
Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Using JavaScript for Client-Side
Behavior

Internet Applications, ID1354

1 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Contents

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

2 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

3 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Object Model, DOM

I The W3C Document Object Model, DOM, is
an API that allows programs to access and
update document content.

I Defines objects representing HTML
elements, methods to access HTML
elements, and events generated by HTML
elements.

I The best that can be said about browser
support is that it varies.

I Try the features you want to use in all relevant
browsers, check caniuse.com, etc

4 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Object Model, DOM

I The W3C Document Object Model, DOM, is
an API that allows programs to access and
update document content.

I Defines objects representing HTML
elements, methods to access HTML
elements, and events generated by HTML
elements.

I The best that can be said about browser
support is that it varies.

I Try the features you want to use in all relevant
browsers, check caniuse.com, etc

4 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Object Model, DOM

I The W3C Document Object Model, DOM, is
an API that allows programs to access and
update document content.

I Defines objects representing HTML
elements, methods to access HTML
elements, and events generated by HTML
elements.

I The best that can be said about browser
support is that it varies.

I Try the features you want to use in all relevant
browsers, check caniuse.com, etc

4 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Object Model, DOM

I The W3C Document Object Model, DOM, is
an API that allows programs to access and
update document content.

I Defines objects representing HTML
elements, methods to access HTML
elements, and events generated by HTML
elements.

I The best that can be said about browser
support is that it varies.

I Try the features you want to use in all relevant
browsers, check caniuse.com, etc

4 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The DOM Tree

I The DOM objects are organized
in a tree.

I The picture to the left is a part of
the DOM tree for the course’s
chat program.

5 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The DOM Tree

I The DOM objects are organized
in a tree.

I The picture to the left is a part of
the DOM tree for the course’s
chat program.

5 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The DOM JavaScript API
I All HTML elements are represented by

objects.
I The HTML objects have properties you can

get or set, to read or update the objects.

I The HTML objects have methods, for
example for adding and deleting elements.

I An example is the JavaScript statement
document.getElementById("demo").innerHTML =

"Hello World!";

that uses the method getElementById
to find the HTML object for the element with
id demo, and sets the HTML of that object
to "Hello World!", using the
innerHTML property.

6 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The DOM JavaScript API
I All HTML elements are represented by

objects.
I The HTML objects have properties you can

get or set, to read or update the objects.
I The HTML objects have methods, for

example for adding and deleting elements.

I An example is the JavaScript statement
document.getElementById("demo").innerHTML =

"Hello World!";

that uses the method getElementById
to find the HTML object for the element with
id demo, and sets the HTML of that object
to "Hello World!", using the
innerHTML property.

6 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The DOM JavaScript API
I All HTML elements are represented by

objects.
I The HTML objects have properties you can

get or set, to read or update the objects.
I The HTML objects have methods, for

example for adding and deleting elements.
I An example is the JavaScript statement

document.getElementById("demo").innerHTML =
"Hello World!";

that uses the method getElementById
to find the HTML object for the element with
id demo, and sets the HTML of that object
to "Hello World!", using the
innerHTML property.

6 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The DOM JavaScript API
I All HTML elements are represented by

objects.
I The HTML objects have properties you can

get or set, to read or update the objects.
I The HTML objects have methods, for

example for adding and deleting elements.
I An example is the JavaScript statement

document.getElementById("demo").innerHTML =
"Hello World!";

that uses the method getElementById
to find the HTML object for the element with
id demo, and sets the HTML of that object
to "Hello World!", using the
innerHTML property.

6 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The document Object

I The object document can be accessed by
any JavaScript code. It represents the
entire web page and is the entry point to
the DOM API.

I Sample methods in document are
Find HTML elements getElementById,

getElementsByTagName,
getElementsByClassName

Properties of HTML elements innerHTML, attributes
Add or delete elements createElement,

removeChild, appendChild
Collections of HTML elements cookie, URL, elements,

forms

7 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The document Object

I The object document can be accessed by
any JavaScript code. It represents the
entire web page and is the entry point to
the DOM API.

I Sample methods in document are
Find HTML elements getElementById,

getElementsByTagName,
getElementsByClassName

Properties of HTML elements innerHTML, attributes

Add or delete elements createElement,
removeChild, appendChild

Collections of HTML elements cookie, URL, elements,
forms

7 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The document Object

I The object document can be accessed by
any JavaScript code. It represents the
entire web page and is the entry point to
the DOM API.

I Sample methods in document are
Find HTML elements getElementById,

getElementsByTagName,
getElementsByClassName

Properties of HTML elements innerHTML, attributes
Add or delete elements createElement,

removeChild, appendChild

Collections of HTML elements cookie, URL, elements,
forms

7 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The document Object

I The object document can be accessed by
any JavaScript code. It represents the
entire web page and is the entry point to
the DOM API.

I Sample methods in document are
Find HTML elements getElementById,

getElementsByTagName,
getElementsByClassName

Properties of HTML elements innerHTML, attributes
Add or delete elements createElement,

removeChild, appendChild
Collections of HTML elements cookie, URL, elements,

forms

7 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The document Object

I The object document can be accessed by
any JavaScript code. It represents the
entire web page and is the entry point to
the DOM API.

I Sample methods in document are
Find HTML elements getElementById,

getElementsByTagName,
getElementsByClassName

Properties of HTML elements innerHTML, attributes
Add or delete elements createElement,

removeChild, appendChild
Collections of HTML elements cookie, URL, elements,

forms

7 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Change CSS Rules

I To change CSS rules use the following type
of statement:
document.getElementById(id).style.<property>

= <some style>

I For example, the statement
document.getElementById("p2").style.color =

"blue";

changes the font color of element with id
p2 to blue.

8 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Change CSS Rules

I To change CSS rules use the following type
of statement:
document.getElementById(id).style.<property>

= <some style>

I For example, the statement
document.getElementById("p2").style.color =

"blue";

changes the font color of element with id
p2 to blue.

8 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Events
I The DOM defines many events, for

example onClick, which is fired by an
element when the user clicks on it.

I To react to an event, add JavaScript code to
the event handler attribute of the element
that generates the event.

I For example, to change text in the
paragraph when the user clicks it:
<p onclick="clicked(this)">Click Me!</p>

function clicked(source) {
source.innerHTML = "You clicked";

}

9 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Events
I The DOM defines many events, for

example onClick, which is fired by an
element when the user clicks on it.

I To react to an event, add JavaScript code to
the event handler attribute of the element
that generates the event.

I For example, to change text in the
paragraph when the user clicks it:
<p onclick="clicked(this)">Click Me!</p>

function clicked(source) {
source.innerHTML = "You clicked";

}

9 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Events
I The DOM defines many events, for

example onClick, which is fired by an
element when the user clicks on it.

I To react to an event, add JavaScript code to
the event handler attribute of the element
that generates the event.

I For example, to change text in the
paragraph when the user clicks it:
<p onclick="clicked(this)">Click Me!</p>

function clicked(source) {
source.innerHTML = "You clicked";

}

9 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Examples of Events

Mouse events onclick, ondblclick,
onmousedown, onmouseover

Keyboard events onkeydown, onkeypress,
onkeyup, fired in that order.

Object events onload, onunload
Form events onchange, onselect

10 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Examples of Events

Mouse events onclick, ondblclick,
onmousedown, onmouseover

Keyboard events onkeydown, onkeypress,
onkeyup, fired in that order.

Object events onload, onunload

Form events onchange, onselect

10 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Examples of Events

Mouse events onclick, ondblclick,
onmousedown, onmouseover

Keyboard events onkeydown, onkeypress,
onkeyup, fired in that order.

Object events onload, onunload
Form events onchange, onselect

10 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Examples of Events

Mouse events onclick, ondblclick,
onmousedown, onmouseover

Keyboard events onkeydown, onkeypress,
onkeyup, fired in that order.

Object events onload, onunload
Form events onchange, onselect

10 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Listeners
I The JavaScript function addEventListener()

attaches an event listener to the specified element.
<button id="myBtn">Try it</button>
<p id="demo"></p>

document.getElementById("myBtn").
addEventListener("click", displayDate);

function displayDate() {
document.getElementById("demo").

innerHTML = Date();
}

I Multiple event listeners, even of the same type, can
be attached to the same element.

I Event listeners is preferred over onEvent
attributes since it separates JavaScript from HTML,
thereby increasing cohesion.

11 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Listeners
I The JavaScript function addEventListener()

attaches an event listener to the specified element.
<button id="myBtn">Try it</button>
<p id="demo"></p>

document.getElementById("myBtn").
addEventListener("click", displayDate);

function displayDate() {
document.getElementById("demo").

innerHTML = Date();
}

I Multiple event listeners, even of the same type, can
be attached to the same element.

I Event listeners is preferred over onEvent
attributes since it separates JavaScript from HTML,
thereby increasing cohesion. 11 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Listeners
I The JavaScript function addEventListener()

attaches an event listener to the specified element.
<button id="myBtn">Try it</button>
<p id="demo"></p>

document.getElementById("myBtn").
addEventListener("click", displayDate);

function displayDate() {
document.getElementById("demo").

innerHTML = Date();
}

I Multiple event listeners, even of the same type, can
be attached to the same element.

I Event listeners is preferred over onEvent
attributes since it separates JavaScript from HTML,
thereby increasing cohesion. 11 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Passing Parameters to Event
Listeners

I The following code illustrates how to pass
parameters to event listeners.

<button id="myBtn">Try it</button>
<p id="demo"></p>

document.getElementById("myBtn").
addEventListener("click", function() {

showLabel(this);
});

function showLabel(source) {
document.getElementById("demo").innerHTML

= source.innerHTML;
}

12 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Question 1

13 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Bubbling

I When an element fires an event, also the
event handlers of its parents are invoked.

I An event first triggers the deepest possible
element, then its parents in nesting order.

14 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Bubbling

I When an element fires an event, also the
event handlers of its parents are invoked.

I An event first triggers the deepest possible
element, then its parents in nesting order.

14 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Bubbling Example
I HTML:

<div onclick="show(1)">1
<div onclick="show(2)">2

<div onclick="show(3)">3
<p id="event-log"></p>

</div>
</div>

</div>

JavaScript:
function show(sourceNo) {

let curr = document.
getElementById("event-log").innerHTML;

document.getElementById("event-log").
innerHTML = curr + " " + sourceNo;

}

I When clicking the innermost div (number
3), the output is 3 2 1 15 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Bubbling Example
I HTML:

<div onclick="show(1)">1
<div onclick="show(2)">2

<div onclick="show(3)">3
<p id="event-log"></p>

</div>
</div>

</div>

JavaScript:
function show(sourceNo) {

let curr = document.
getElementById("event-log").innerHTML;

document.getElementById("event-log").
innerHTML = curr + " " + sourceNo;

}

I When clicking the innermost div (number
3), the output is 3 2 1 15 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Stopping the Bubbling
I Bubbling is prevented by calling
stopPropagation() on the event object.

I <div onclick="show(1)">1
<div onclick="show(2)">2

<div onclick=’show(3, event)’>3
<p id="log"></p>

</div>
</div>

</div>

function show(sourceNo, event) {
let curr = document.

getElementById("log").innerHTML;
document.getElementById("log").

innerHTML = curr + " " + sourceNo;
event.stopPropagation();

}

I When clicking the innermost div, output is now 3

16 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Stopping the Bubbling
I Bubbling is prevented by calling
stopPropagation() on the event object.

I <div onclick="show(1)">1
<div onclick="show(2)">2

<div onclick=’show(3, event)’>3
<p id="log"></p>

</div>
</div>

</div>

function show(sourceNo, event) {
let curr = document.

getElementById("log").innerHTML;
document.getElementById("log").

innerHTML = curr + " " + sourceNo;
event.stopPropagation();

}

I When clicking the innermost div, output is now 3 16 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Stopping the Bubbling
I Bubbling is prevented by calling
stopPropagation() on the event object.

I <div onclick="show(1)">1
<div onclick="show(2)">2

<div onclick=’show(3, event)’>3
<p id="log"></p>

</div>
</div>

</div>

function show(sourceNo, event) {
let curr = document.

getElementById("log").innerHTML;
document.getElementById("log").

innerHTML = curr + " " + sourceNo;
event.stopPropagation();

}

I When clicking the innermost div, output is now 3 16 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Capturing

I Before bubbling, the event goes the other
way, from outermost to innermost element.
This is called capturing.

