
ID1354
Internet Applications

CSS

Leif Lindbäck, Nima Dokoohaki

leifl@kth.se, nimad@kth.se

SCS/ICT/KTH

2(92)

What is CSS?

- Cascading Style Sheets, CSS provide the means to
control and change presentation of HTML
documents.

 - A style sheet (CSS code) is a syntactic mechanism for
specifying style information.

 - Style sheets allow you to impose a standard style on
a whole document, or even a whole collection of
documents.

 - Style is specified for tags by the values of its
properties.

3(92)

Use CSS for Layout!

● Remember, HTML is for defining content, not
for defining format or layout.

● CSS is the means to define page layout and
how HTML elements are displayed.

● Style sheets enables modifying the
appearance of an entire web site, just by
editing a single file!

4(92)

Current CSS Versions

 - CSS2.1 is supported by all major browsers.

 - CSS3 adds lots of new features and is also fully
backwards compatible.

 - Do not rely on CSS3 to be fully implemented in all
browsers. Check for example at
http://caniuse.com.

5(92)

A First Look

● This example will be discussed in detail later in the
presentation.

● A sample CSS rule is displayed below.
● The selector defines which element(s) is affected by the

rule.

● The declaration block contains property/value pairs
separated by semicolon. Each such pair defines some
appearance of the selected element(s).

selector declaration block property value

p {color:red; text-align :center;}

6(92)

CSS Syntax

● Comments are enclosed between /* and */
 /* this is a comment. */

● Comments may span multiple lines.

● A style sheet (CSS file) contains a list of style rules, with the syntax
specified in the initial example above.

hr {color:sienna;}
p {margin-left:20px;}
body {background-image:url("images/back40.gif");}

7(92)

There are three levels of style sheets

1. Inline - specified as attributes for a tag, apply only to that tag.
 - Avoid this! Using inline tags means duplicated code since
 rules must be repeated for each tag.

2. Document-level style sheets or internal style sheets – specified in a HTML
document and apply only to that document.
 - Avoid this! Using internal tags means duplicated code
 since rules must be repeated for each document.

3. External style sheets - applied to any number of documents.
 - Use only this level! The same CSS rules are applied to all
 relevant HTML files.

Levels of Style Sheets

8(92)

External Style Sheets

● External style sheets are separate files, potentially on any server
on the Internet. Such files shall have the extension .css.

● A <link> tag in a HTML document specifies that the browser is
to fetch and use an external style sheet.

<link rel = "stylesheet"
 type = "text/css"
 href = "mystyles.css"/>

9(92)

CSS Errors

● CSS rules with syntax errors or invalid
property or value names are silently ignored.

● This might cause much extra work.

● Always validate your CSS files! Use for
example the W3C CSS validator,
http://jigsaw.w3.org/css-validator/

10(92)

Selectors

● The first part of a CSS rule is a selector:

● Determines to which elements the rule aplies.

● There are many different types of selectors.

selector
p {color:red; text-align :center;}

11(92)

Element Selector

● The selector is an element name or a list of element
names, separated by commas.

● The rule applies to all elements with the specified
name(s).

● Examples:
● h1, h3
● p

12(92)

Id Selector

● An id is a logical name for a specific element.
● To specify that a HTML element has a specific id, use

the id attribute of that element.
<p id="wide"> some text </p>

 The following selector matches all elements with id
wide, independent of element type.

 #wide
● The following selector matches all elements with id

wide and type <p>.

 p#wide

13(92)

Class Selector

● A class is a logical group of elements.
● To specify that a HTML element belongs to a specific

class, use the class attribute of that element.
 <p class="wide"> some text </p>

● The following selector matches all elements of class
wide, independent of element type.

 .wide
● The following selector matches all elements of class

wide and type <p>.

 p.wide

14(92)

Pseudo-Class Selector
● A pseudo-class is a condition, all elements that meet the condition are

members of the pseudo-class.
● It is not possible to define new pseudo-classes, but there are many

predefined. Some examples are:
:link unvisited links
:visited visited links
:hover applies when the mouse is placed over the element.
:active applies while the user is clicking the element.
:focus applies when the element has keyboard or mouse focus.
:enabled applies to enabled UI components (e.g. buttons).
:disabled applies to disabled UI components (e.g. buttons).

