length, the ratio is very close to the
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Figure 5.3: Ratio Lu/Lk of the dissipation length scale based on the streamwise velocity
component Lu and based on the total kinetic energy Lk at y = 25δ∗0 . The
dashed line represents the isotropic value

√
2/3 ≈ 0.8165.

isotropic value, whereas for high streamwise coordinates an increased deviation
can be discovered similar to the observation made above for the rms-velocities.

The homogeneity of the imposed disturbances can be checked looking at the
energy decay at different y positions within the flow domain. As figure 5.4 shows,
the maximal variance of the kinetic energy from the mean value is below 3%
throughout the whole vertical extent of the domain (not considering the blending
region, y < yblend).
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Figure 5.4: Decay of the kinetic energy at different y positions.

To summarize the above qualifications of the freestream turbulence, a visu-
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Figure 5.5: Visualization of the turbulent kinetic energy k in the upper part of the
computational domain averaged in z (and time). Section shown x = 0..900
(without fringe region) and y = 20..60 (without boundary layer). The blend-
ing acting on the eigenfunctions above yblend = 40 is clearly visible.

alization of the turbulent kinetic energy is show in figure 5.5. The decay of the
energy in the streamwise direction is clearly visible as well as the effect of the
blending above yblend = 40.

5.2.2 Energy Spectra

According to section 2.2.2, one-dimensional and three-dimensional energy spectra
are an important means to qualify homogeneous isotropic turbulence. Since the
turbulence intensity is decaying in the streamwise direction, the Taylor Hypoth-
esis has been applied to allow the calculation of streamwise spectra. Figure 5.6
shows the comparison of a three-dimensional energy spectrum and the three one-
dimensional spectra in the freestream at a certain downstream position. Both,
the one-dimensional and three-dimensional spectra resemble the forced spectrum
(2.69). Moreover, the isotropy of the flow is affirmed by comparing the three
one-dimensional spectra. The deviation of these spectra for high wavenumbers is
explained by the fact, that the domain, where the spectrum was calculated on, is
only periodic in the z-direction. Both the x and y directions are clipped allowing
aliasing errors to disturb the energy content in high wavenumbers. The spectrum
for the energy Ez(kz) shows exactly the experimentally and numerically confirmed
shape.

Alternatively, figure 5.7 displays three-dimensional energy spectra at different
downstream positions. The spectrum calculated at the inlet position x = 0 com-
pares well with the desired spectrum (2.69) (see figure 2.10), whereas the spectra
calculated at increased downstream coordinates show, on the one hand, the decay
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Figure 5.6: One-dimensional and three-dimensional energy spectra in the freestream at
x = 240.
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Figure 5.7: Downstream evolution of three-dimensional energy spectra at x = 0, x =
240, x = 450 and x = 900. The forced spectrum is shown in grey.

of the total kinetic energy (integral of E(κ) over κ) and, on the other hand, the
slight shift of the intensity maximum to lower wavenumbers. The shape of the
spectrum is maintained in all downstream positions.

5.2.3 Comparison

It has been shown with the above mentioned least squares fit, that the simulated
turbulence basically follows the decay law given in equation (5.2). But the overall
speed of the decay is not stated by the constant B alone, it also depends on A and
the proportionality factor. The physical quantity that influences these additional
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factors is the integral length scale of the (isotropic and homogeneous) turbulence.
Therefore, variations in LI can lead to a different decay speed, although the decay
rate (exponential B in equation (5.2)) is similar.
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Figure 5.8: Comparison of the decay of the turbulence intensity Tu for the simulation
and the experimental test case T3A.

The integral parameters chosen for the present simulation are smaller than
those generated in the T3A test cases. This is clearly visible in figure 5.8, showing
a faster decay of the turbulence for the DNS than for the experiments. On the
other hand, the comparison of this simulation to the data given for the DNS in
[16] yields similar value for the decay of the turbulence.

This difference in the strength of the turbulence can give rise to the assumption
that due to the weaker forcing of the boundary layer transition would occur at a
later stage. On the other hand, rapid distortion theory [15] claims that smaller
scales are more effective at influencing boundary layers and would therefore lead
to an earlier onset of the transitional process.

The results herein and in [16] show that good agreement with the experimental
data can be achieved despite this difference in the initial conditions.
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5.3 Averaged Results

In this section, some of the averaged results obtained by the numerical simulation
are discussed and compared to the experimental case T3A and to the study [19].
All quantities are statistically averaged in time over a non-dimensional time span
of 2500 units. Statistics were taken beginning with 2500 time units after the start
of the simulation. It was checked whether the inclusion of more statistics would
change the results.