I The capturing phase is ignored by all
onEvent attributes and event listeners,
except listeners with the useCapture
argument set to true:
document.getElementById("myId").

addEventListener("click", handler, true);

17 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Capturing

I Before bubbling, the event goes the other
way, from outermost to innermost element.
This is called capturing.

I The capturing phase is ignored by all
onEvent attributes and event listeners,
except listeners with the useCapture
argument set to true:
document.getElementById("myId").

addEventListener("click", handler, true);

17 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Navigating the DOM Tree

Image from
http://www.w3schools.com/js/js_htmldom_navigation.asp

I The image to the left
illustrates parent, child and
sibling relationships between
nodes in the DOM tree.

I The DOM tree can be
navigated with the node
properties parentNode,
childNodes,
firstChild,
lastChild,
nextSibling, and
previousSibling

18 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Navigating the DOM Tree

Image from
http://www.w3schools.com/js/js_htmldom_navigation.asp

I The image to the left
illustrates parent, child and
sibling relationships between
nodes in the DOM tree.

I The DOM tree can be
navigated with the node
properties parentNode,
childNodes,
firstChild,
lastChild,
nextSibling, and
previousSibling

18 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Navigating the DOM Tree (Cont’d)
I Note that, in the code below, the <p> node

contains a child text node with the value
the text
<p>the text</p>

I Text content can be accessed with the
innerHTML and nodeValue properties.
<p id="demo">text content</p>

Using innerHTML:
let text = document.getElementById("demo").

innerHTML;

Using nodeValue:
let text = document.getElementById("demo").
childNodes[0].nodeValue;

19 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Navigating the DOM Tree (Cont’d)
I Note that, in the code below, the <p> node

contains a child text node with the value
the text
<p>the text</p>

I Text content can be accessed with the
innerHTML and nodeValue properties.
<p id="demo">text content</p>

Using innerHTML:
let text = document.getElementById("demo").

innerHTML;

Using nodeValue:
let text = document.getElementById("demo").
childNodes[0].nodeValue;

19 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Adding Elements

I To add a new element, first create it, then
insert it in the DOM tree.
<div id="target"></div>

let elem = document.createElement("p");
let text =

document.createTextNode("added element");
elem.appendChild(text);
document.getElementById("target").

appendChild(elem);

20 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Removing Elements

I To remove an element, use the
removeChild method.
<div id="parent">
<p>To be removed</p>

</div>

let parent =
document.getElementById("parent");

let child =
parent.getElementsByTagName("p")[0];

parent.removeChild(child);

21 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Question 2

22 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

23 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Browser Object Model, BOM

I While the DOM provides an API for
accessing the current document, the
Browser Object Model, BOM, provides an
API that gives access to the browser.

I The BOM is not standardized, but more or
less the same methods are implemented in
all modern browsers.

I The following slides contain a short
overview of major objects and methods, to
give an idea of what can be done with the
BOM.

24 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Browser Object Model, BOM

I While the DOM provides an API for
accessing the current document, the
Browser Object Model, BOM, provides an
API that gives access to the browser.

I The BOM is not standardized, but more or
less the same methods are implemented in
all modern browsers.

I The following slides contain a short
overview of major objects and methods, to
give an idea of what can be done with the
BOM.

24 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Browser Object Model, BOM

I While the DOM provides an API for
accessing the current document, the
Browser Object Model, BOM, provides an
API that gives access to the browser.

I The BOM is not standardized, but more or
less the same methods are implemented in
all modern browsers.

I The following slides contain a short
overview of major objects and methods, to
give an idea of what can be done with the
BOM.

24 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

BOM Objects

I The window object has:
I Properties for height and width of the browser

window.
I Methods to open, close, move and resize the

browser window.
I Methods to execute some code at specified

time-intervals.
I The location object has:

I Properties that gives information about the
current URL.

I The assign method that loads a new
document.

25 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

BOM Objects

I The window object has:
I Properties for height and width of the browser

window.
I Methods to open, close, move and resize the

browser window.
I Methods to execute some code at specified

time-intervals.
I The location object has:

I Properties that gives information about the
current URL.

I The assign method that loads a new
document.

25 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

BOM Objects (Cont’d)

I The navigator object can give
information about browser type and
browser features.

I The screen object has properties for
height, width and pixel depth of the user’s
screen.

I The document object has the cookie
property, which is used to get and set
cookies.

26 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

BOM Objects (Cont’d)

I The navigator object can give
information about browser type and
browser features.

I The screen object has properties for
height, width and pixel depth of the user’s
screen.

I The document object has the cookie
property, which is used to get and set
cookies.

26 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

BOM Objects (Cont’d)

I The navigator object can give
information about browser type and
browser features.

I The screen object has properties for
height, width and pixel depth of the user’s
screen.

I The document object has the cookie
property, which is used to get and set
cookies.

26 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

27 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Library

I jQuery is an API that simplifies many
common JavaScript tasks, like DOM
manipulation, CSS manipulation, event
handling, effects and animation.

I There are many jQuery plugins that provide
more features.

I jQuery hides cross-browser issues, all
jQuery code will work the same way in all
browsers supporting jQuery.

I jQuery is very commonly used.

28 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Library

I jQuery is an API that simplifies many
common JavaScript tasks, like DOM
manipulation, CSS manipulation, event
handling, effects and animation.

I There are many jQuery plugins that provide
more features.

I jQuery hides cross-browser issues, all
jQuery code will work the same way in all
browsers supporting jQuery.

I jQuery is very commonly used.

28 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Library

I jQuery is an API that simplifies many
common JavaScript tasks, like DOM
manipulation, CSS manipulation, event
handling, effects and animation.

I There are many jQuery plugins that provide
more features.

I jQuery hides cross-browser issues, all
jQuery code will work the same way in all
browsers supporting jQuery.

I jQuery is very commonly used.

28 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Library

I jQuery is an API that simplifies many
common JavaScript tasks, like DOM
manipulation, CSS manipulation, event
handling, effects and animation.

I There are many jQuery plugins that provide
more features.

I jQuery hides cross-browser issues, all
jQuery code will work the same way in all
browsers supporting jQuery.

I jQuery is very commonly used.

28 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Installing jQuery

I jQuery is a JavaScript file, to use it you just
have to provide a link to that file.

I The jQuery library file comes in two
versions:

I A development version, which is
uncompressed and therefore readable.

I A live website version, which has been
minified and compressed and therefore is not
readable. Instead it is shorter and thereby
faster to download.

29 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Installing jQuery

I jQuery is a JavaScript file, to use it you just
have to provide a link to that file.

I The jQuery library file comes in two
versions:

I A development version, which is
uncompressed and therefore readable.

I A live website version, which has been
minified and compressed and therefore is not
readable. Instead it is shorter and thereby
faster to download.

29 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Installing jQuery (Cont’d)

I Either you download it from jquery.com
and place it on your server, or you provide
a link to a Content Delivery Network, CDN,
as follows:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/jquery/3.3.1/jquery.min.js">
</script>

I Using a CDN is normally faster, since:

I The file is delivered from the CDNs server
closest to the user.

I Many users already have downloaded jQuery
from the CDN when visiting another site. As a
result, it is loaded from browser cache.

30 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Installing jQuery (Cont’d)

I Either you download it from jquery.com
and place it on your server, or you provide
a link to a Content Delivery Network, CDN,
as follows:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/jquery/3.3.1/jquery.min.js">
</script>

I Using a CDN is normally faster, since:
I The file is delivered from the CDNs server

closest to the user.

I Many users already have downloaded jQuery
from the CDN when visiting another site. As a
result, it is loaded from browser cache.

30 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Installing jQuery (Cont’d)

I Either you download it from jquery.com
and place it on your server, or you provide
a link to a Content Delivery Network, CDN,
as follows:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/jquery/3.3.1/jquery.min.js">
</script>

I Using a CDN is normally faster, since:
I The file is delivered from the CDNs server

closest to the user.
I Many users already have downloaded jQuery

from the CDN when visiting another site. As a
result, it is loaded from browser cache.

30 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Installing jQuery (Cont’d)

I Either you download it from jquery.com
and place it on your server, or you provide
a link to a Content Delivery Network, CDN,
as follows:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/jquery/3.3.1/jquery.min.js">
</script>

I Using a CDN is normally faster, since:
I The file is delivered from the CDNs server

closest to the user.
I Many users already have downloaded jQuery

from the CDN when visiting another site. As a
result, it is loaded from browser cache.

30 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Function
I Very central to jQuery is the jQuery function, which

has two names, jQuery and the commonly used $.

I Remember that $ is a perfectly legal JavaScript
identifier, there is nothing magic about that name.

I The jQuery function normally takes one parameter,
which is either a CSS selector or a reference to an
object in the document, and returns a jQuery object
wrapping all HTML element(s) corresponding to the
search criteria.
$(document) //The document object.
$(this) //The current element.
$(".c") //All elements with class "c"
$(div) //All div elements.

I Any CSS selector can be used as search criteria.

31 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Function
I Very central to jQuery is the jQuery function, which

has two names, jQuery and the commonly used $.

I Remember that $ is a perfectly legal JavaScript
identifier, there is nothing magic about that name.

I The jQuery function normally takes one parameter,
which is either a CSS selector or a reference to an
object in the document, and returns a jQuery object
wrapping all HTML element(s) corresponding to the
search criteria.
$(document) //The document object.
$(this) //The current element.
$(".c") //All elements with class "c"
$(div) //All div elements.

I Any CSS selector can be used as search criteria.

31 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Function
I Very central to jQuery is the jQuery function, which

has two names, jQuery and the commonly used $.

I Remember that $ is a perfectly legal JavaScript
identifier, there is nothing magic about that name.

I The jQuery function normally takes one parameter,
which is either a CSS selector or a reference to an
object in the document, and returns a jQuery object
wrapping all HTML element(s) corresponding to the
search criteria.
$(document) //The document object.
$(this) //The current element.
$(".c") //All elements with class "c"
$(div) //All div elements.

I Any CSS selector can be used as search criteria.

31 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Function
I Very central to jQuery is the jQuery function, which

has two names, jQuery and the commonly used $.

I Remember that $ is a perfectly legal JavaScript
identifier, there is nothing magic about that name.

I The jQuery function normally takes one parameter,
which is either a CSS selector or a reference to an
object in the document, and returns a jQuery object
wrapping all HTML element(s) corresponding to the
search criteria.
$(document) //The document object.
$(this) //The current element.
$(".c") //All elements with class "c"
$(div) //All div elements.

I Any CSS selector can be used as search criteria.

31 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Object

I The jQuery object also has two names, jQuery
and the commonly used $.

I The jQuery object contains many methods that
operate on the wrapped HTML element. For
example the html method that gets or sets the
HTML content of the wrapped element:

/* Store the HTML of the element with
id "someId" in the variable "content". */
let content = $("#someId").html();

/* Set the HTML of the element with
id "someId" to "content
". */
$("#someId").html(content + "
");

32 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Object

I The jQuery object also has two names, jQuery
and the commonly used $.

I The jQuery object contains many methods that
operate on the wrapped HTML element. For
example the html method that gets or sets the
HTML content of the wrapped element:

/* Store the HTML of the element with
id "someId" in the variable "content". */
let content = $("#someId").html();

/* Set the HTML of the element with
id "someId" to "content
". */
$("#someId").html(content + "
");

32 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Object (Cont’d)

I The jQuery object supports array
subscripting via brackets:
$("h1")[0]; //The first h1 element.

I The jQuery object also has utility methods
that are not related to a HTML element:
// Returns the string "extra whitespace"
$.trim(" extra whitespace ");

33 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The jQuery Object (Cont’d)

I The jQuery object supports array
subscripting via brackets:
$("h1")[0]; //The first h1 element.

I The jQuery object also has utility methods
that are not related to a HTML element:
// Returns the string "extra whitespace"
$.trim(" extra whitespace ");

33 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Handlers

I In jQuery, an event handling function is
passed as argument to a method with the
event name in the jQuery object wrapping
the desired event source.