● The following selector matches all elements of pseudo-class :link,
independent of element type.

 :link

15(92)

Combining Selectors
● Selectors are combined by writing them in sequence,

separated by a combinator.

● The descendant combinator, whitespace, describes an
element that is nested inside another element. It is
independent of nesting level. The CSS selector
 div input
(note the whitespace between the tags) applies to the
input element in the HTML code below.
 <div ... >
 <form ... >
 <input ... />
 ...
 </form>
 </div>

16(92)

Combining Selectors (Cont'd)
● The child combinator, >, describes an element that is

nested directly inside another element. The CSS
selector
 div>input
does not apply to the input element in the HTML
below, but the following selector does:
 form>input
 <div ... >
 <form ... >
 <input ... />
 ...
 </form>
 </div>

17(92)

Combining Selectors (Cont'd)

● Multiple selectors can be combined.

● For example, div form>input#username
means an input element with id username that is
a child of a form which is a descendant of a div.

18(92)

Selector Wildcard

● The element name in all types of selectors can
be replaced by the wildcard character, *,
which matches all elements.

● div>*>input means an input element that
is a child of any element which is a child of a
div.

19(92)

More Selectors

● There are many more selctors.

● A listing can be found at
http://www.w3.org/TR/
selectors/#selectors

20(92)

Question 1

21(92)

Properties
 - CSS2.1 includes 60 different properties in 7 categories:

 - Fonts

 - Lists

 - Alignment of text

 - Margins

 - Colors

 - Backgrounds

 - Borders

- Full list here: http://www.w3.org/TR/CSS21/propidx.html
- CSS3 adds many more, for example animations, columns and graphic

transforms.

- Property names are not case sensitive.

property value

p {color:red; text-align :center;}

22(92)

Property Values
- A property value can be a keyword, length, URL or color.

 - Keywords, for example left, small, green, are not case
sensitive.

 - A length is a number, maybe with decimal points, plus a unit.

 - Units:
 % - percentage

 px - pixels

 in - inches

 cm - centimeters

 mm - millimeters

 pt – points (1pt = 1/72 inch)

 pc - picas (12 points)

 em - 1em is equal to the current font size. E.g., if an
 element is displayed with a font of 12 pt, then 2em is
 24 pt. Very useful since it adapts to font size.

 ex - the height of a lowercase x in the current font (usually about half
 the font-size)

23(92)

Property Values (Cont'd)

- A URL has the form:
url(protocol://server/pathname)

- There are many ways to specify a color, for example a color
name or a rgb value.

- Standard colors, guaranteed to be displayable by all
graphical browsers on all color monitors, are aqua, black,
blue, fuchsia, gray, green, lime, maroon, navy, olive, orange,
purple, red, silver, teal, white, and yellow.

- A rgb value is a hex, #XXXXXX, or numeric, rgb(n1, n2,
n3), where n1, n2, n3 are decimal or percentages.

24(92)

Font Properties, Font Family

- The property name is font-family

- Value is a list of font names. Start with the preferred font, add
fallback fonts and end with a generic font name.

– Browser uses the first in the list it has.

– Example:
font-family: "Times New Roman", Times, serif;

- Commonly used font combinations can be found at
http://www.w3schools.com/cssref/
css_websafe_fonts.asp

- Generic fonts: serif, sans-serif, cursive, fantasy,
and monospace

- If a font name has more than one word, it should be quoted,
e.g., "Times New Roman".

25(92)

Font Properties, Size

 - The property name is font-size

 - Possible values: a length or a name,
 such as smaller, xx-large, etc.
 - Percentages and em are the best length

 units since they are relative.
 - Default text size in browsers is 16px,

 therefore, default size of 1em is 16px.

26(92)

Font Properties, Style

 - The property name is font-style
 - Some possible values are italic, normal

27(92)

Font Properties, Weight

 - The property name is font-weight, specifies
degree of boldness.