The present simulation was computed with a freestream turbulence intensity
of approximately 4.7 %. Since the experimental findings were taken with Tu=3-
3.5%, a direct comparison of the data in dependence of the downstream and normal
location is difficult. Therefore, an appropriate scaling has to be applied. Normally,
downstream locations are indicated using the non-dimensional Reynolds number
Rex based on the downstream location x (in dimensional form). This scaling would
not take into account the different initial conditions. Another way to characterize
a downstream position is given by a Reynolds number based on boundary layer
units, for example Reθ based on the local momentum thickness or Reδ∗ based on
the displacement thickness. The advantage of such a scaling is that the present
shape of the boundary layer rather than the physical downstream location is used.
Hereby, similar states of the boundary layer can be compared, even though the
initial conditions of the respective case were quite different.
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Figure 5.9: Reynolds number Reδ∗ based on the local displacement thickness, Reθ based
on the momentum thickness and Rex based on the downstream location for
the simulation and T3A.

Figure 5.9 shows the relation between the different Reynolds numbers for both
the simulation and the T3A case. It can be seen that the relation between Rex
and the Reynolds number based on boundary layer units is non-linear. The differ-
ence between the simulation and the experiment is due to the different turbulence
intensity. The simulation shows a higher boundary layer thickness at the same
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downstream location than the experiment. This indicates an earlier onset of tran-
sition for the DNS, which is evident due to the higher turbulence intensity.
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Figure 5.10: Friction coefficient cf versus Rex for simulation and T3A.
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Figure 5.11: Friction coefficient cf versus Reθ for simulation and T3A.

The importance of an appropriate scaling of the variables is demonstrated in
the figures 5.10 and 5.11, both showing the local skin friction coefficient cf (see
Appendix A.3). The skin friction correlation for laminar and turbulent flow is
included for reference. The difference between the scaling with Rex and Reθ is
obvious (see above). For the boundary layer scaling, the simulation collapses as-
tonishingly well on the experimental data, whereas for the physical scaling the
transition to turbulence occurs – as to be expected – earlier than in the experi-
ments.
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Figure 5.12: Shape factor H versus Reθ for the simulation (thick line) and the experi-
mental case T3A (symbols).

The shape factor H = δ∗/θ (see appendix) provides distinct values for either
laminar and turbulent flow. Therefore, it is a good measure for the onset of transi-
tion and the general structure of the boundary layer. The downstream variation of
H is shown in figure 5.12. The difference between the computed and experimental
data is – except for a region close to the inlet – minimal. Moreover, the same
stationary value of H is approached in both the simulation and the experiment,
giving good evidence that the structure of the boundary layer is well captured
in the numerical simulation. The discrepancy at the inlet can be explained by
the fact that the inflow of the simulation is assumed to be a Blasius profile with
superposed freestream turbulence whereas in the experiments, already some re-
arrangements in the boundary layer structure have taken place. Again, a scaling
based on the momentum thickness θ has been used to allow direct comparison
with the experiments.

Figure 5.13 shows the mean streamwise velocity profile u+(y+) in wall units
for several downstream locations Reθ. There are only minor differences between
the experimental test case T3A and the simulation. Moreover, the velocity profile
at the most downstream location Reθ=539 shows a good approaching to the clas-
sical linear and logarithmic wall law approximated by Spalding’s formula (A.21).
Fully developed turbulence and with that better collapse on the wall law could be
expected above Reθ ≈1000.

An overview of the energy distribution within the boundary layer can be found
in figure 5.14 (compare to figure 5.5 which shows the upper part of the compu-
tational domain). The boundary layer thickness δ99% coincides roughly with the
edge region optically apparent in the figure. The figure qualitatively illustrates
most of the inherent features of the laminar-turbulent transition. The decay of
the freestream turbulence is clearly visible in the upper part of the image. In the
boundary layer, the streak formation and growth is apparent as an increase of the
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Figure 5.13: Mean streamwise velocity profile u+(y+) in wall scaling for various down-
stream positions (◦ Reθ=272; � Reθ=385; ✸ Reθ=457; ✷ Reθ=539) com-
pared for simulation (black line), T3A (symbols) and Spalding’s logarithmic
law (grey, see appendix (A.21)).

Figure 5.14: Visualization of the kinetic energy k in the boundary layer. Section shown
x = 0 − 900, y = 0 − 20 (without fringe region, for upper part of the
computational domain refer to figure 5.14). Energy intensity ranges from
blue/white (weak, Tu=0%) to red/black (strong, Tu=14%).

kinetic energy peaking at half of the boundary layer thickness δ99%/2. As soon
as turbulent spots are present in the flow, the streamwise growth of the energy
slows down and the intensity maximum shifts downwards closer to the wall. At
the same time, the boundary layer begins to grow faster than in the laminar case.
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Figure 5.15: Evolution of the mean velocity profile u for various x locations. Black lines:
x = 100, x = 200, x = 300; dark grey lines: x = 400, x = 500, x = 600;
light grey lines: x = 700, x = 800, x = 900 (see table 5.2 for the respective
Rex and Reθ).