I The following code adds an event handler
to all <p> elements. The event handler will
change the paragraph’s text to
You clicked when the user clicks it.
$("p").click(function(){
$(this).html("You clicked");

});

34 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Event Handlers

I In jQuery, an event handling function is
passed as argument to a method with the
event name in the jQuery object wrapping
the desired event source.

I The following code adds an event handler
to all <p> elements. The event handler will
change the paragraph’s text to
You clicked when the user clicks it.
$("p").click(function(){
$(this).html("You clicked");

});

34 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Ready Event
I jQuery defines the document ready event, which is

fired when the DOM has been constructed.

I It is usually best to wait for this event before running
JavaScript code, to avoid operating on elements that
have not been defined.

I It is normally not necessary to wait for the JavaScript
load event, which fires when everything, including
images, is loaded and rendered.

I Therefore, JavaScript code is normally written like
this:

$(document).ready(function(){
// JavaScript code here...

});

35 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Ready Event
I jQuery defines the document ready event, which is

fired when the DOM has been constructed.

I It is usually best to wait for this event before running
JavaScript code, to avoid operating on elements that
have not been defined.

I It is normally not necessary to wait for the JavaScript
load event, which fires when everything, including
images, is loaded and rendered.

I Therefore, JavaScript code is normally written like
this:

$(document).ready(function(){
// JavaScript code here...

});

35 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Ready Event
I jQuery defines the document ready event, which is

fired when the DOM has been constructed.

I It is usually best to wait for this event before running
JavaScript code, to avoid operating on elements that
have not been defined.

I It is normally not necessary to wait for the JavaScript
load event, which fires when everything, including
images, is loaded and rendered.

I Therefore, JavaScript code is normally written like
this:

$(document).ready(function(){
// JavaScript code here...

});

35 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Document Ready Event
I jQuery defines the document ready event, which is

fired when the DOM has been constructed.

I It is usually best to wait for this event before running
JavaScript code, to avoid operating on elements that
have not been defined.

I It is normally not necessary to wait for the JavaScript
load event, which fires when everything, including
images, is loaded and rendered.

I Therefore, JavaScript code is normally written like
this:

$(document).ready(function(){
// JavaScript code here...

});

35 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

CSS Rules

I When passed a CSS property name, the
css method returns the value of that
property.
$("body").css("background-color"));

I When passed one or more property:value
pairs, those rules are set for the specified
element(s).
$("body").css("background-color","yellow");

36 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

CSS Rules

I When passed a CSS property name, the
css method returns the value of that
property.
$("body").css("background-color"));

I When passed one or more property:value
pairs, those rules are set for the specified
element(s).
$("body").css("background-color","yellow");

36 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Effects

I There are lots of effects provided by jQuery,
here are some examples.

I The hide and show methods can hide/show
elements. It is also possible to specify the
speed of the (dis)appearance.

I Various fade methods causes an element to
fade in/out.

I Various slide methods causes an element
to slide up/down.

I The animate method is used to create
custom animations.

37 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Effects

I There are lots of effects provided by jQuery,
here are some examples.

I The hide and show methods can hide/show
elements. It is also possible to specify the
speed of the (dis)appearance.

I Various fade methods causes an element to
fade in/out.

I Various slide methods causes an element
to slide up/down.

I The animate method is used to create
custom animations.

37 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Effects

I There are lots of effects provided by jQuery,
here are some examples.

I The hide and show methods can hide/show
elements. It is also possible to specify the
speed of the (dis)appearance.

I Various fade methods causes an element to
fade in/out.

I Various slide methods causes an element
to slide up/down.

I The animate method is used to create
custom animations.

37 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Effects

I There are lots of effects provided by jQuery,
here are some examples.

I The hide and show methods can hide/show
elements. It is also possible to specify the
speed of the (dis)appearance.

I Various fade methods causes an element to
fade in/out.

I Various slide methods causes an element
to slide up/down.

I The animate method is used to create
custom animations.

37 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Effects

I There are lots of effects provided by jQuery,
here are some examples.

I The hide and show methods can hide/show
elements. It is also possible to specify the
speed of the (dis)appearance.

I Various fade methods causes an element to
fade in/out.

I Various slide methods causes an element
to slide up/down.

I The animate method is used to create
custom animations.

37 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Effects (Cont’d)

I Effects can have callback functions that are
executed when the effect is done.
$("button").click(function(){
$("p").hide("slow",function(){

alert("The paragraph is now hidden");
});

});

38 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

jQuery Method Chaining

I Many of the element manipulation methods
of the jQuery object return the jQuery
object itself.

I This means it is possible to create chains of
such methods.
$("button").click(function(){
$("#p1").css("color","blue")

.slideUp(3000)

.slideDown(2000);
});

39 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

jQuery Method Chaining

I Many of the element manipulation methods
of the jQuery object return the jQuery
object itself.

I This means it is possible to create chains of
such methods.
$("button").click(function(){
$("#p1").css("color","blue")

.slideUp(3000)

.slideDown(2000);
});

39 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Element Content and Element
Attributes

I The text method is used to access text content of
an HTML element, the html method is used for text
content with HTML tags, the val method is used for
form field values, and attr is used for an element’s
attributes.

I If called without arguments, these methods return
the current value. If called with arguments they set a
new value.
$("#btn").click(function(){
let current = $("#test").html());

});

$("#btn").click(function(){
$("#textField").val("New value");

});
40 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Element Content and Element
Attributes

I The text method is used to access text content of
an HTML element, the html method is used for text
content with HTML tags, the val method is used for
form field values, and attr is used for an element’s
attributes.

I If called without arguments, these methods return
the current value. If called with arguments they set a
new value.
$("#btn").click(function(){
let current = $("#test").html());

});

$("#btn").click(function(){
$("#textField").val("New value");

});
40 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Element Content and Element
Attributes (Cont’d)

I The text, html, val, and attr
methods can have callback functions.

I The callback function takes two parameters,
the index of the current element in the list of
elements selected and the original value.

I The return value of the callback function
becomes the new text of the element.
$("#btn").click(function(){

$("p").text(function(i,oldText){
return "Old text: " + oldText +

", index: " + i;
});

});

41 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Element Content and Element
Attributes (Cont’d)

I The text, html, val, and attr
methods can have callback functions.

I The callback function takes two parameters,
the index of the current element in the list of
elements selected and the original value.

I The return value of the callback function
becomes the new text of the element.
$("#btn").click(function(){
$("p").text(function(i,oldText){

return "Old text: " + oldText +
", index: " + i;

});
});

41 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Element Content and Element
Attributes (Cont’d)

I The text, html, val, and attr
methods can have callback functions.

I The callback function takes two parameters,
the index of the current element in the list of
elements selected and the original value.

I The return value of the callback function
becomes the new text of the element.
$("#btn").click(function(){
$("p").text(function(i,oldText){

return "Old text: " + oldText +
", index: " + i;

});
});

41 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

To Add or Remove Elements

I The append, prepend, before, and
after methods are used to add elements.
// Append a list item to the ordered list
// with id "someList".
$("#someList").

append("Appended item");

I The remove and empty methods are
used to remove elements.
// Remove the element with id "#menu".
$("#menu").remove();

42 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

To Add or Remove Elements

I The append, prepend, before, and
after methods are used to add elements.
// Append a list item to the ordered list
// with id "someList".
$("#someList").

append("Appended item");

I The remove and empty methods are
used to remove elements.
// Remove the element with id "#menu".
$("#menu").remove();

42 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Dimensions
The following image, taken from
http://www.w3schools.com/jquery/
jquery_dimensions.asp, illustrates the
methods used to set or get element dimensions.

43 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Traversing the DOM Tree
Here are samples of jQuery methods used to
traverse the DOM tree.

parent Returns the parent on the nearest higher
level.

parents Returns all parents all the way up to the html
element.

children Returns all children on the nearest lower
level.

find Returns all descendants on all lower levels.

siblings Returns all siblings.

filtering The first, last, eq, and filter
methods can be used to filter the search
results of the methods above.

44 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Traversing the DOM Tree
Here are samples of jQuery methods used to
traverse the DOM tree.

parent Returns the parent on the nearest higher
level.

parents Returns all parents all the way up to the html
element.

children Returns all children on the nearest lower
level.

find Returns all descendants on all lower levels.

siblings Returns all siblings.

filtering The first, last, eq, and filter
methods can be used to filter the search
results of the methods above.

44 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Traversing the DOM Tree
Here are samples of jQuery methods used to
traverse the DOM tree.

parent Returns the parent on the nearest higher
level.

parents Returns all parents all the way up to the html
element.

children Returns all children on the nearest lower
level.

find Returns all descendants on all lower levels.

siblings Returns all siblings.

filtering The first, last, eq, and filter
methods can be used to filter the search
results of the methods above.

44 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Traversing the DOM Tree
Here are samples of jQuery methods used to
traverse the DOM tree.

parent Returns the parent on the nearest higher
level.

parents Returns all parents all the way up to the html
element.

children Returns all children on the nearest lower
level.

find Returns all descendants on all lower levels.

siblings Returns all siblings.

filtering The first, last, eq, and filter
methods can be used to filter the search
results of the methods above.

44 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Traversing the DOM Tree
Here are samples of jQuery methods used to
traverse the DOM tree.

parent Returns the parent on the nearest higher
level.

parents Returns all parents all the way up to the html
element.

children Returns all children on the nearest lower
level.

find Returns all descendants on all lower levels.

siblings Returns all siblings.

filtering The first, last, eq, and filter
methods can be used to filter the search
results of the methods above.

44 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Traversing the DOM Tree
Here are samples of jQuery methods used to
traverse the DOM tree.

parent Returns the parent on the nearest higher
level.

parents Returns all parents all the way up to the html
element.

children Returns all children on the nearest lower
level.

find Returns all descendants on all lower levels.

siblings Returns all siblings.

filtering The first, last, eq, and filter
methods can be used to filter the search
results of the methods above.

44 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Traversing the DOM Tree
Here are samples of jQuery methods used to
traverse the DOM tree.

parent Returns the parent on the nearest higher
level.

parents Returns all parents all the way up to the html
element.

children Returns all children on the nearest lower
level.

find Returns all descendants on all lower levels.

siblings Returns all siblings.

filtering The first, last, eq, and filter
methods can be used to filter the search
results of the methods above.

44 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Question 3

45 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

46 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Loading an Entire Page

I Traditionally, an entire page is loaded when
the user clicks a link or a button, all HTML
in the page is read from the server.

I Dynamic data is included on the server,
before the HTML is sent to the client, for
example using a PHP program.

I This behavior is appropriate if the entire
page content really must change, but that is
often not the case.

47 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Loading an Entire Page

I Traditionally, an entire page is loaded when
the user clicks a link or a button, all HTML
in the page is read from the server.

I Dynamic data is included on the server,
before the HTML is sent to the client, for
example using a PHP program.

I This behavior is appropriate if the entire
page content really must change, but that is
often not the case.

47 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Loading an Entire Page

I Traditionally, an entire page is loaded when
the user clicks a link or a button, all HTML
in the page is read from the server.

I Dynamic data is included on the server,
before the HTML is sent to the client, for
example using a PHP program.

I This behavior is appropriate if the entire
page content really must change, but that is
often not the case.

47 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Loading an Entire Page

Consider for example the sample chat application. All that

happens when the user clicks Send is that the new entry

is added, the rest of the page is untouched. 48 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Repetition: The MVVM Pattern
I The philosophy behind

Model-View-ViewModel,
MVVM, is to send only
state changes from
server to client.

I State changes, which
means new data, are
stored in the viewmodel.

I Therefore, the viewmodel will always
contain the current state of the application.

I The browser view must reflect the
viewmodel state, preferably using the
observer pattern.

49 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Repetition: The MVVM Pattern
I The philosophy behind

Model-View-ViewModel,
MVVM, is to send only
state changes from
server to client.

I State changes, which
means new data, are
stored in the viewmodel.

I Therefore, the viewmodel will always
contain the current state of the application.

I The browser view must reflect the
viewmodel state, preferably using the
observer pattern.

49 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Repetition: The MVVM Pattern
I The philosophy behind

Model-View-ViewModel,
MVVM, is to send only
state changes from
server to client.