 - Some possible values are bolder, lighter,
bold, normal

28(92)

Font Properties, Shorthand

 - The property font can be used as a shorthand for
specifying a list of font properties:

 font: bolder 14pt Arial Helvetica
 - Order must be: style, weight, size,

 name(s)

29(92)

List properties, Bullet Type

 - Property name is list-style-type

 - Unordered lists

 - Bullet can be a disc (default), a square, or a circle

 list-style-type: disc
 list-style-type: square
 list-style-type: circle

30(92)

List properties, Bullet Type (Cont'd)

 - Could use an image for the bullets in an unordered
list

 - Example:

list-style-image:url('sqpurple.gif');

31(92)

List Properties, Numbering

 - On ordered lists, list-style-type can be used to
change the sequence values.

 Property value Sequence type First four

 decimal Arabic numerals 1, 2, 3, 4

 Upper-alpha Uc letters A, B, C, D

 lower-alpha Lc letters a, b, c, d

 upper-roman Uc Roman I, II, III, IV

 lower-roman Lc Roman i, ii, iii, iv

32(92)

Text Alignment

 - The text-indent property controls indentation

 - Takes either a length or a % value

 - The text-align property controls alignment and has the
possible values, left (the default), center, right, or justify

 - Sometimes we want text to flow around another element, use the
float property for that.

 - The float property has the possible values, left, right, and
none (the default)

 - If we have an element we want on the right, with text flowing on its
left, we use the default text-align value (left) for the text and
the right value for float on the element we want on the right

33(92)

Text Alignment (Cont'd)

● The image has the property
float: right

● The text hast the property
text-align: left

34(92)

Color Properties

- The color property specifies the foreground color.

 th.red {color: red}
 th.orange {color: orange}

 <table>
 <tr>
 <th class = "red"> Apple </th>
 <th class = "orange"> Orange </th>
 </tr>
 </table>

 - The background-color property specifies the background color.

35(92)

Background Images

● Specified with the background-image property.
● Repetition is controlled with the background-

repeat property, which has the values repeat
(default), no-repeat, repeat-x, or repeat-y

● Positioning is controlled with the background-
position property, which hast the values top,
center, bottom, left, or right

36(92)

● All HTML elements are considered as boxes by
CSS.

● The box model allows placing a border around
elements and space between elements.

The Box Model

37(92)

● The margin clears an area around the border. It is
completely transparent.

● The border goes around the padding and content. The
border is affected by the background color of the box.

● The padding clears an area around the content. It is
affected by the background color of the box.

● The content is the content of the box, e.g., text, images,
other boxes.

The Box Model (Cont'd)

margin

border

padding

content

38(92)

Box Model, Margin
● The margin is the space between the border of an element and its neighbor

element
● The margins around an element can be set with margin-left, etc.
● The image below has the following properties.

 float: right;
 margin-left: 0.35in;
 margin-bottom: 0.35in"

39(92)

Box Model, Border

● Border is specified with the border-style property, which controls whether
the element has a border and, if so, the style of the border

● Some possible values are none, solid, dotted, dashed, and double
● The border width is specified with the border-width property, which can have

the values thin, medium (default), thick, or a length value in pixels.
● Can be specified for any of the four borders, e.g., border-top-width.

● Border color is specified with the border-color property.
● Can be specified for any of the four borders, e.g., border-top-color.

● As for many otherproperties, there is a shorthand:
border: thin solid black

40(92)

Box Model, Padding

● The padding is the distance between the content of
an element and its border

● Controlled by padding, padding-left, etc.

41(92)

Box Model, Content

● The height and width properties of an element
specifies the size of the content.

● Margin, border and padding is outside the specified
size.

● Height and width is set with the properties height,
max-height, min-height and corresponding
for width.

42(92)

Question 2a

43(92)

Display and Visibility
● The display property specifies if/how an element

is displayed. The rule display:none hides the
element, and it does not take up any space.

● display can also control how and where the
element is rendered.

● The visibility property specifies if an element
is visible or hidden. The rule
visibility:hidden hides the element, but it
still takes up the same space as when visible.

● visibility only decides if the element is visible
or not.