The downstream variation of the mean velocity profile u is shown in figure 5.15.
Starting at the inlet x = 0 with a Blasius profile (see appendix A.2), fluid with
higher velocity is increasingly found closer to the wall according to the transition
from laminar to turbulent. The higher velocity within the inner half of the bound-
ary layer will lead to higher velocity gradients and thus increase the local skin
friction. Qualitatively and quantitatively, this result is comparable to the experi-
mental findings in the T3A test case [10] and in [19]. Furthermore, the numerical
study [16] yielded similar results.

Figures 5.16 and 5.17 show the deviation of the mean velocity profile from the
local Blasius boundary layer profile. Again, one observes an increased velocity in
the inner half of the boundary layer and a decrease in the outer half expressing
the onset of transition. In figure 5.16 the wall normal coordinate y is scaled with
the inlet momentum thickness δ∗0 . With that scaling, the deviation peak in the
inner half seems to collapse at a fixed (physical) distance from the wall. On the
other hand, figure 5.17 scaled with the local momentum thickness δ∗ indicates an
accumulation of the peak in the outer half at around 2.4 times the local momentum
thickness δ∗. In contrast to these findings, a similar plot is presented in [19] showing
a good collapse for both peaks scaled with the local boundary layer units (nearly
self-similar development).
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Figure 5.16: Deviation of the averaged streamwise velocity u and the local Blasius ve-
locity profile for the respective x-position as a function of the inflow dis-
placement thickness δ∗0 . Black lines: x = 100, x = 200, x = 300; dark
grey lines: x = 400, x = 500, x = 600; light grey lines: x = 700, x = 800,
x = 900.
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Figure 5.17: Normalized deviation of the averaged streamwise velocity u and the local
Blasius velocity profile for the respective x-position as a function of the
local displacement thickness δ∗. The x-locations are the same as in figure
5.16.
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5.4 Streaks and Spots

Unlike the traditional approach to boundary layer stability with exponential growth
of Tollmien-Schlichting waves, larger levels of freestream turbulence (Tu� 1%) pro-
voke a different transition scenario. Rather than exponential an algebraic (linear)
growth mechanism is acting on the streamwise velocity component. For detailed
explanation refer to section 1.1.

The lift-up effect described by Landahl [17] explains how growing elongated
structures in the streamwise velocity component become apparent within the
boundary layer, so called streaks. The streak growth is mainly due to the formation
of normal vorticity η, which is triggered by freestream disturbances penetrating
the boundary layer (recent theoretical investigations see [7] and [6]).

Although the lift-up effect is basically inviscid, the same mechanism is acting
on viscous flows as well [14]. Moreover, spanwise scales of the streaks can be
approximated using the concept of optimal disturbances which is developed in [3].

Streaks are still a phenomena of laminar flow, nevertheless they play an impor-
tant role in the laminar-turbulent breakdown [28], [16]. Before their breakdown,
streaks can reach a high strength of up to fifteen percent of the freestream velocity.
The exact way, how these streaky structures finally break down to turbulence is
still not fully understood [2] – several theories and scenarios exist, which will be
further discussed in section 5.4.2. An overview of the turbulent statistical quanti-
ties and qualifications of the streaks are given in the next section.

5.4.1 Streaks

The appearance of streaky structures in the boundary layer is observable in both
the statistical analysis and the instantaneous visualization of the velocity fluctua-
tions. As described in the preceding chapter, these streaks manifest themselves as
elongated structures in the streamwise direction with alternating in the spanwise
direction between high and low speed. Therefore, a distinctive influence can be
observed in the fluctuation of the streamwise velocity urms. Instantaneous visual-
izations of streaks can be found for example in figure 5.27.

Figure 5.18 shows the variation of urms for different downstream positions.
The presence of streaky structures increases the rms-value at the y coordinates
where they are most distinct. During the first phase of the streak growth, the
wall-normal position of the peak value for different x-positions scales nicely with
the local displacement thickness yielding ymax ≈ 1.4δ∗, whereas above a certain
level a considerable change in the shape of urms occurs: The fluctuation maximum
moves closer to the wall and even decreases (see also figure 5.21). This behaviour
has been observed in most of the other studies including [16], [10] and [19]. A
good qualitative and quantitative agreement between these cases and the present
study was obtained.