I State changes, which
means new data, are
stored in the viewmodel.

I Therefore, the viewmodel will always
contain the current state of the application.

I The browser view must reflect the
viewmodel state, preferably using the
observer pattern.

49 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Repetition: The MVVM Pattern
I The philosophy behind

Model-View-ViewModel,
MVVM, is to send only
state changes from
server to client.

I State changes, which
means new data, are
stored in the viewmodel.

I Therefore, the viewmodel will always
contain the current state of the application.

I The browser view must reflect the
viewmodel state, preferably using the
observer pattern.

49 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

AJAX: To Load Only Data

I The dominating method to request data
from the server, without reloading the web
page, is Asynchronous JavaScript And
XML, AJAX.

I AJAX is basically a way to use existing
technologies, such as JavaScript, HTTP
and XML.

I No new language or markup.

I The only thing specific for AJAX is a
JavaScript object, called
XMLHttpRequest, which is
standardized by W3C.

50 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

AJAX: To Load Only Data

I The dominating method to request data
from the server, without reloading the web
page, is Asynchronous JavaScript And
XML, AJAX.

I AJAX is basically a way to use existing
technologies, such as JavaScript, HTTP
and XML.

I No new language or markup.

I The only thing specific for AJAX is a
JavaScript object, called
XMLHttpRequest, which is
standardized by W3C.

50 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

AJAX: To Load Only Data

I The dominating method to request data
from the server, without reloading the web
page, is Asynchronous JavaScript And
XML, AJAX.

I AJAX is basically a way to use existing
technologies, such as JavaScript, HTTP
and XML.

I No new language or markup.

I The only thing specific for AJAX is a
JavaScript object, called
XMLHttpRequest, which is
standardized by W3C.

50 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work?

I Web page is loaded only on first request.

I Subsequent requests come from JavaScript
code, using XMLHttpRequest.

I The server returns only data, no markup.
I Returned data is available to JavaScript

code, and is used to update the web page,
by updating the DOM.

51 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work?

I Web page is loaded only on first request.
I Subsequent requests come from JavaScript

code, using XMLHttpRequest.

I The server returns only data, no markup.
I Returned data is available to JavaScript

code, and is used to update the web page,
by updating the DOM.

51 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work?

I Web page is loaded only on first request.
I Subsequent requests come from JavaScript

code, using XMLHttpRequest.
I The server returns only data, no markup.

I Returned data is available to JavaScript
code, and is used to update the web page,
by updating the DOM.

51 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work?

I Web page is loaded only on first request.
I Subsequent requests come from JavaScript

code, using XMLHttpRequest.
I The server returns only data, no markup.
I Returned data is available to JavaScript

code, and is used to update the web page,
by updating the DOM.

51 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work?

I Web page is loaded only on first request.
I Subsequent requests come from JavaScript

code, using XMLHttpRequest.
I The server returns only data, no markup.
I Returned data is available to JavaScript

code, and is used to update the web page,
by updating the DOM.

51 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work? (Cont’d)

I Note that AJAX requests are ordinary
HTTP GET or HTTP POST requests.

I The server directs the request to the
resource specified in the URL, just as when
loading a HTML document.

I An AJAX request is normally handled by a
program, for example PHP, which generates
a response containing the new data.

52 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work? (Cont’d)

I Note that AJAX requests are ordinary
HTTP GET or HTTP POST requests.

I The server directs the request to the
resource specified in the URL, just as when
loading a HTML document.

I An AJAX request is normally handled by a
program, for example PHP, which generates
a response containing the new data.

52 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

How Does It Work? (Cont’d)

I Note that AJAX requests are ordinary
HTTP GET or HTTP POST requests.

I The server directs the request to the
resource specified in the URL, just as when
loading a HTML document.

I An AJAX request is normally handled by a
program, for example PHP, which generates
a response containing the new data.

52 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Format
I Client and server need to agree on the

format of the data included in the HTTP
response.

I XML is an obvious option, but it has some
drawbacks:

I Interpreting an XML document requires extra
code.

I Using a XSLT stylesheet to generate a view is
a bit tricky.

I XML documents are quite long and wordy.
I Therefore, JavaScript Object Notation,

JSON, is normally used instead of XML.
I Compact and easy to translate to JavaScript

objects.

53 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Format
I Client and server need to agree on the

format of the data included in the HTTP
response.

I XML is an obvious option, but it has some
drawbacks:

I Interpreting an XML document requires extra
code.

I Using a XSLT stylesheet to generate a view is
a bit tricky.

I XML documents are quite long and wordy.
I Therefore, JavaScript Object Notation,

JSON, is normally used instead of XML.
I Compact and easy to translate to JavaScript

objects.

53 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Format
I Client and server need to agree on the

format of the data included in the HTTP
response.

I XML is an obvious option, but it has some
drawbacks:

I Interpreting an XML document requires extra
code.

I Using a XSLT stylesheet to generate a view is
a bit tricky.

I XML documents are quite long and wordy.
I Therefore, JavaScript Object Notation,

JSON, is normally used instead of XML.
I Compact and easy to translate to JavaScript

objects.

53 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Format
I Client and server need to agree on the

format of the data included in the HTTP
response.

I XML is an obvious option, but it has some
drawbacks:

I Interpreting an XML document requires extra
code.

I Using a XSLT stylesheet to generate a view is
a bit tricky.

I XML documents are quite long and wordy.

I Therefore, JavaScript Object Notation,
JSON, is normally used instead of XML.

I Compact and easy to translate to JavaScript
objects.

53 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Format
I Client and server need to agree on the

format of the data included in the HTTP
response.

I XML is an obvious option, but it has some
drawbacks:

I Interpreting an XML document requires extra
code.

I Using a XSLT stylesheet to generate a view is
a bit tricky.

I XML documents are quite long and wordy.
I Therefore, JavaScript Object Notation,

JSON, is normally used instead of XML.
I Compact and easy to translate to JavaScript

objects.

53 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Format
I Client and server need to agree on the

format of the data included in the HTTP
response.

I XML is an obvious option, but it has some
drawbacks:

I Interpreting an XML document requires extra
code.

I Using a XSLT stylesheet to generate a view is
a bit tricky.

I XML documents are quite long and wordy.
I Therefore, JavaScript Object Notation,

JSON, is normally used instead of XML.
I Compact and easy to translate to JavaScript

objects.

53 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON
I The JSON syntax is very simple:

I Data is name/value pairs:
"firstName":"Olle"

I Data is separated by commas.
I Objects are denoted with { and }:

{"firstName":"Olle", "lastName":"Olsson"}

I Arrays are denoted with [and]:
"employees":[
{"firstName":"Olle", "lastName":"Olsson"},
{"firstName":"Stina", "lastName":"Nilsson"}

]

I Data types are JavaScript types, for example
string, “abcd”; integer, 123; boolean,
false

54 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON
I The JSON syntax is very simple:

I Data is name/value pairs:
"firstName":"Olle"

I Data is separated by commas.

I Objects are denoted with { and }:
{"firstName":"Olle", "lastName":"Olsson"}

I Arrays are denoted with [and]:
"employees":[
{"firstName":"Olle", "lastName":"Olsson"},
{"firstName":"Stina", "lastName":"Nilsson"}

]

I Data types are JavaScript types, for example
string, “abcd”; integer, 123; boolean,
false

54 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON
I The JSON syntax is very simple:

I Data is name/value pairs:
"firstName":"Olle"

I Data is separated by commas.
I Objects are denoted with { and }:

{"firstName":"Olle", "lastName":"Olsson"}

I Arrays are denoted with [and]:
"employees":[
{"firstName":"Olle", "lastName":"Olsson"},
{"firstName":"Stina", "lastName":"Nilsson"}

]

I Data types are JavaScript types, for example
string, “abcd”; integer, 123; boolean,
false

54 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON
I The JSON syntax is very simple:

I Data is name/value pairs:
"firstName":"Olle"

I Data is separated by commas.
I Objects are denoted with { and }:

{"firstName":"Olle", "lastName":"Olsson"}

I Arrays are denoted with [and]:
"employees":[

{"firstName":"Olle", "lastName":"Olsson"},
{"firstName":"Stina", "lastName":"Nilsson"}

]

I Data types are JavaScript types, for example
string, “abcd”; integer, 123; boolean,
false

54 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON
I The JSON syntax is very simple:

I Data is name/value pairs:
"firstName":"Olle"

I Data is separated by commas.
I Objects are denoted with { and }:

{"firstName":"Olle", "lastName":"Olsson"}

I Arrays are denoted with [and]:
"employees":[

{"firstName":"Olle", "lastName":"Olsson"},
{"firstName":"Stina", "lastName":"Nilsson"}

]

I Data types are JavaScript types, for example
string, “abcd”; integer, 123; boolean,
false

54 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON
I The JSON syntax is very simple:

I Data is name/value pairs:
"firstName":"Olle"

I Data is separated by commas.
I Objects are denoted with { and }:

{"firstName":"Olle", "lastName":"Olsson"}

I Arrays are denoted with [and]:
"employees":[

{"firstName":"Olle", "lastName":"Olsson"},
{"firstName":"Stina", "lastName":"Nilsson"}

]

I Data types are JavaScript types, for example
string, “abcd”; integer, 123; boolean,
false

54 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON is not an Alternative to XML

I Note that JSON is not a general alternative
to XML. There is nothing like namespace,
DTD, Schema, XSLT or anything else of all
the XML standards.

I JSON is just a format suitable for
transferring JavaScript values.

55 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON is not an Alternative to XML

I Note that JSON is not a general alternative
to XML. There is nothing like namespace,
DTD, Schema, XSLT or anything else of all
the XML standards.

I JSON is just a format suitable for
transferring JavaScript values.

55 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Client: jQuery AJAX Methods
I Instead of covering the XMLHttpRequest object,

we will look at some convenient jQuery functions.

I getJSON sends a HTTP GET request. Data can
be included as a query string and the response is
parsed as JSON data.

I $.getJSON(url, "reqData=" + someVariable,
function(returnedData) {
//Handle returnedData, which is
//the received JSON data, parsed
//to a JavaScript variable.

});

An HTTP GET request is sent to the URL specified
in url. The request has the query string
reqData=<value of someVariable> and
the anonymous callback function is executed when
the server’s response arrives.

56 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Client: jQuery AJAX Methods
I Instead of covering the XMLHttpRequest object,

we will look at some convenient jQuery functions.

I getJSON sends a HTTP GET request. Data can
be included as a query string and the response is
parsed as JSON data.

I $.getJSON(url, "reqData=" + someVariable,
function(returnedData) {

//Handle returnedData, which is
//the received JSON data, parsed
//to a JavaScript variable.

});

An HTTP GET request is sent to the URL specified
in url. The request has the query string
reqData=<value of someVariable> and
the anonymous callback function is executed when
the server’s response arrives. 56 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Client: jQuery AJAX Methods
I Instead of covering the XMLHttpRequest object,

we will look at some convenient jQuery functions.

I getJSON sends a HTTP GET request. Data can
be included as a query string and the response is
parsed as JSON data.

I $.getJSON(url, "reqData=" + someVariable,
function(returnedData) {

//Handle returnedData, which is
//the received JSON data, parsed
//to a JavaScript variable.

});

An HTTP GET request is sent to the URL specified
in url. The request has the query string
reqData=<value of someVariable> and
the anonymous callback function is executed when
the server’s response arrives. 56 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

jQuery AJAX Methods (Cont’d)

I post sends data with a HTTP POST
request.

I $.post(url, "data=" + someVariable);

An HTTP POST request is sent to the URL
specified in url. The request has the body
data=<value of someVariable>.

I jQuery has many more AJAX methods.

57 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

jQuery AJAX Methods (Cont’d)

I post sends data with a HTTP POST
request.

I $.post(url, "data=" + someVariable);

An HTTP POST request is sent to the URL
specified in url. The request has the body
data=<value of someVariable>.

I jQuery has many more AJAX methods.

57 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

jQuery AJAX Methods (Cont’d)

I post sends data with a HTTP POST
request.

I $.post(url, "data=" + someVariable);

An HTTP POST request is sent to the URL
specified in url. The request has the body
data=<value of someVariable>.