44(92)

Traditional CSS Layout
● Uses the following CSS properties

● position (static, fixed, relative, absolut)

● float and clear
● inline-block

● Covered on slides 45-59
● Still very much in use
● Complicated, leads to difficult hacks

45(92)

HTML Repetition: Block and Inline Elements

● A block element takes up the full width available, and has a line
break before and after it.
Examples: <h1>, <p>, , <table>

● Page layout is managed by positioning block elements using CSS.

● A <div> is a block element that has no other purpose than to
define a block. It is often used for layout.

● The 'opposite' of block element is inline element, which does not
force line breaks and occupies only the necessary width.
Examples: <td>, <a>,

● A is an inline element that has no other purpose than to
define the element. It is also often used for layout.

46(92)

Block and Inline Elements (Cont'd)

● To get the desired layout, an element can be
changed between block and inline.

li {
 display: inline;
}

span {
 display: block;
}

47(92)

Positioning Elements
● Positioning is quite tricky in CSS.
● Elements are positioned using the top, bottom,

left, and right properties.
● How these four properties work depend on the value

of the position property.
● There are four different positioning methods, which

are values of the position property: static,
fixed, relative, and absolute.

● More information about positioning can be found at
https://developer.mozilla.org/en-
US/docs/Learn/CSS/CSS_layout/Positioning

48(92)

Static Positioning
● Static is the default positioning method.
● top, bottom, left, and right properties have no effect.
● Elements are positioned according to normal page flow, which

has different meaning for block and inline elements.
● Block elements are positioned top to bottom, never side by

side. Remember that they are by definition surrounded by
line breaks. They always occupy the entire page width.

● Inline elements are positioned left-to-right. All inline boxes on
the same line are enclosed in a line box. Anonymous inline
boxes are generated for text. Applying margins, paddings,
etc to inline boxes is tricky.

49(92)

Fixed Positioning
● An element with fixed position is anchored relative to

the browser window.
● The position is decided with top, bottom, left,

and right properties.
● Fixed elements do not move when the window is

scrolled.
● Fixed elements may overlap other elements.

50(92)

Relative Positioning
● An element with relative position is first laid out like a

static element. Then the generated box is shifted
according to the top, bottom, left and right
properties.

● It is only the generated box that is shifted. The
element still remains where it was in the static
document flow. That’s where it takes up space and
affects positioning of other elements.

● Relative elements may overlap other elements.

51(92)

Relative Positioning Example

h2.pos_left {
 position: relative;
 left: -20px;
}

h2.pos_top {
 position: relative;
 top: 50px;
}

<h2>Heading with no position</h2>
<h2 class="pos_left">
 This element has class
 h2.pos_left</h2>
<h2 class="pos_top">
 This element has class
 h2.pos_top</h2>
<p>Relative positioning moves an
element RELATIVE to its original
position...</p>

52(92)

Absolute Positioning
● An element with absolute position is positioned

relative to the first parent element that has a
position other than static. If no such element is
found, the containing block is <html>.

● Absolute elements are removed from the normal
flow. The document and other elements behave
like the absolute element does not exist.

● Absolute elements may overlap other elements.

53(92)

Absolute Positioning Example
.container {
 position: relative;
}

h2.pos_left {
 position: relative;
 left: -20px;
}

h2.pos_top {
 position: absolute;
 top: 80px;
}

<h2>Heading with no position</h2>
<h2 class="pos_left">
 This element has class
 h2.pos_left</h2>
<div class="container">
 <h2 class="pos_top">
 This element has class
 h2.pos_top</h2>
 <p>Relative positioning moves an
 element RELATIVE to ...</p>
</div>

54(92)

Overlapping Elements
● The z-index property specifies the stack order of

overlapping elements.
● The value is a positive or negative number:

 z-index: -1;
● An element with greater stack order is always in front

of an element with lower stack order.
● If z-order is not specified, the element positioned

last in the HTML code is on top.

55(92)

Floating
● A floating element is pushed to the left or right.

Elements can not float up or down.
● Elements before the floating element are not

affected. Elements after the floating element flows
around it.

● Floating elements after each other float next to each
other if there is enough space horizontally.

● This means we can have block level elements beside
each other!