The behaviour of the velocity fluctuations in the other directions is similar,
although it is not as distinct as in the streamwise component (figures 5.19 and
5.20). For both vrms and wrms, the peak at roughly half of the local boundary
layer thickness is increasing, and after a certain downstream position, moving
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Figure 5.18: urms for various downstream locations. Black lines: x = 100, x = 200,
x = 300; dark grey lines: x = 400, x = 500, x = 600; light grey lines:
x = 700, x = 800, x = 900.
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Figure 5.19: vrms for the same downstream locations as in figure 5.18.

closer to the wall and eventually decreasing again. This is also similar to the other
experimental and numerical results quoted above.

Closely related to figure 5.18 is figure 5.21 showing the streamwise evolution of
the maximum streamwise fluctuation energy u2

rms,max and the respective y coordi-
nate. It shows clearly, that during the initial phase the growth in u2

rms,max is linear
with x indicating a linear energy growth. Thereafter it saturates and decreases
again a little bit. The position of the maximal u-fluctuation is in the first phase
between 1.4δ∗ and 1.1δ∗ and afterwards decreases considerably to around the ex-
pected value for fully turbulent boundary layers of 15y+. The results presented in
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Figure 5.20: wrms for the same downstream locations as in figure 5.18.
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Figure 5.21: The normalized maximum streamwise velocity fluctuation u2
rms,max and the

respective position ymax within the boundary layer.

this plot are similar to those obtained by [19].
In figure 5.22 and 5.23, both the Reynolds-stress uv and the part of the energy

production −uv ∂u∂y are portrayed. Again, a close agreement between the numerical
simulation [16] could be ascertained.

The comparison of different simulations and experiments with transition due
to freestream turbulence shows that all of them measured a strong increase in the
streamwise fluctuation urms before the turbulent breakdown [16]. However, even
for cases with similar turbulence intensity, the growth rate and the peak value
of urms for the onset of transition varies. This may indicate, that the freestream
turbulence intensity alone is not sufficient to predict the features of transition
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[28]. Since the freestream in the present simulation is highly isotropic, the only
factor to influence the transition mechanism besides the turbulence intensity is
given by the shape of the imposed spectrum E(κ) and its integral length scale LI .
Especially the direct comparison of the decay of Tu between the test case T3A
and the present simulation (and also the simulation [16] which showed a similar
decay rate) given in figure 5.8 show a considerable discrepancy, mainly due to a
different integral length scale of the turbulence. It may therefore be important to
include an extensive characterization of the freestream spectrum in order to allow
a direct comparison between different simulations and experiments.
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Figure 5.22: Reynolds-stress uv for the same downstream locations as in figure 5.18.
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Figure 5.23: Energy production −uv ∂u
∂y for the same downstream locations as in figure

5.18.
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Spanwise Scales

The spanwise spacing of the streaks can be computed using the spanwise correla-
tion Ruu of the streamwise velocity component defined as

Ruu(x, r) =
u(x)u(x+ r)√
u2(x) u2(x+ r)

. (5.5)

with the displacement vector r aligned to the coordinate vector in z direction.
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Figure 5.24: Spanwise two-point correlationRuu of the streamwise velocity u at x = 400,
∆z normalized by the local displacement thickness. Correlation in the
boundary layer at y = 1.4δ∗ (black) and in the freestream y = 10δ∗ (grey).

The two-point correlation and an exemplary visualization of the velocity dis-
tribution in a y/z-plane are shown in figure 5.24 and 5.25, respectively. Plot 5.24
shows a large difference between Ruu in the freestream and in the boundary layer
due to the appearance of the streaks. Qualitatively, a fair agreement for the streak
spacing based on twice the maximum anti-correlation to other investigations has
been found.

Figure 5.25 portrays another important issue of the boundary layer streaks.
Due to the lift-up effect, low-speed streaks are expected to be located within the
upper portion of the boundary layer, whereas high-speed streaks have their velocity
maximum at a lower wall-normal distance [15]. Although figure 5.25 is only an
instantaneous picture of the flow, the tendency can yet be seen.

5.4.2 Spots

As seen in figure 5.18, the streaks can reach a considerable strength of roughly 15%
(averaged) of the freestream velocity before breakdown. However, with a certain
strength the streaks become unstable and break down into a small localized area
with chaotic fluid motion. This is called a turbulent spot within an otherwise
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– 0

– 10

– δ∗
– 1.4 · δ∗

Figure 5.25: Visualization of the velocity distribution in a y/z-plane at x = 400, z =
−25..25, y = 0..10. Dark (blue) areas indicate lower and light (red) areas
higher speed than the mean flow in every y-position. The displacement
thickness is δ∗ = 2.31.

laminar environment. Once a turbulent spot has originated, it will grow in all
directions as it moves downstream. The spot merges with other spots to eventually
form a persistent, fully developed turbulent boundary layer.
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Figure 5.26: Instantaneous variation of the skin friction coefficient cf through a turbu-
lent region. For reference, the averaged results are shown as well (see figure
5.11).