I jQuery has many more AJAX methods.

57 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Server: JSON handling in
PHP

I Remember that an AJAX request is a
normal HTTP request.

I Therefore, to handle an AJAX request is no
different from other request handling.

I What is specific for AJAX interaction, is that
we have to generate a JSON response.

I json_encode($aPhpObject)

The json_encode PHP method encodes
the PHP object in aPhpObject to JSON
representation.

58 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Server: JSON handling in
PHP

I Remember that an AJAX request is a
normal HTTP request.

I Therefore, to handle an AJAX request is no
different from other request handling.

I What is specific for AJAX interaction, is that
we have to generate a JSON response.

I json_encode($aPhpObject)

The json_encode PHP method encodes
the PHP object in aPhpObject to JSON
representation.

58 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Server: JSON handling in
PHP

I Remember that an AJAX request is a
normal HTTP request.

I Therefore, to handle an AJAX request is no
different from other request handling.

I What is specific for AJAX interaction, is that
we have to generate a JSON response.

I json_encode($aPhpObject)

The json_encode PHP method encodes
the PHP object in aPhpObject to JSON
representation.

58 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Server: JSON handling in
PHP

I Remember that an AJAX request is a
normal HTTP request.

I Therefore, to handle an AJAX request is no
different from other request handling.

I What is specific for AJAX interaction, is that
we have to generate a JSON response.

I json_encode($aPhpObject)

The json_encode PHP method encodes
the PHP object in aPhpObject to JSON
representation.

58 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON handling in PHP (Cont’d)
class SomeClass implements \JsonSerializable {

private $some_var;
...
public function jsonSerialize() {

$json_obj = new \stdClass;
$json_obj->someVar = $this->some_var;
...
return $json_obj;

}

I The object that shall be JSON encoded must be of a
class that implements JsonSerializable.

I That class must have a method called
jsonSerialize, which returns an object
containing all relevant fields.

I That returned object must be possible to encode
with json_encode.

59 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON handling in PHP (Cont’d)
class SomeClass implements \JsonSerializable {

private $some_var;
...
public function jsonSerialize() {

$json_obj = new \stdClass;
$json_obj->someVar = $this->some_var;
...
return $json_obj;

}

I The object that shall be JSON encoded must be of a
class that implements JsonSerializable.

I That class must have a method called
jsonSerialize, which returns an object
containing all relevant fields.

I That returned object must be possible to encode
with json_encode.

59 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

JSON handling in PHP (Cont’d)
class SomeClass implements \JsonSerializable {

private $some_var;
...
public function jsonSerialize() {

$json_obj = new \stdClass;
$json_obj->someVar = $this->some_var;
...
return $json_obj;

}

I The object that shall be JSON encoded must be of a
class that implements JsonSerializable.

I That class must have a method called
jsonSerialize, which returns an object
containing all relevant fields.

I That returned object must be possible to encode
with json_encode.

59 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Question 4

60 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

61 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Long Polling
I Long Polling, also called Comet, is a

programming technique that enables web
servers to push data to a client even if the
client has not explicitly requested that data.

1. The browser makes an Ajax request to the server,
no matter whether there is data to fetch or not.

2. The request is left unanswered by the server, until
there is data to send to the browser.

3. When receiving the server response, the browser
immediately makes a new request in order to obtain
the next data set.

4. Start over from point one again.

62 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Long Polling
I Long Polling, also called Comet, is a

programming technique that enables web
servers to push data to a client even if the
client has not explicitly requested that data.

1. The browser makes an Ajax request to the server,
no matter whether there is data to fetch or not.

2. The request is left unanswered by the server, until
there is data to send to the browser.

3. When receiving the server response, the browser
immediately makes a new request in order to obtain
the next data set.

4. Start over from point one again.

62 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Long Polling
I Long Polling, also called Comet, is a

programming technique that enables web
servers to push data to a client even if the
client has not explicitly requested that data.

1. The browser makes an Ajax request to the server,
no matter whether there is data to fetch or not.

2. The request is left unanswered by the server, until
there is data to send to the browser.

3. When receiving the server response, the browser
immediately makes a new request in order to obtain
the next data set.

4. Start over from point one again.

62 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Long Polling
I Long Polling, also called Comet, is a

programming technique that enables web
servers to push data to a client even if the
client has not explicitly requested that data.

1. The browser makes an Ajax request to the server,
no matter whether there is data to fetch or not.

2. The request is left unanswered by the server, until
there is data to send to the browser.

3. When receiving the server response, the browser
immediately makes a new request in order to obtain
the next data set.

4. Start over from point one again.

62 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Long Polling
I Long Polling, also called Comet, is a

programming technique that enables web
servers to push data to a client even if the
client has not explicitly requested that data.

1. The browser makes an Ajax request to the server,
no matter whether there is data to fetch or not.

2. The request is left unanswered by the server, until
there is data to send to the browser.

3. When receiving the server response, the browser
immediately makes a new request in order to obtain
the next data set.

4. Start over from point one again.

62 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Long Polling JavaScript Client
$(document).ready(function () {

function fetchFromServer() {
$.getJSON("get-msg.php",

function (response) {
$("#fromServer").
prepend("<p>" + response +

"</p>");
fetchFromServer();

});
}

fetchFromServer();
});

Long polling is achieved by the call to
fetchFromServer in red. This way a new
call is made as soon a response has been
handled.

63 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Long Polling PHP Server

1 define("ONE_SEC", 1);
2 define("FILE_PATH", "msg-to-client.txt");
3
4 while (TRUE) {
5 $msg = \file_get_contents(FILE_PATH);
6 if ($msg !== ’’) {
7 \file_put_contents(FILE_PATH, ’’);
8 echo \json_encode($msg);
9 return;

10 }
11 \sleep(ONE_SEC);
12 }

I Line eleven pauses execution one second.

64 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

A Word of Warning
I The server will not handle multiple

simultaneous requests in the same session.
If one request is being handled, other
requests in the same session are blocked.

I Therefore, if the server has started a
session, it is best to stop the session before
calling sleep.

I \session_write_close();
\sleep(self::ONE_SEC);
\session_start();

session_write_close saves session
data and closes the session. This is what
happens every time a response has been
sent, if a session was started.

65 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

A Word of Warning
I The server will not handle multiple

simultaneous requests in the same session.
If one request is being handled, other
requests in the same session are blocked.

I Therefore, if the server has started a
session, it is best to stop the session before
calling sleep.

I \session_write_close();
\sleep(self::ONE_SEC);
\session_start();

session_write_close saves session
data and closes the session. This is what
happens every time a response has been
sent, if a session was started.

65 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

A Word of Warning
I The server will not handle multiple

simultaneous requests in the same session.
If one request is being handled, other
requests in the same session are blocked.

I Therefore, if the server has started a
session, it is best to stop the session before
calling sleep.

I \session_write_close();
\sleep(self::ONE_SEC);
\session_start();

session_write_close saves session
data and closes the session. This is what
happens every time a response has been
sent, if a session was started.

65 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

One More Word of Warning

I The php engine does not allow a script to
execute more than a specified time, which
by default is 30s. To make a long polling
request wait indefinitely, turn this off by
calling \set_time_limit(0);

66 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Last Word of Warning

I Long polling has som drawbacks that must
be considered.

I Each new request requires a new HTTP
connection. Even if the TCP connection of the
previous request is reused (which is not
necessarily the case) there is still some
overhead.

I The client code tends to get a bit messy, at
least compared to Server-Sent Events and
WebSockets.

I In the end it is some kind of hack, HTTP is
used in a way it was not designed for.

67 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Last Word of Warning

I Long polling has som drawbacks that must
be considered.

I Each new request requires a new HTTP
connection. Even if the TCP connection of the
previous request is reused (which is not
necessarily the case) there is still some
overhead.

I The client code tends to get a bit messy, at
least compared to Server-Sent Events and
WebSockets.

I In the end it is some kind of hack, HTTP is
used in a way it was not designed for.

67 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Last Word of Warning

I Long polling has som drawbacks that must
be considered.

I Each new request requires a new HTTP
connection. Even if the TCP connection of the
previous request is reused (which is not
necessarily the case) there is still some
overhead.

I The client code tends to get a bit messy, at
least compared to Server-Sent Events and
WebSockets.

I In the end it is some kind of hack, HTTP is
used in a way it was not designed for.

67 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Last Word of Warning

I Long polling has som drawbacks that must
be considered.

I Each new request requires a new HTTP
connection. Even if the TCP connection of the
previous request is reused (which is not
necessarily the case) there is still some
overhead.

I The client code tends to get a bit messy, at
least compared to Server-Sent Events and
WebSockets.

I In the end it is some kind of hack, HTTP is
used in a way it was not designed for.

67 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

68 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Server-Sent Event, SSE

I Server-sent event, SSE, is a HTML5
feature that solves the same problem as
long polling, it enables web servers to push
data to a client.

I SSE is preferred over long polling, because
of the long polling drawbacks mentioned
above.

I Note that SSE is only for one-way
messaging, from server to client.
WebSockets is the best technology for
duplex communication.

69 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Server-Sent Event, SSE

I Server-sent event, SSE, is a HTML5
feature that solves the same problem as
long polling, it enables web servers to push
data to a client.

I SSE is preferred over long polling, because
of the long polling drawbacks mentioned
above.

I Note that SSE is only for one-way
messaging, from server to client.
WebSockets is the best technology for
duplex communication.

69 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Server-Sent Event, SSE

I Server-sent event, SSE, is a HTML5
feature that solves the same problem as
long polling, it enables web servers to push
data to a client.

I SSE is preferred over long polling, because
of the long polling drawbacks mentioned
above.

I Note that SSE is only for one-way
messaging, from server to client.
WebSockets is the best technology for
duplex communication.

69 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE JavaScript Client
1 $(document).ready(function () {
2 let evtSource = new EventSource("sse.php");
3 evtSource.addEventListener("msg",
4 function(event) {
5 $("#fromServer").prepend("<p>" +
6 event.data +
7 "</p>");
8 });
9 });

I The connection to the server is established
when the EventSource object is created
on line two.

I The function on lines four to seven is
executed each time an event of the type
msg (the first argument of the function) is
received.

70 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE JavaScript Client
1 $(document).ready(function () {
2 let evtSource = new EventSource("sse.php");
3 evtSource.addEventListener("msg",
4 function(event) {
5 $("#fromServer").prepend("<p>" +
6 event.data +
7 "</p>");
8 });
9 });

I The connection to the server is established
when the EventSource object is created
on line two.

I The function on lines four to seven is
executed each time an event of the type
msg (the first argument of the function) is
received.

70 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server
1 define("ONE_SEC", 1);
2 define("FILE_PATH", "msg-to-client.txt");
3 set_time_limit(0);
4
5 header(’Cache-Control: no-cache’);
6 header("Content-Type: text/event-stream\n\n");
7
8 while (TRUE) {
9 $msg = \file_get_contents(FILE_PATH);

10 if ($msg !== ’’) {
11 \file_put_contents(FILE_PATH, ’’);
12 echo "event: msg\n";
13 echo "data: $msg";
14 echo "\n\n";
15 ob_flush();
16 flush();
17 }
18 \sleep(ONE_SEC);
19 }

71 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server, Cont’d
I It is recommended to disable caching, line five.

I The mime type must be text/event-stream,
line six.

I The header section of a HTTP response shall end
with double newline, line six.

I The event type is sent on line twelve.

I The event content is sent on line 13.

I Also the event shall end with a double newline, line
14.

I Lines 15-16 flushes the server’s output buffers, to
make sure the message is actually delivered.

I Line 18 pauses execution one second.

72 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server, Cont’d
I It is recommended to disable caching, line five.

I The mime type must be text/event-stream,
line six.

I The header section of a HTTP response shall end
with double newline, line six.

I The event type is sent on line twelve.

I The event content is sent on line 13.

I Also the event shall end with a double newline, line
14.

I Lines 15-16 flushes the server’s output buffers, to
make sure the message is actually delivered.

I Line 18 pauses execution one second.

72 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server, Cont’d
I It is recommended to disable caching, line five.

I The mime type must be text/event-stream,
line six.

I The header section of a HTTP response shall end
with double newline, line six.