● Floating is specified with the float property.
Possible values are left, right and none
(default).

56(92)

Turning off Float
● The clear property specifies sides of an

element where floating elements are not
allowed.

● Possible values are left, right, both,
none.

57(92)

Float Example

p{
 width: 100px;
 height: 100px;
 float: left;
}

p#red{
 background-color: red;
}

p#blue{
 background-color: blue;
}

<p id="red">
 This is a paragraph</p>
<p id="blue">
 This is a paragraph</p>

58(92)

Clear Example

p{
 width: 100px;
 height: 100px;
 float: left;
}

p#red{
 background-color: red;
}

p#blue{
 background-color: blue;
}

p#green{
 background-color: green;
 clear: left;
}

<p id="red">
 This is a paragraph</p>
<p id="blue">
 This is a paragraph</p>
<p id="green">
 This is a paragraph</p>

59(92)

Aligning Block Elements
● Now we have seen all properties used for

layout.

● Since they are quite low level, a lot of
experimenting might be needed to achieve an
acceptable result.

● An often faced problem is how to align block
elements. Some possible solutions to this are
found at
http://www.w3schools.com/css/
css_align.asp

60(92)

Question 3a

61(92)

Newer CSS Layout
● Uses the CSS grid and flexbox modules, which

include the following properties.
● display: grid and grid-*

● display: flex and flex-*

● Covered on slides 61-64
● More intuitive than traditional positioning methods,

less hacks

62(92)

CSS Flexible Box Layout Module - Flexbox
● Used for one-dimensional layout.
● Items are placed in a container, following the main axis from

main-start to main-end.
● The figure below, from the specification, explains main

concepts.

63(92)

Resources for learning flexbox layout
● The specification,
https://www.w3.org/TR/css-flexbox-
1/#flex-containers

● https://css-tricks.com/snippets/css/a-
guide-to-flexbox/

● https://philipwalton.github.io/solved-
by-flexbox/

● https://www.w3schools.com/css/css3_fle
xbox.asp

64(92)

Question 2b

65(92)

CSS Grid Layout Module
● Used for two-dimensional layout.
● The container is divided into the specified number of rows

and columns, of the specified sizes.
● An item covers the specified cells.
● The figure below, from the specification, gives an example.

66(92)

Resources for learning grid layout
● The specification, https://www.w3.org/TR/css-
grid-1/#background

● https://css-tricks.com/snippets/css/complete-
guide-grid/

● https://www.w3schools.com/css/css_grid.asp

67(92)

Question 3b

68(92)

Conflicting Property Values

● A conflict occurs when two or more values are
specified for the same property on the same element.

● Possible sources of conflict:

– Between different style sheets.

– Within the same style sheet.

– Between inline styles and style sheets.

– Between document author style sheets, user style sheets,
and browser style sheets.

69(92)

Assigning Property Values

● This describes the main steps of CSS2.1. They are equal in
CSS3, but CSS3 adds more steps.

● The steps to assign a property value are:

1. Run the cascade process.

2. If the cascade results in a specified value, use it and transform it
into a computed value (e.g., transform em and % to pixels).

3. If the cascade does not result in a value, try to inherit the
parents computed value.

4. If no value could be inherited, use the property's initial value.

5. Transform the computed value into an actual value, e.g., the
computed font size is 13pt, but the user agent does not have a
13pt font, so 12pt is used instead.

70(92)

Step 1: The Cascade

1. Find all declarations for the specific property for
the specific element (e.g., the color property for
the p element with id = msg).

2. Sort according to importance and orign.

• Importance means whether a property is marked
!important, e.g,
p#msg {color:red !important}.
Note that it is considered bad practice to use
!important declarations.

• Orign is if the property is declared by the author of the web
page, the user who browses it, or the browser's default style
sheet.

71(92)

Step 1: The Cascade, Cont'd

2. (Cont'd) The order of precedence is
 as follows (lower number wins).

1. User important declarations

2. Author important declarations

3. Author normal declarations

4. User normal declarations

5. Browser declarations

72(92)

Step 1: The Cascade, Cont'd

3. If there are conflicting rules with the same importance
and orign, sort them by specificity. Specificity is a four
digit number, the highest number wins.