The averaged results presented in section 5.3 show a smooth change from lami-
nar to turbulent flow with increasing streamwise coordinate (see for example figure
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5.11). However, the breakdown of a streak into a turbulent spot has locally great
impact on the flow quantities. Figure 5.26 shows exemplary the variation of the
skin friction cf through a turbulent spot in an otherwise laminar environment
(refer to visualization 5.27). In the region before and after the spot, where only
streaks are present, the skin friction is only increased by a few percent above the
laminar value. As soon as the turbulent spot is present, cf instantaneously jumps
to the turbulent level.

Figures 5.27-5.29 show each a time sequence of laminar streaks breaking down
and forming a turbulent spot. Both figure 5.27 and 5.28 are visualizations of
the flow field at a fixed y location. Therefore, near the inflow (left) there is
still a portion of the freestream visible before the displayed plane penetrates the
boundary layer. Within the boundary layer, the streaks are clearly visible in figure
5.27 as elongated structures with alternating dark and light color. Since streaks
mainly influence the streamwise velocity component u, they are not visible in figure
5.28 displaying the normal velocity v. On the other hand, the spot formation and
development is visible in both the u and v velocity (and also in the w component
not shown) since turbulence is always a three-dimensional process.

Basically, three independent formations of spots are visible in this sequence,
two spots right after each other in the middle the x/z-plane and a spot forming
further upstream near the lower edge. They are indicated in figure 5.30 by the
labels spot 1 to 3. But as these three spots reach the already turbulent region,
they seem to have already merged with each other.

The growth process of the spots can be expressed by the velocity difference of
the leading and trailing edge; measurements in velocity profiles similar to figure
5.28 yield a speed of 52% and 92% of the freestream velocity U∞, respectively.
Similarly, the spanwise widening speed is around 5% of the freestream velocity for
the main portion of the spot.

Figure 5.29 presents the streamwise velocity distribution in a vertical x/y plane.
The respective z coordinate is chosen to cut through spots 1 and 2 in figures 5.27
and 5.28.

5.4.3 Secondary Instability?

The exact way how streaks finally break down into turbulent spots and eventually
into fully developed turbulence is still quite uncertain – of special interest is the
question whether or not the streaks undergo a secondary oscillatory instability
before their collapse. Whereas according to [16] no obvious secondary instability
occurred, experimental studies (for example [19]) report the presence of a pre-
breakdown instability (wiggle). A complete theory of streak instability by looking
at ideal optimal streaks was developed by [3], showing that mainly two classes of
instabilities are likely to occur: Sinuous instabilities forcing the streak to oscillate
in a x/z-plane and the varicose instability with streaks oscillating in a x/y-plane.
Although it was shown in [4] that for a single streak the sinuous instability is more
likely to occur, no conclusive prediction can be made for the physical case with
many streaks interacting with each other.

The data collected with the present direct numerical simulation have not yet
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– −25

– −1

– 25

Figure 5.27: Visualization of streaks and a spot formation showing the amplitude of
the streamwise velocity u. x = 0..900 (without fringe region), z = −25..25,
y = 2.5. Dark (blue) areas indicate lower and light (red) areas higher speed.
The velocity ranges from −30% to +30% of the global mean velocity. The
difference between two frames is 75 time units starting at t = 145.
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– −25

– −1

– 25

Figure 5.28: Visualization of a spot formation showing the amplitude of the normal
velocity v with the same parameters as figure 5.27. Dark (blue) areas
indicate lower and light (red) areas higher speed, whereas grey (green)
indicates zero velocity. The velocity ranges from −30% to 30% of the
freestream velocity.
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– 0

– 2.5

– 10

Figure 5.29: Visualization of a spot formation showing the amplitude of the streamwise
velocity u in a vertical plane. x = 0..900 (without fringe region), y = 0..10,
z = −1, the time is the same as in figure 5.27. Dark (blue) areas indicate
low and light (red) areas high speed. The velocity ranges from zero to the
freestream velocity U∞.
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been evaluated to allow a final decision on the question of the exact character-
ization of the turbulent breakdown. Nevertheless, the three spots shown in the
velocity profiles 5.27, 5.28 and 5.29 have been looked at more closely. However,
no direct determination of the energy growth during the breakdown has been per-
formed. Calculations like this could eventually allow an exact characterization of
a secondary instability. Furthermore, it must be noticed that only the three spots
in the above figure were examined, therefore no statistical information over the
whole amount of spots is available yet.

Figure 5.30 shows an enlarged view following the spot formation, depicting
the streamwise velocity component u. For comparison, figures 5.31, 5.32 and 5.33
show some of the interesting plots of the other velocity components.