I The event type is sent on line twelve.

I The event content is sent on line 13.

I Also the event shall end with a double newline, line
14.

I Lines 15-16 flushes the server’s output buffers, to
make sure the message is actually delivered.

I Line 18 pauses execution one second.

72 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server, Cont’d
I It is recommended to disable caching, line five.

I The mime type must be text/event-stream,
line six.

I The header section of a HTTP response shall end
with double newline, line six.

I The event type is sent on line twelve.

I The event content is sent on line 13.

I Also the event shall end with a double newline, line
14.

I Lines 15-16 flushes the server’s output buffers, to
make sure the message is actually delivered.

I Line 18 pauses execution one second.

72 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server, Cont’d
I It is recommended to disable caching, line five.

I The mime type must be text/event-stream,
line six.

I The header section of a HTTP response shall end
with double newline, line six.

I The event type is sent on line twelve.

I The event content is sent on line 13.

I Also the event shall end with a double newline, line
14.

I Lines 15-16 flushes the server’s output buffers, to
make sure the message is actually delivered.

I Line 18 pauses execution one second.

72 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server, Cont’d
I It is recommended to disable caching, line five.

I The mime type must be text/event-stream,
line six.

I The header section of a HTTP response shall end
with double newline, line six.

I The event type is sent on line twelve.

I The event content is sent on line 13.

I Also the event shall end with a double newline, line
14.

I Lines 15-16 flushes the server’s output buffers, to
make sure the message is actually delivered.

I Line 18 pauses execution one second.

72 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

SSE PHP Server, Cont’d
I It is recommended to disable caching, line five.

I The mime type must be text/event-stream,
line six.

I The header section of a HTTP response shall end
with double newline, line six.

I The event type is sent on line twelve.

I The event content is sent on line 13.

I Also the event shall end with a double newline, line
14.

I Lines 15-16 flushes the server’s output buffers, to
make sure the message is actually delivered.

I Line 18 pauses execution one second.

72 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

73 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

WebSocket
I WebSocket is a W3C specification.

I Specifies a full-duplex, persistent, TCP connection
between browser and server.

I Endpoints are identified by URIs.

I ws://host:port/path (plain websocket
connection)

I wss://host:port/path (encrypted websocket
connection)

I Web sockets are message based, endpoints
exchange messages (text or binary).

I A generic transport service, like TCP. Just like many
connection-oriented protocols are built on top of
TCP (HTTP, FTP, POP3, IMAP, etc), there are many
message-oriented protocols on top of web sockets.

74 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

WebSocket
I WebSocket is a W3C specification.

I Specifies a full-duplex, persistent, TCP connection
between browser and server.

I Endpoints are identified by URIs.
I ws://host:port/path (plain websocket

connection)
I wss://host:port/path (encrypted websocket

connection)

I Web sockets are message based, endpoints
exchange messages (text or binary).

I A generic transport service, like TCP. Just like many
connection-oriented protocols are built on top of
TCP (HTTP, FTP, POP3, IMAP, etc), there are many
message-oriented protocols on top of web sockets.

74 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

WebSocket
I WebSocket is a W3C specification.

I Specifies a full-duplex, persistent, TCP connection
between browser and server.

I Endpoints are identified by URIs.
I ws://host:port/path (plain websocket

connection)
I wss://host:port/path (encrypted websocket

connection)

I Web sockets are message based, endpoints
exchange messages (text or binary).

I A generic transport service, like TCP. Just like many
connection-oriented protocols are built on top of
TCP (HTTP, FTP, POP3, IMAP, etc), there are many
message-oriented protocols on top of web sockets.

74 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

WebSocket
I WebSocket is a W3C specification.

I Specifies a full-duplex, persistent, TCP connection
between browser and server.

I Endpoints are identified by URIs.
I ws://host:port/path (plain websocket

connection)
I wss://host:port/path (encrypted websocket

connection)

I Web sockets are message based, endpoints
exchange messages (text or binary).

I A generic transport service, like TCP. Just like many
connection-oriented protocols are built on top of
TCP (HTTP, FTP, POP3, IMAP, etc), there are many
message-oriented protocols on top of web sockets.

74 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

WebSocket
I WebSocket is a W3C specification.

I Specifies a full-duplex, persistent, TCP connection
between browser and server.

I Endpoints are identified by URIs.
I ws://host:port/path (plain websocket

connection)
I wss://host:port/path (encrypted websocket

connection)

I Web sockets are message based, endpoints
exchange messages (text or binary).

I A generic transport service, like TCP. Just like many
connection-oriented protocols are built on top of
TCP (HTTP, FTP, POP3, IMAP, etc), there are many
message-oriented protocols on top of web sockets.

74 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

A New Kind of Web?
I The W3C specification defines a JavaScript

endpoint, and is implemented by all major
browsers.

I There are endpoints for all major
server-side technologies, e.g., PHP, Java,
.NET, Python, Ruby.

I In conclusion, any browser or server can
have a full-duplex connection with any other
browser or server.

I The browser is no longer a just a user
interface. It becomes a node in a network,
that can be programmed (in JavaScript) to
do anything, and that can communicate
(over websockets) with any other node.

75 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

A New Kind of Web?
I The W3C specification defines a JavaScript

endpoint, and is implemented by all major
browsers.

I There are endpoints for all major
server-side technologies, e.g., PHP, Java,
.NET, Python, Ruby.

I In conclusion, any browser or server can
have a full-duplex connection with any other
browser or server.

I The browser is no longer a just a user
interface. It becomes a node in a network,
that can be programmed (in JavaScript) to
do anything, and that can communicate
(over websockets) with any other node.

75 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

A New Kind of Web?
I The W3C specification defines a JavaScript

endpoint, and is implemented by all major
browsers.

I There are endpoints for all major
server-side technologies, e.g., PHP, Java,
.NET, Python, Ruby.

I In conclusion, any browser or server can
have a full-duplex connection with any other
browser or server.

I The browser is no longer a just a user
interface. It becomes a node in a network,
that can be programmed (in JavaScript) to
do anything, and that can communicate
(over websockets) with any other node. 75 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

A New Kind of Web?
I The W3C specification defines a JavaScript

endpoint, and is implemented by all major
browsers.

I There are endpoints for all major
server-side technologies, e.g., PHP, Java,
.NET, Python, Ruby.

I In conclusion, any browser or server can
have a full-duplex connection with any other
browser or server.

I The browser is no longer a just a user
interface. It becomes a node in a network,
that can be programmed (in JavaScript) to
do anything, and that can communicate
(over websockets) with any other node. 75 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Section

The Document Object Model, DOM

The Browser Object Model, BOM

The jQuery JavaScript Library

AJAX

Long Polling

Server-Sent Event

WebSocket

The Knockout JavaScript Framework

76 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Reminder: The MVVM Pattern
I The MVVM pattern

intoduces a client-side
model which reflects the
server-side model and is
responsible for notifying
the view of updates.

I The server-side view is
relieved from creating the
HTML. There will not be
PHP in the HTML files!

I Also, network communication is reduced,
since only model updates are fetched from
the server. There is no need to reload the
entire web page at each user action.

77 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Reminder: The MVVM Pattern
I The MVVM pattern

intoduces a client-side
model which reflects the
server-side model and is
responsible for notifying
the view of updates.

I The server-side view is
relieved from creating the
HTML. There will not be
PHP in the HTML files!

I Also, network communication is reduced,
since only model updates are fetched from
the server. There is no need to reload the
entire web page at each user action. 77 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Reminder: The MVVM Pattern
I The MVVM pattern

intoduces a client-side
model which reflects the
server-side model and is
responsible for notifying
the view of updates.

I The server-side view is
relieved from creating the
HTML. There will not be
PHP in the HTML files!

I Also, network communication is reduced,
since only model updates are fetched from
the server. There is no need to reload the
entire web page at each user action. 77 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

MVVM JavaScript Frameworks
I The code for implementing the Observer pattern to

have the view reflect changes in the viewmodel (and
viewmodel reflect changes in the view), will be the
same for more or less all applications.

I Also the code for viewmodel-to-server
communication will be quite similar in all
applications.

I This calls for a client-side framework, since we do
not want to rewrite the same code for each new
application. This is exactly the purpose of Knockout.

I There are also many alternative frameworks, for
example Backbone and Angular. These are more
used and more powerful than Knockout, but too
complicated for this course.

78 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

MVVM JavaScript Frameworks
I The code for implementing the Observer pattern to

have the view reflect changes in the viewmodel (and
viewmodel reflect changes in the view), will be the
same for more or less all applications.

I Also the code for viewmodel-to-server
communication will be quite similar in all
applications.

I This calls for a client-side framework, since we do
not want to rewrite the same code for each new
application. This is exactly the purpose of Knockout.

I There are also many alternative frameworks, for
example Backbone and Angular. These are more
used and more powerful than Knockout, but too
complicated for this course.

78 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

MVVM JavaScript Frameworks
I The code for implementing the Observer pattern to

have the view reflect changes in the viewmodel (and
viewmodel reflect changes in the view), will be the
same for more or less all applications.

I Also the code for viewmodel-to-server
communication will be quite similar in all
applications.

I This calls for a client-side framework, since we do
not want to rewrite the same code for each new
application. This is exactly the purpose of Knockout.

I There are also many alternative frameworks, for
example Backbone and Angular. These are more
used and more powerful than Knockout, but too
complicated for this course.

78 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

MVVM JavaScript Frameworks
I The code for implementing the Observer pattern to

have the view reflect changes in the viewmodel (and
viewmodel reflect changes in the view), will be the
same for more or less all applications.

I Also the code for viewmodel-to-server
communication will be quite similar in all
applications.

I This calls for a client-side framework, since we do
not want to rewrite the same code for each new
application. This is exactly the purpose of Knockout.

I There are also many alternative frameworks, for
example Backbone and Angular. These are more
used and more powerful than Knockout, but too
complicated for this course.

78 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Knockout JavaScript
Framework

I Like jQuery, Knockout is a JavaScript file the can be
linked from a CDN, for example:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/knockout/3.4.2/knockout-min.js">

</script>

I Knockout should be used together with jQuery,
which handles low-level DOM interaction.

I Knockout implements the MVVM pattern, by
managing View-to-Viewmodel bindings.

I The following slides contain a brief intro-
duction to Knockout. For a more extensive guide, see
http://knockoutjs.com/documentation/
introduction.html

79 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Knockout JavaScript
Framework

I Like jQuery, Knockout is a JavaScript file the can be
linked from a CDN, for example:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/knockout/3.4.2/knockout-min.js">

</script>

I Knockout should be used together with jQuery,
which handles low-level DOM interaction.

I Knockout implements the MVVM pattern, by
managing View-to-Viewmodel bindings.

I The following slides contain a brief intro-
duction to Knockout. For a more extensive guide, see
http://knockoutjs.com/documentation/
introduction.html

79 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Knockout JavaScript
Framework

I Like jQuery, Knockout is a JavaScript file the can be
linked from a CDN, for example:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/knockout/3.4.2/knockout-min.js">

</script>

I Knockout should be used together with jQuery,
which handles low-level DOM interaction.

I Knockout implements the MVVM pattern, by
managing View-to-Viewmodel bindings.

I The following slides contain a brief intro-
duction to Knockout. For a more extensive guide, see
http://knockoutjs.com/documentation/
introduction.html

79 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Knockout JavaScript
Framework

I Like jQuery, Knockout is a JavaScript file the can be
linked from a CDN, for example:
<script src="https://cdnjs.cloudflare.com/
ajax/libs/knockout/3.4.2/knockout-min.js">

</script>

I Knockout should be used together with jQuery,
which handles low-level DOM interaction.

I Knockout implements the MVVM pattern, by
managing View-to-Viewmodel bindings.

I The following slides contain a brief intro-
duction to Knockout. For a more extensive guide, see
http://knockoutjs.com/documentation/
introduction.html

79 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application
I To illustrate this Knockout

tutorial, we will use the chat
application.

I We will create a viewmodel that
holds the current conversation.

I The view shall be updated as
soon as the viewmodel changes
state.

I The viewmodel can change
state either because the user
wrote an entry or because
another user wrote an entry,
which was loaded from the
server to this user’s viewmodel.