• Digit 1: Has the value 1 when the property value is specified
in a HTML style attribute, and the value 0 when it is specified
in a CSS rule.

• Digit 2: The number of id attributes in the selector
(e.g., 1 for the selector p#msg).

• Digit 3: The number of other attributes in the selector
(e.g., 1 for p.large)

• Digit 4: The number of element names in the selector
(e.g., 2 for div p#msg)

73(92)

Step 1: The Cascade, Cont'd

4. If there are still conflicts, sort the rules in the order
they are specified. The latter specified wins.

74(92)

Step 2: Calculate the Computed
Value

• If the cascade produces a specified value for the
specific property, it is transformed to a computed value.

• This means, for example, that URIs are made absolute
and em and ex units are computed to pixels or absolute
lengths.

75(92)

Step 3: Inherit the Computed Value

• If the cascade does not produce a value for the specific
property, the value is inherited from the parent element.

• For example, suppose there is a p element with an
emphasizing element em inside:
<p>This isthe message!</p>

If no color has been assigned to the em element, the
emphasized is will inherit the color of the parent element, so
if p has the color blue, the em element will likewise be in
blue.

• The computed value is also inherited if the cascade
produces a computed value, and that value is inherit.

76(92)

Step 4: Use the Initial Value

• If neither cascade, nor inheritance produces a
computed value, the property's initial value becomes its
computed value.

• The initial value of each property is defined in the
property's definition.

• In CSS3, the initial value is also used if the cascade
produces a computed value, and that value is initial.

77(92)

Step 5: Calculate the Actual Value

• The computed value is ideally used for rendering, but
maybe a browser is not able to make use of the
computed value.

• For example, a browser may only be able to render
borders with integer pixel widths and may therefore
have to approximate the computed width.

• The actual value is the computed value after
approximations have been applied.

78(92)

Crossbrowser Compatibility Issues
● Some browsers, in particular old IE versions,

may have unexpected behaviour.

● Always test the web site in all browsers you
accept clients to use, and be prepared to
spend a lot of time for this.

● It is never acceptable to test a web site in only
one browser.

● Remember to add a !DOCTYPE declaration to
all HTML documents.

79(92)

Always Use A Reset Style Sheet
● Different browsers have different default style sheets,

therefore they will display the same page differently.

● This makes it difficult to create a design that looks good
in all browsers.

● The solution is to always use a reset style sheet, that
removes the browser's default values.

● The reset style sheet must be the topmost CSS linked
from the HTML document, or it might override values
from other style sheets.

● Many reset sheets can be found on the web. There is
one example on the course web site.

80(92)

Vendor-specific Properties
● Browser makers implement extensions to the CSS

specifications.

● This is often done for CSS properties that are not yet
released as W3C specifications.

– Might also be used for experiments.

● A vendor-specific property name starts with - or _,
followed by the vendor identifier.

– Examples are -moz for firefox, -o for opera and
-webkit for safari and chrome.

● Avoid using them unless it’s absolutely necessary.

● Will not pass CSS validation.

81(92)

Responsive Design
● A responsive web page adapts to the screen

resolution on which it is displayed.

● To adapt to the current resolution, the web
page might change font size, size of images,
number of columns, remove headers, change
menu layout, etc.

82(92)

Responsive Design (Cont'd)
● Responsive design is a very good practice that

we should always strive for.

● It is very annoying for the user if the page has
a fixed layout.
– On big screens it will only occupy a small part of the

available space.

– On small screens the user will be forced to scroll back and
forth across the page.

83(92)

Media Queries
● The enabling technique for responsive design is CSS3

media queries:
@media only screen and (max-width: 480px) {
 /*
 CSS rules that are used for screens
 narrower than 480 pixels.
 */
}

● The media query starts with @media.

● Next is the media type for which the rules shall apply.
only screen means the rules will not apply to printouts.

● Then comes the media features for which the rules shall
apply. In this example, the rules will apply to screens
narrower than 480 px.

84(92)

Use Columns
● There are many approaches to responsive design and many

ways to use media queries.