The spot formations can be followed by comparing the respective pictures in
figure 5.30, 5.31 and 5.32. For all of the three spots, the formation sequence seems
to be similar: At the same time as the low-speed streak begins to show regular
oscillations in the x/z-plane, the velocity component w shows regularly distributed
alternating high and low-speed ’points’. v seems to indicate a velocity distribution
similar to a horseshoe cut at different heights. The oscillations of the streak in
u and in v are likely to be symmetric with respect to the streamwise direction,
whereas the oscillation in w is asymmetric. This would indicate, that the basic
instability mode is that from a varicose instability, forcing a streak to wiggle up
and down in a x/y-plane. The visualization in such a plane (given in figure 5.33)
seems to support this statement, although calculations of [4] showed that for an
isolated streak the sinuous instability is more likely to occur.

Some other important observation can be made looking at these visualizations.
It has to be mentioned again, that these are only preliminary results, which must
undergo further checking. From looking at the formation of the first spot in fig-
ure 5.30, it seems that the instability originates because of the encounter of two
low-speed streaks, slightly displaced in z. Hereby, strong velocity gradients are
generated, which could eventually lead to a breakdown.

A second important issue is that, although all three spots visible in the above
figures seem to have the same characterization in all velocity components, their
transition speed is completely different. The breakdown of the first spot is com-
pleted within 100 time units, whereas the third spot seems to need around 250
time steps. This could indicate, that different breakdown mechanism are present
in a flow at the same time.

Further post-processing of the present data will hopefully lead to more conclu-
sive statements concerning the breakdown of the streaks.
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spot 1

spot 2

spot 3

Figure 5.30: Enlarged visualization of spot formation depicting the amplitude of the
streamwise velocity u (x/z-plane). Length in x direction 300 with panorat-
ing speed of 0.51·U∞, z = −25..25, y = 2.5. Dark (blue) areas indicate
lower and light (red) areas higher speed. The velocity ranges from −30%
to +30% of the global mean velocity. The difference between two frames is
25 time units, starting at t = 100 compared to figure 5.27.
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Figure 5.31: Enlarged visualization of spot formation depicting the amplitude of the
normal velocity v for t=250, 400, 500, other parameters see figure 5.30.

Figure 5.32: Enlarged visualization of spot formation depicting the amplitude of the
spanwise velocity w for t=270, 375, 425, other parameters see figure 5.30.

Figure 5.33: Enlarged visualization of spot formation depicting the amplitude of the
normal velocity u for t=100, 250, 500 (x/y-plane). Panorating speed and
extent in x similar to figure 5.30, y = 0..10, z = −1.
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Chapter 6

Conclusions

6.1 Present Results

The DNS-code presented in this theses provides a robust method to perform simu-
lations of transitional flat plate boundary layers subject to freestream turbulence.
The code has been thoroughly tested and validated. The basic idea of super-
posing Orr-Sommerfeld and Squire modes from [12] and [16] was combined with
a highly effective numerical code using Fourier and Chebyshev decomposition in
all directions. The spectral composition of the imposed freestream turbulence is
automatically computed to meet any given inlet spectrum, thereby providing a
means to study the effect of different turbulence intensities, integral length scales
and even shapes of spectra.

The results obtained by the present algorithm allow the conclusion that the
main effects occurring in freestream turbulence and in a transitional boundary layer
are well captured – the decay rate of the freestream turbulence matches the know
decay law, the growth of streaky structures in the boundary layer could be observed
and their characteristics compare well to experimental findings. Moreover, the
averaged statistics like skin friction, u+ and urms obtained from the simulation
show qualitatively and quantitatively good agreement to experiments and other
numerical simulations.

However, due to the tight schedule it was not yet possible to do a complete
post-processing of the data generated by the simulation. Especially the interesting
question of how exactly the laminar streaks break down into turbulent spots has
not yet been conclusively answered, although it seems, that there are signs of
regular instabilities before the turbulent breakdown.

6.2 Future Work

The present study was mainly thought of setting up a suitable numerical code to
perform studies of transitional boundary layers. The code can therefore be used
to help to find answers to some questions, which are even today quite uncertain.

• It was realized during the course of this work, that not only the turbulence
intensity of the freestream turbulence is important to predict transition. On
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the contrary, an exact characterization of the imposed freestream turbulence
and their integral length scales are needed. Especially experimental studies
often lack that information. The above algorithm could be used to perform
systematic studies of the influence of types of freestream turbulence on the
boundary layer.

• The prediction of the onset of transition in physical situations subject to
freestream turbulence is still quite difficult. Although some methods exist
(e.g. eN -method [2]) their accuracy is not very good. Therefore, more ac-
curate modeling of the transitional mechanism in the boundary layer must
be devised together with identifying the important parameters. The present
code could help as a way to validate the different models.