80 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application
I To illustrate this Knockout

tutorial, we will use the chat
application.

I We will create a viewmodel that
holds the current conversation.

I The view shall be updated as
soon as the viewmodel changes
state.

I The viewmodel can change
state either because the user
wrote an entry or because
another user wrote an entry,
which was loaded from the
server to this user’s viewmodel.

80 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application
I To illustrate this Knockout

tutorial, we will use the chat
application.

I We will create a viewmodel that
holds the current conversation.

I The view shall be updated as
soon as the viewmodel changes
state.

I The viewmodel can change
state either because the user
wrote an entry or because
another user wrote an entry,
which was loaded from the
server to this user’s viewmodel.

80 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application
I To illustrate this Knockout

tutorial, we will use the chat
application.

I We will create a viewmodel that
holds the current conversation.

I The view shall be updated as
soon as the viewmodel changes
state.

I The viewmodel can change
state either because the user
wrote an entry or because
another user wrote an entry,
which was loaded from the
server to this user’s viewmodel.

80 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Knockout Viewmodel
I The viewmodel is an ordinary JavaScript

object, but to make use of Knockout’s
viewmodel-to-view binding (observer
pattern), the properties must be declared
as observables.
function Person(name, age) {
let self = this;
self.name = ko.observable(name);
self.age = ko.observable(age);

}

I To read or write a property value, call the
property as a function.
let olle = new Person("Olle", 35);
olle.name(); // Returns "Olle"
olle.age(36); // Sets the age to 36.

81 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Knockout Viewmodel
I The viewmodel is an ordinary JavaScript

object, but to make use of Knockout’s
viewmodel-to-view binding (observer
pattern), the properties must be declared
as observables.
function Person(name, age) {
let self = this;
self.name = ko.observable(name);
self.age = ko.observable(age);

}

I To read or write a property value, call the
property as a function.
let olle = new Person("Olle", 35);
olle.name(); // Returns "Olle"
olle.age(36); // Sets the age to 36.

81 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel

I The Chat’s viewmodel has two objects.
I EntryToAdd represents a newly written

entry that shall be sent to the server.

I Conversation represents the entire
conversation.

I The EntryToAdd object has two
properties, nickName and msg
function EntryToAdd() {

let self = this;
self.nickName = ko.observable();
self.msg = ko.observable("");
...

}

82 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel

I The Chat’s viewmodel has two objects.
I EntryToAdd represents a newly written

entry that shall be sent to the server.
I Conversation represents the entire

conversation.

I The EntryToAdd object has two
properties, nickName and msg
function EntryToAdd() {

let self = this;
self.nickName = ko.observable();
self.msg = ko.observable("");
...

}

82 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel

I The Chat’s viewmodel has two objects.
I EntryToAdd represents a newly written

entry that shall be sent to the server.
I Conversation represents the entire

conversation.

I The EntryToAdd object has two
properties, nickName and msg
function EntryToAdd() {

let self = this;
self.nickName = ko.observable();
self.msg = ko.observable("");
...

}

82 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel

I The Chat’s viewmodel has two objects.
I EntryToAdd represents a newly written

entry that shall be sent to the server.
I Conversation represents the entire

conversation.

I The EntryToAdd object has two
properties, nickName and msg
function EntryToAdd() {

let self = this;
self.nickName = ko.observable();
self.msg = ko.observable("");
...

}

82 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel
(Cont’d)
let entryToAdd = new EntryToAdd();
ko.applyBindings(entryToAdd,

document.getElementById(’new-entry’));

I The viewmodel must be registered with Knockout to
enable notifying the observers in the view.

I After a JavaScript object has been registered with
knockout using the function applyBindings, it
will always have the same state as the elements in
the DOM.

I When the object changes state, the DOM will
change state. When the DOM changes state,
the object will change state.

I The second parameter tells to which element in the
DOM entryToAdd shall be bound. There can
only be at most one bound object per element.

83 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel
(Cont’d)
let entryToAdd = new EntryToAdd();
ko.applyBindings(entryToAdd,

document.getElementById(’new-entry’));

I The viewmodel must be registered with Knockout to
enable notifying the observers in the view.

I After a JavaScript object has been registered with
knockout using the function applyBindings, it
will always have the same state as the elements in
the DOM.

I When the object changes state, the DOM will
change state. When the DOM changes state,
the object will change state.

I The second parameter tells to which element in the
DOM entryToAdd shall be bound. There can
only be at most one bound object per element.

83 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel
(Cont’d)
let entryToAdd = new EntryToAdd();
ko.applyBindings(entryToAdd,

document.getElementById(’new-entry’));

I The viewmodel must be registered with Knockout to
enable notifying the observers in the view.

I After a JavaScript object has been registered with
knockout using the function applyBindings, it
will always have the same state as the elements in
the DOM.

I When the object changes state, the DOM will
change state. When the DOM changes state,
the object will change state.

I The second parameter tells to which element in the
DOM entryToAdd shall be bound. There can
only be at most one bound object per element. 83 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Chat Application’s Viewmodel
(Cont’d)
let entryToAdd = new EntryToAdd();
ko.applyBindings(entryToAdd,

document.getElementById(’new-entry’));

I The viewmodel must be registered with Knockout to
enable notifying the observers in the view.

I After a JavaScript object has been registered with
knockout using the function applyBindings, it
will always have the same state as the elements in
the DOM.

I When the object changes state, the DOM will
change state. When the DOM changes state,
the object will change state.

I The second parameter tells to which element in the
DOM entryToAdd shall be bound. There can
only be at most one bound object per element. 83 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Bindings
I A HTML element in the view is connected to a

viewmodel property with a binding.

I A binding is declared by adding the data-bind
attribute to the HTML element.

I There are many different types of bindings, like:

text The property value is inserted to the HTML
element.
The message is:

visible Decides if the element is rendered.
<div data-bind=

"visible: shouldShowMessage">

css Adds or removes CSS classes. The following
binding adds the class warning if the
profit property is negative.
<div data-bind=

"css: {warning: profit() < 0 }">

84 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Bindings
I A HTML element in the view is connected to a

viewmodel property with a binding.

I A binding is declared by adding the data-bind
attribute to the HTML element.

I There are many different types of bindings, like:

text The property value is inserted to the HTML
element.
The message is:

visible Decides if the element is rendered.
<div data-bind=

"visible: shouldShowMessage">

css Adds or removes CSS classes. The following
binding adds the class warning if the
profit property is negative.
<div data-bind=

"css: {warning: profit() < 0 }">

84 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Bindings
I A HTML element in the view is connected to a

viewmodel property with a binding.

I A binding is declared by adding the data-bind
attribute to the HTML element.

I There are many different types of bindings, like:
text The property value is inserted to the HTML

element.
The message is:

visible Decides if the element is rendered.
<div data-bind=

"visible: shouldShowMessage">

css Adds or removes CSS classes. The following
binding adds the class warning if the
profit property is negative.
<div data-bind=

"css: {warning: profit() < 0 }">

84 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Bindings
I A HTML element in the view is connected to a

viewmodel property with a binding.

I A binding is declared by adding the data-bind
attribute to the HTML element.

I There are many different types of bindings, like:
text The property value is inserted to the HTML

element.
The message is:

visible Decides if the element is rendered.
<div data-bind=

"visible: shouldShowMessage">

css Adds or removes CSS classes. The following
binding adds the class warning if the
profit property is negative.
<div data-bind=

"css: {warning: profit() < 0 }">

84 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Bindings
I A HTML element in the view is connected to a

viewmodel property with a binding.

I A binding is declared by adding the data-bind
attribute to the HTML element.

I There are many different types of bindings, like:
text The property value is inserted to the HTML

element.
The message is:

visible Decides if the element is rendered.
<div data-bind=

"visible: shouldShowMessage">

css Adds or removes CSS classes. The following
binding adds the class warning if the
profit property is negative.
<div data-bind=

"css: {warning: profit() < 0 }"> 84 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Data Bindings
I A HTML element in the view is connected to a

viewmodel property with a binding.

I A binding is declared by adding the data-bind
attribute to the HTML element.

I There are many different types of bindings, like:
text The property value is inserted to the HTML

element.
The message is:

visible Decides if the element is rendered.
<div data-bind=

"visible: shouldShowMessage">

css Adds or removes CSS classes. The following
binding adds the class warning if the
profit property is negative.
<div data-bind=

"css: {warning: profit() < 0 }"> 84 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Form Field Bindings
There are also bindings for form elements, such as:

click Specifies a method that is called when the
element is clicked.
<button data-bind=

"click: clickHandler">Click me</button>

textInput Binds a text field or text area to a viewmodel
property
<input type="text"

data-bind="textInput: username"/>

enable The element is enabled only when the value
is true
Your cellphone number:
<input type=’text’ data-bind=

"textInput: cellphoneNumber, enable: hasCellphone"/>

85 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Form Field Bindings
There are also bindings for form elements, such as:

click Specifies a method that is called when the
element is clicked.
<button data-bind=

"click: clickHandler">Click me</button>

textInput Binds a text field or text area to a viewmodel
property
<input type="text"

data-bind="textInput: username"/>

enable The element is enabled only when the value
is true
Your cellphone number:
<input type=’text’ data-bind=

"textInput: cellphoneNumber, enable: hasCellphone"/>

85 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Form Field Bindings
There are also bindings for form elements, such as:

click Specifies a method that is called when the
element is clicked.
<button data-bind=

"click: clickHandler">Click me</button>

textInput Binds a text field or text area to a viewmodel
property
<input type="text"

data-bind="textInput: username"/>

enable The element is enabled only when the value
is true
Your cellphone number:
<input type=’text’ data-bind=

"textInput: cellphoneNumber, enable: hasCellphone"/>

85 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Chat Message Data-Bindings
I Now let us create the data bindings

for the nick name text and msg text
area.
<label id="nickNameLabel" for="entry">

says:

</label>
...
<textarea id= "entry" rows = 5

data-bind="textInput: msg"
placeholder="Write entry here.">

</textarea>

I Now the nickname element and the
nickName property in the
EntryToAdd object will always
have the same value.

I Also, the text in the textarea will always be the same
as the value of the msg property.

86 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Chat Message Data-Bindings
I Now let us create the data bindings

for the nick name text and msg text
area.
<label id="nickNameLabel" for="entry">

says:

</label>
...
<textarea id= "entry" rows = 5

data-bind="textInput: msg"
placeholder="Write entry here.">

</textarea>

I Now the nickname element and the
nickName property in the
EntryToAdd object will always
have the same value.

I Also, the text in the textarea will always be the same
as the value of the msg property.

86 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Chat Message Data-Bindings
I Now let us create the data bindings

for the nick name text and msg text
area.
<label id="nickNameLabel" for="entry">

says:

</label>
...
<textarea id= "entry" rows = 5

data-bind="textInput: msg"
placeholder="Write entry here.">

</textarea>

I Now the nickname element and the
nickName property in the
EntryToAdd object will always
have the same value.

I Also, the text in the textarea will always be the same
as the value of the msg property.

86 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Click Data-Bindings

<button data-bind="click: sendEntry">
Send

</button>

I Then let us create the data-
binding for the Send button.

I Here we specified that the
sendEntry method is called
when the user clicks the button.

87 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Click Data-Bindings

<button data-bind="click: sendEntry">
Send

</button>

I Then let us create the data-
binding for the Send button.

I Here we specified that the
sendEntry method is called
when the user clicks the button.

87 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The sendEntry Method
1 self.sendEntry = function () {
2 if (self.msg() !== "") {
3 $.post(writeUrl,
4 "msg=" + ko.toJS(self.msg));
5 self.msg("");
6 }
7 };

I Line 2 checks that the user has typed a message.

I Lines 3-4 sends the new entry to the server in a
HTTP post request.

I The call to ko.toJS on line 4 converts the
message to plain JavaScript, instead of an
observable.

I Line 5 clears the text area.

88 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The sendEntry Method
1 self.sendEntry = function () {
2 if (self.msg() !== "") {
3 $.post(writeUrl,
4 "msg=" + ko.toJS(self.msg));
5 self.msg("");
6 }
7 };

I Line 2 checks that the user has typed a message.

I Lines 3-4 sends the new entry to the server in a
HTTP post request.