● The chat example uses the method described at
http://www.responsivegridsystem.com/

● The idea is to

1. Split the page in a number of columns.

2. Distribute all elements into the columns.

3. Depending on screen resolution, decide
 how many columns to use.

● When more columns are used, more elements will go
beside each other.

● When fewer columns are used, elements will stack on top
of each other instead of beside.

85(92)

Be Relative
● Other tips are:

– Avoid fixed positioning.

– Use relative units, such as em and
percentage.

– Consider removing elements, for example
headers, at low resolution.

– Replace navigation toolbars with pop-up
menus.

86(92)

Question 4

87(92)

Accessibility

● Many users may be operating in contexts very
different from your own:

– They may not be able to see, hear or move.

– They may have difficulty reading or comprehending text.

– They may not be able to use a keyboard or mouse.

– They may have a text-only screen, a small screen, or a
slow Internet connection.

– They may not speak or understand fluently the language
in which the document is written.

– They may be in a situation where their eyes, ears, or
hands are busy or interfered with (e.g., driving to work,
working in a loud environment, etc.).

88(92)

Accessibility Guidelines

● Guideline 1, Use text alternatives.
Provide text alternatives to auditory and visual
content.

– Some people cannot use images, movies, etc., but may
still use pages that include equivalent information.

● Provide a text equivalent for every non-text element,
use for example the alt attribute of the img element
to provide a text alternative for an image.

– A text equivalent for an image of an upward arrow
that links to a table of contents could be Go to table of
contents.

89(92)

Accessibility Guidelines, Cont'd

● Guideline 2, Don't rely on color alone.
Ensure that text and graphics are understandable
when viewed without color.

– If color is used to convey information, people who cannot
differentiate between certain colors and users with devices
that have non-color or non-visual displays will not receive
the information.

● Ensure that all information conveyed with color is also
available without color, for example from context or
markup.

90(92)

Accessibility Guidelines, Cont'd

● Guideline 3, Use HTML and CSS properly.
Mark up documents with the proper structural elements.
Control presentation with style sheets rather than with
presentation elements and attributes.

– Misusing markup for a presentation effect (e.g., using a
table for layout or a header to change the font size)
makes it difficult for users with specialized software to
understand the organization of the page or to navigate
through it.

– Using presentation markup rather than structural markup
to convey structure (e.g., constructing what looks like a
table of data with an HTML pre element) makes it
difficult to render a page intelligibly to other devices.

91(92)

Accessibility Guidelines, Cont'd

● Guideline 4, Provide clear navigation mechanisms.
Clear and consistent navigation mechanisms: navigation
bars, a site map, etc., increases the likelihood that a
person will find what they are looking for at a site.

– Clear and consistent navigation mechanisms are important to
people with cognitive disabilities or blindness, and benefit all
users.

● Clearly identify the target of each link. Link text should
be meaningful enough to make sense when read out of
context, either on its own or as part of a sequence of
links.

– For example, write "Information about version 4.3" instead of
"click here".

92(92)

Accessibility Guidelines, Cont'd

● The complete set of accessibility guidelines can be
found in the W3C recommendation
Web Content Accessibility Guidelines 1.0,
available at http://www.w3.org/TR/WCAG10/

	Slide 1
	3.1 Introduction
	Slide 3
	3.1 Introduction
	Slide 5
	3.3 Style Specification Formats (continued)
	3.2 Levels of Style Sheets
	3.2 Levels of Style Sheets (continued)
	Slide 9
	3.4 Selector Forms
	Slide 11
	3.4 Selector Forms (continued)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	3.5 Property Value Forms
	3.5 Property Value Forms (continued)
	3.5 Property Value Forms (continued)
	3.6 Font Properties
	3.6 Font Properties (continued)
	3.6 Font Properties (continued)
	Slide 27
	Slide 28
	3.7 List properties
	3.7 List properties (continued)
	3.7 List properties (continued)
	3.8 Alignment of Text
	3.8 Alignment of Text (continued)
	3.8 Colors (continued)
	3.11 Background Images
	Box model explained visually
	Slide 37
	3.10 The Box Model (continued)
	3.10 The Box Model
	3.10 The Box Model (continued)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