• Closely related to possible modeling of the transition onset, a better under-
standing of the exact way how laminar streaks break down into turbulence
is indicated. The results of different experimental and numerical studies
differ in the question, whether or not a distinct secondary instability with
exponential energy growth does exist. Moreover, a characterization of such
a instability (varicose, sinuous etc.) is still part of extensive research. The
present simulation could play an important role thereby, since the physical
situation of many streaks interacting with each other is simulated and not
only the idealized behaviour of an isolated streak.

On the other hand, improvements in the code and its efficiency could be an im-
portant issue; in the present study, the number of eigenmodes of the continuous
spectrum used to construct the freestream turbulence was fixed to a value of 200.
It would be interesting to study the effect on the turbulence characteristics when
using different numbers of eigenmodes.
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Appendix A

Boundary Layers

A.1 Boundary Layer Equations

Consider a steady flow along a fixed wall. Such a flow is governed by the basic two-
dimensional Navier Stokes equations (see chapter 2). Several order of magnitude
estimates can be used to develop an approximate set of equations valid near the
wall. Without going into the details of this derivation (for elaborate description
see e.g. [24]), the boundary layer equations first derived by Prandtl 1904 read in
non-dimensional form

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1
Re

∂2u

∂y2
(A.1)

0 =
∂p

∂y
(A.2)

∂u

∂x
+

∂v

∂y
= 0. (A.3)

The definition of the Reynolds number Re and the nondimensional variables is the
same as in chapter 2. As an important result we notice that the pressure p is only
a function of x and will thus not change over the vertical extent of the boundary
layer.

A.2 Blasius Solution

In some cases it is possible to find relatively simple solutions for the boundary
layer equations (A.1)-(A.3). Consider the case of a two-dimensional parallel flow
over a flat plate with no pressure gradient. The velocity far from the plate is
independent of x and y – it simply reads U∞ in x direction. The solution to this
basic boundary layer problem was presented first by Blasius (1906) (see e.g. [26]
p.363).1 Following his approach one introduces the similarity variable η and the

1Besides the Blasius boundary layer, other basic solutions to the boundary layer equations can
be found for flows varying exponentially in U∞ over x with base flow orthogonal (Falkner-Skan
flows) or non-orthogonal to the leading edge (swept wedge, Falkner-Skan-Cooke flow).
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stream function ψ (u = ∂ψ
∂y , v = −∂ψ

∂x )

η = y

√
U∞
νx

(A.4)

ψ =
√

νU∞xf(η). (A.5)

Combining these relations with the boundary layer equations yields a (ordinary)
differential equation for f(η). Together with boundary conditions for f it reads

2f ′′′(η) + f(η)f ′′(η) = 0 (A.6)
f(0) = f ′(0) = 0 (A.7)

f ′(∞) = 1. (A.8)

Solving this initial value problem by numerical integration, the function f(η) and
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Figure A.1: Function f used for computation of the Blasius solution of the boundary
layer equations

its derivatives can be evaluated as function of the similarity variable η, see figure
A.1. Use of the constraints (A.4), (A.5) yields the velocity distribution over the
boundary layer as

u

U∞
= f ′(η) (A.9)

v

U∞
=

1
2
y

x

[
f ′(η)− 1

η
f(η)

]
. (A.10)

It is worth mentioning that the velocity profile u = u(η) is only dependent on
the similarity variable η, whereas for v = v(η, y/x) the relative position y/x is
necessary to compensate the displacement effect of the growing boundary layer.
Figure A.2 shows the typical behaviour of u and v throughout the boundary layer,
figure A.3 shows the complete vector field (u, v).
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Figure A.2: Typical velocity distribution in a Blasius boundary layer with physical scal-
ing. Parameters are U∞ = 0.3, ν = 1 · 10−5, x = 20 (η = 38.7y)
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Figure A.3: Velocity profile of the 2-dimensional Blasius boundary layer with respect to
the boundary layer thickness δ99% (physical units). Parameters are U∞ =
0.3, ν = 1 · 10−5

A.3 Integral Parameters

With a given velocity profile (u, v) in the boundary layer, several integral param-
eters of the boundary layer can be calculated.