I The call to ko.toJS on line 4 converts the
message to plain JavaScript, instead of an
observable.

I Line 5 clears the text area.

88 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The sendEntry Method
1 self.sendEntry = function () {
2 if (self.msg() !== "") {
3 $.post(writeUrl,
4 "msg=" + ko.toJS(self.msg));
5 self.msg("");
6 }
7 };

I Line 2 checks that the user has typed a message.

I Lines 3-4 sends the new entry to the server in a
HTTP post request.

I The call to ko.toJS on line 4 converts the
message to plain JavaScript, instead of an
observable.

I Line 5 clears the text area.

88 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The sendEntry Method
1 self.sendEntry = function () {
2 if (self.msg() !== "") {
3 $.post(writeUrl,
4 "msg=" + ko.toJS(self.msg));
5 self.msg("");
6 }
7 };

I Line 2 checks that the user has typed a message.

I Lines 3-4 sends the new entry to the server in a
HTTP post request.

I The call to ko.toJS on line 4 converts the
message to plain JavaScript, instead of an
observable.

I Line 5 clears the text area.

88 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Read Nickname From Server
I One question remains, how did the nickname show

up correctly in the view? Note that it is not inserted
in php code on the server (very good!):
<label id="nickNameLabel" for="entry">

says:

</label>

I The answer is that the nickname was read in an
extra AJAX call from the EntryToAdd constructor.
function EntryToAdd() {

let self = this;
self.nickName = ko.observable();
...
$.getJSON(nickNameUrl, function (username) {

self.nickName(username);
});

}

89 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Read Nickname From Server
I One question remains, how did the nickname show

up correctly in the view? Note that it is not inserted
in php code on the server (very good!):
<label id="nickNameLabel" for="entry">

says:

</label>

I The answer is that the nickname was read in an
extra AJAX call from the EntryToAdd constructor.
function EntryToAdd() {

let self = this;
self.nickName = ko.observable();
...
$.getJSON(nickNameUrl, function (username) {

self.nickName(username);
});

}

89 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Read Nickname From Server
(Cont’d)

I The ajax call on the previous slide is handled by the
GetUsername request handler (code below is not
complete).
class GetUsername extends AbstractRequestHandler {

protected function doExecute() {
$this->addVariable(’jsonData’,

$contr->getUsername());
return ’json-view’;

}

}

I json-view.php just echos the value of
$jsonData.
echo \json_encode($jsonData);

90 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Read Nickname From Server
(Cont’d)

I The ajax call on the previous slide is handled by the
GetUsername request handler (code below is not
complete).
class GetUsername extends AbstractRequestHandler {

protected function doExecute() {
$this->addVariable(’jsonData’,

$contr->getUsername());
return ’json-view’;

}

}

I json-view.php just echos the value of
$jsonData.
echo \json_encode($jsonData);

90 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Conversation object in
the viewmodel

I Now we have covered everything in the
EntryToAdd object in the viewmodel.

I There is one more object in the viewmodel,
Conversation, which contains the
entire chat conversation.

I Conversation has a property,
entries that holds an array of all
conversation entries.

I To understand how that works, we must
look at how knockout binds arrays to
elements in the DOM.

91 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Conversation object in
the viewmodel

I Now we have covered everything in the
EntryToAdd object in the viewmodel.

I There is one more object in the viewmodel,
Conversation, which contains the
entire chat conversation.

I Conversation has a property,
entries that holds an array of all
conversation entries.

I To understand how that works, we must
look at how knockout binds arrays to
elements in the DOM.

91 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Conversation object in
the viewmodel

I Now we have covered everything in the
EntryToAdd object in the viewmodel.

I There is one more object in the viewmodel,
Conversation, which contains the
entire chat conversation.

I Conversation has a property,
entries that holds an array of all
conversation entries.

I To understand how that works, we must
look at how knockout binds arrays to
elements in the DOM.

91 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Conversation object in
the viewmodel

I Now we have covered everything in the
EntryToAdd object in the viewmodel.

I There is one more object in the viewmodel,
Conversation, which contains the
entire chat conversation.

I Conversation has a property,
entries that holds an array of all
conversation entries.

I To understand how that works, we must
look at how knockout binds arrays to
elements in the DOM.

91 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Observable Arrays

I To observe an array, use observableArray.

let myObservableArray = ko.observableArray();

I The entries property in Conversation is an
observableArray and holds an array of objects
having the two properties nickName and msg

function Conversation(entryToAdd) {
let self = this;
...
self.entries = ko.observableArray();
...

}

92 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Observable Arrays

I To observe an array, use observableArray.

let myObservableArray = ko.observableArray();

I The entries property in Conversation is an
observableArray and holds an array of objects
having the two properties nickName and msg

function Conversation(entryToAdd) {
let self = this;
...
self.entries = ko.observableArray();
...

}

92 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Flow Control Data-Bindings

I When binding entries to the DOM, we must use
the flow control data bindings if and foreach.
Let’s first have a look at those.

I foreach binds each element in an array to the
DOM.

I Whenever elements are added, removed, or
re-ordered in a bound observable array, the DOM
will be updated to reflect the new array contents.

93 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Flow Control Data-Bindings

I When binding entries to the DOM, we must use
the flow control data bindings if and foreach.
Let’s first have a look at those.

I foreach binds each element in an array to the
DOM.

I Whenever elements are added, removed, or
re-ordered in a bound observable array, the DOM
will be updated to reflect the new array contents.

93 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Flow Control Data-Bindings

I When binding entries to the DOM, we must use
the flow control data bindings if and foreach.
Let’s first have a look at those.

I foreach binds each element in an array to the
DOM.

I Whenever elements are added, removed, or
re-ordered in a bound observable array, the DOM
will be updated to reflect the new array contents.

93 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

foreach Data-Binding (Cont’d)
Assuming people is a JavaScript array of objects with
firstName and lastName properties, the following
generates a table with one object per row.

<table>
<thead>

<tr><th>First name</th>
<th>Last name</th></tr>

</thead>
<tbody data-bind="foreach: people">

<tr>
<td data-bind="text: firstName"></td>
<td data-bind="text: lastName"></td>

</tr>
</tbody>

</table>

94 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

foreach Data-Binding (Cont’d)
I The current array element is referred using $data

<ul data-bind="foreach: months">

I as gives an alias to the current array element.
<ul data-bind=

"foreach: { data: categories, as: ’category’ }">

<ul data-bind=
"foreach: { data: items, as: ’item’ }">

:

95 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

foreach Data-Binding (Cont’d)
I The current array element is referred using $data

<ul data-bind="foreach: months">

I as gives an alias to the current array element.
<ul data-bind=

"foreach: { data: categories, as: ’category’ }">

<ul data-bind=
"foreach: { data: items, as: ’item’ }">

:

95 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Containerless Control Flow Syntax
I If there is no containing element for the

data-binding, use the containerless syntax, based
on HTML comment tags.
<!-- ko foreach: {data:items, as:’item’} -->

<p>

</p>
<!-- /ko -->

I An if data-binding displays the enclosed elements
only if the condition is true.
<!-- ko if: item.isOffer -->
<p>

Offer!
</p>

<!-- /ko -->

96 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Containerless Control Flow Syntax
I If there is no containing element for the

data-binding, use the containerless syntax, based
on HTML comment tags.
<!-- ko foreach: {data:items, as:’item’} -->

<p>

</p>
<!-- /ko -->

I An if data-binding displays the enclosed elements
only if the condition is true.
<!-- ko if: item.isOffer -->
<p>

Offer!
</p>

<!-- /ko -->

96 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Conversation Data-Binding
I Now we can create the data binding for the

conversation part of the chat application (code is not
complete).

I The inner loop is needed for multi-line messages.

<!-- ko foreach: {data: entries, as: ’entry’} -->
<p>

:
</p>
<!-- ko foreach: entry.msg -->

<p>

</p>
<!-- /ko -->
<!-- ko if: entry.iWroteThisEntry -->

<p>
<button data-bind=

’click: $parent.deleteEntry’>
Delete

</button>
</p>

<!-- /ko -->
<!-- /ko -->

97 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

The Conversation Data-Binding
I Now we can create the data binding for the

conversation part of the chat application (code is not
complete).

I The inner loop is needed for multi-line messages.

<!-- ko foreach: {data: entries, as: ’entry’} -->
<p>

:
</p>
<!-- ko foreach: entry.msg -->

<p>

</p>
<!-- /ko -->
<!-- ko if: entry.iWroteThisEntry -->

<p>
<button data-bind=

’click: $parent.deleteEntry’>
Delete

</button>
</p>

<!-- /ko -->
<!-- /ko -->

97 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

No PHP! (Almost)

I That was all, now we have seen an
overview of some features in Knockout, and
also created the chat application.

I As a result, there is now no PHP code left
in the html files!

I Except for including fragments and creating
link paths.

98 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

No PHP! (Almost)

I That was all, now we have seen an
overview of some features in Knockout, and
also created the chat application.

I As a result, there is now no PHP code left
in the html files!

I Except for including fragments and creating
link paths.

98 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

No PHP! (Almost)

I That was all, now we have seen an
overview of some features in Knockout, and
also created the chat application.

I As a result, there is now no PHP code left
in the html files!

I Except for including fragments and creating
link paths.

98 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Without JavaScript framework
Without a JavaScript framework that handles
viewmodel-to-DOM bindings, where would we store the
nickname and chat conversation? There are three options,
each with serious drawbacks.

1. Write the JavaScript code that is now in the
framework. This means quite a lot of quite tricky
handling of the DOM, knockout.js contains
thousands of lines of JavaScript code.

2. Do not create a viewmodel, but store the data only in
the DOM. This is the case in the chat example
without knockout on the course web. Even for this
small program it means quite a lot of searching
through HTML elements and parsing string.

3. Store data only on the server. This means there is
no JavaScript client at all, and we are back to
reloading the entire page whenever the user does
something.

99 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Without JavaScript framework
Without a JavaScript framework that handles
viewmodel-to-DOM bindings, where would we store the
nickname and chat conversation? There are three options,
each with serious drawbacks.

1. Write the JavaScript code that is now in the
framework. This means quite a lot of quite tricky
handling of the DOM, knockout.js contains
thousands of lines of JavaScript code.

2. Do not create a viewmodel, but store the data only in
the DOM. This is the case in the chat example
without knockout on the course web. Even for this
small program it means quite a lot of searching
through HTML elements and parsing string.

3. Store data only on the server. This means there is
no JavaScript client at all, and we are back to
reloading the entire page whenever the user does
something.

99 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Without JavaScript framework
Without a JavaScript framework that handles
viewmodel-to-DOM bindings, where would we store the
nickname and chat conversation? There are three options,
each with serious drawbacks.

1. Write the JavaScript code that is now in the
framework. This means quite a lot of quite tricky
handling of the DOM, knockout.js contains
thousands of lines of JavaScript code.

2. Do not create a viewmodel, but store the data only in
the DOM. This is the case in the chat example
without knockout on the course web. Even for this
small program it means quite a lot of searching
through HTML elements and parsing string.

3. Store data only on the server. This means there is
no JavaScript client at all, and we are back to
reloading the entire page whenever the user does
something.

99 / 99

Using JavaScript

DOM

BOM

jQuery

AJAX

Long Polling

Server-Sent Event

WebSocket

Knockout

Without JavaScript framework
Without a JavaScript framework that handles
viewmodel-to-DOM bindings, where would we store the
nickname and chat conversation? There are three options,
each with serious drawbacks.

1. Write the JavaScript code that is now in the
framework. This means quite a lot of quite tricky
handling of the DOM, knockout.js contains
thousands of lines of JavaScript code.

2. Do not create a viewmodel, but store the data only in
the DOM. This is the case in the chat example
without knockout on the course web. Even for this
small program it means quite a lot of searching
through HTML elements and parsing string.

3. Store data only on the server. This means there is
no JavaScript client at all, and we are back to
reloading the entire page whenever the user does
something.

99 / 99

	The Document Object Model, DOM
	The Browser Object Model, BOM
	The jQuery JavaScript Library
	AJAX
	Long Polling
	Server-Sent Event
	WebSocket
	The Knockout JavaScript Framework