For the description of the vertical extent of a boundary layer, various definitions
of a boundary layer thickness are possible. A intuitive geometric definition is based
on the shape of the velocity profile u(y). The edge of the boundary layer is defined



 Boundary Layers

as the vertical position where u is reaching 99% of the free stream velocity U∞

u(y = δ99%) = 0.99U∞. (A.11)

It is obvious that this definition of a boundary layer thickness cannot be very
accurate. Therefore, a more unique definition can be calculated based on the
displacement effect of the boundary layer (displacement thickness δ∗)

δ∗ =
∫ ∞

0

(
1− u

U∞

)
dy (A.12)

Taking into account the loss of momentum in the boundary layer due to the skin
friction one finds the momentum thickness θ

θ =
∫ ∞

0

(
1− u

U∞

)
u

U∞
dy. (A.13)

The ratio of the displacement thickness and the momentum thickness is known as
shape factor H

H =
δ∗

θ
. (A.14)

Especially in technical applications, the (local) skin friction coefficient cf is an
important quantity. It is defined as

cf =
τw
ρ
2U

2∞
with τw = µ

∂u

∂y

∣∣∣
y=0

, (A.15)

with τw as the local shear force acting on the surface.
Table A.1 gives an overview of the above parameters for the laminar (Blasius)

boundary layer and empirical formulas for fully developed turbulent boundary
layer.

Property Laminar Flow Turbulent Flow

δ 5.00xRe−1/2
x 0.37xRe−1/5

x

δ∗ 1.721xRe−1/2
x 0.046xRe−1/5

x

θ 0.664xRe−1/2
x 0.036xRe−1/5

x

H 2.59 1.28
cf 0.664Re−1/2

x 0.0576Re−1/5
x

Table A.1: Integral parameters for fully developed laminar and turbulent flat-plate
boundary layers.

Using the different boundary layer thicknesses, a set of different Reynolds num-
bers can be defined – all of them expressing the streamwise position

Rex =
xU∞
ν

Reδ∗ =
δ∗U∞

ν
Reθ =

θU∞
ν

(A.16)

with x as physical distance from the leading edge, U∞ and ν as the freestream
velocity and viscosity, respectively.
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A.4 Wall-Scaling

Especially for turbulent boundary layers, the friction velocity can be defined using
the shear force τw (A.15) and the density ρ

uτ =
√

τw
ρ

. (A.17)

With this definition, the so-called wall-scaling (+-units) can be introduced for the
mean velocity u and the wall-normal distance y

u+ =
u

uτ
y+ = y

uτ
ν

. (A.18)

It is known, that a typical velocity profile for a turbulent boundary layer can be
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Figure A.4: Typical velocity profile for a turbulent boundary layer showing the viscous
sublayer (A.19), the logarithmic layer (A.20) and the approximate function
according to Spalding (A.21).

divided into different sublayers [27]. The viscous sublayer extends to about y+ < 7
and the velocity is given by

u+ = y+. (A.19)

The logarithmic layer typically lies between y+ = 30 and y = 0.1δ99% and is
governed by

u+ =
1
κ
ln y+ + C (A.20)

with κ ≈ 0.41 as the von Kármán constant and C ≈ 5.0 for a smooth wall. Above
the logarithmic layer follows the defect layer whose structure makes a noticeable
departure from logarithmic behaviour approaching the freestream.
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An approximate function to describe the velocity throughout the viscous sub-
layer and the logarithmic layer is given by Spalding

y+ = u+ +
1
E

[
eκu

+ − 1− 1
2
(κu+)− 1

6
(κu+)2 − 1

24
(κu+)3

]
(A.21)

with κ ≈ 0.41 as the von Kármán constant and E ≈ 8.6.



A.4 Wall-Scaling 


	Abstract
	Contents
	Figures
	Tables
	Symbols
	Introduction
	Transition
	Disturbance Growth
	Streak Breakdown

	Experiments and Numerical Simulations
	Aims and Overview

	Theoretical Formulation
	Orr-Sommerfeld / Squire Equation
	Eigenvalue Spectrum
	Solution via Eigensolver
	Solution for Continuous Spectrum

	Turbulence
	Statistical Quantities
	Homogeneous Isotropic Turbulence

	Modeling of Freestream Turbulence
	Isotropically Distributed Wavenumbers
	Scaling of the Eigenmodes


	Numerical Method
	Computational Domain
	Numerical Scheme
	Velocity - Vorticity Formulation
	Discretization
	Fringe Region

	Forcing of Continuous Modes
	Corrections


	Validation
	Numerical Scheme
	Continuous Modes
	Full Mode
	Orr-Sommerfeld Mode
	Squire Mode
	Two Modes


	Results
	Simulation Parameters
	T3 Test Cases

	Freestream Turbulence
	Decay of the Energy
	Energy Spectra
	Comparison

	Averaged Results
	Streaks and Spots
	Streaks
	Spots
	Secondary Instability?


	Conclusions
	Present Results
	Future Work

	Acknowledgement
	Bibliography
	Appendix
	Boundary Layers
	Boundary Layer Equations
	Blasius Solution
	Integral Parameters
	Wall-Scaling



