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SF2812 Applied linear optimization, final exam
Monday March 17 2014 8.00-13.00
Brief solutions

The basis corresponding to y and s is B = {2,3}. If b; is changed, the basis remains
dual feasible. Hence, it is suitable to use the dual simplex method starting with this
dual basic feasible solution. Let y = ¢y and s = s.

The basic variables are given by

1 2 T2\ (1
0 1)\a3) \1)’
which gives 9 = —1, 23 = 1. As x1 < 0, the dual solution is not optimal. Conse-

quently, since xo < 0, 2 becomes nonbasic, and as x is the first basic variable, the
step in the y-direction is given by

1 0 a\ (-1

2 1 ¢ 0)’
which gives g1 = —1, ¢o = 2. With y + y + agq, dual feasibility requires s < s + an,
with ATq +n =0 and s + an > 0. Consequently, the nonnegativity of s requires
s — aATq >0, i.e.,

-1
+ o 11>
0 0 0

The maximum value of « is given by amax = 3 making component 1 of s — aA’g
zero, so that the new basis becomes B = {1,3}. The basic variables are given by

1 2 T\ (1
1 1) \zs) \1)°
which gives 1 = 1, 23 = 0. As z > 0, an optimal solution has been obtained.

Together with ¥ 4 cumaxq and s — amaxA’q the primal and dual optimal solutions are
given by

(See the course material.)

(a) The suggested initial extreme points v; = (1 0 0)T and vo = (0 0 1)T give
the initial basis matrix

B:(Avl Avg>:<1 3>
1 1 1 1
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(b)

The right-hand side in the master problem is b = (2 1)”. Hence, the basic
variables are given by

1 3 (05) N 2 . . (65) N 1
(D)) oo (2)-(1)
(—1

The cost of the basic variables are given by (cfvy clvg) =
the simplex multipliers are given by

(1) ()= () e ()= ()

By forming ¢’ — 314 = (-2 ~1 -2) we obtain the subproblem

1). Consequently,

24+ minimize —2x; — ro — 223
subject to x € S.

Both v; and vy are optimal extreme points to the subproblem, so that an
optimal solution to the master problem has been found. The solution to the
original problem is given by

0 1
2
+ 0 L +10 = 0
Vi F vey = = - =
101 + V202 5 5 1
0 1 5
The optimal value is 0.
Given cg, the subproblem is given by
2+ minimize —2x1 + (¢ — 2)z2 — 273

subject to x € S.

Hence, the subproblem has been solved as long as co — 2 > —2, i.e., as long as
c2 > 0. For ¢ < 0, a new extreme point would enter the basis, v3 = (0 1 0)7.

We have
o(u) =u— maximize (24 u)r1+ (3 +u)re + (3 +u)r3
subject to x1 + 229 + 33 < 2,
x; > 0, x; integer, j=1,...,3.
For this small problem, we may enumerate the feasible solutions. They are (0
007, (1007 (20 07, and (0 1 0). Hence,
o(u) =u—max{0,2 + u,4 + 2u, 3 + u}.
Consequently, ¢(u) = u for u < =3, p(u) = =3 for —3 < u < —1 and ¢(u) =

—4 — u for u > —1. The corresponding optimal solutions to the problem that
defines p(u) are z(u) = (0 0 0)T foru < =3, x(u) = (0 1 0)T for -3 <u < -1

and z(u) = (2 0 0)” for u > —1. (The optimal solution is nonunique for u = —3
and u = —1.)
The dual problem is defined as

maxitnize o(u)

subject to u > 0.
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Consequently, it is only « > 0 that is considered, and for these values of u, we
have a relaxation. We do not consider u < 0.

Since p(u) = —4 — u for u > —1, the dual problem takes the form

maximize —4 —u
uelR
subject to u > 0.

The optimal solution is given by v* = 0 with ¢(u") = —4. By inspection, it
has been found that x = (2 0 0)*' is optimal to (IP) so that optval(IP) = —4.
Hence, the duality gap is zero.

Insertion of numerical values shows that the given x, y and s satisfy Ax = b,
x>0, ATy+s =1¢, s > 0, and zjs; = 0, j = 1,2,3. Hence, the optimality
conditions are satisfied so z is optimal to (PLP) and (y,s) are optimal to
(DLP).

In order to identify an optimal extreme point, we may find a feasible variation
around the current point, keeping the same constraints active. This means
finding a direction p such that

9 2 -1 0 0

1 -1 0 =1 |[P”=10

o o o 1/)|P 0
P4

Such a p is uniquely defined up to a scalar from the vector given in the hint, so
we may let p = (114 0)T. Since z is optimal and p is a feasible direction from
x, it holds that ¢’p = 0. We may now identify optimal points with additional
constraints active by considering x 4+ ap for a positive and negative, i.e.,

2 1
2 1
+ o
4 4
0 0
The most limiting negative value of « is & = —1, for which we get the point Z =

(110 0)7. This point is an extreme point, since (A; As) has full column rank.
However, since p > 0, there is no limit on « for @ > 0. In addition, starting
from z, the only constraint that may be deleted from the active constraints
while maintaining optimality is z3 = 0. Therefore, there is only one optimal
extreme point, namely .

By letting & = a — 1 in the previous analysis, it follows that any optimal
solution to (PLP) takes the form  + ap for & > 0. Optimality follows since
(£ + ap) = ¢’z independently of a.

Now consider a perturbed problem, where c; is replaced by c¢; + €;, where ¢;
is a “small positive number”. The point is that since ¢/p = 0 and 0 # p > 0,
it follows that p becomes an ascent direction for this perturbed problem, i.e.,
ij:l(c]- +¢€)p; = Z?:l €;p; > 0, so that it is now optimal to let & = 0, making
T the unique optimal solution. The technical details follow below, but these
details are not expected from a student in the course.
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The objective function value at  + ap for this perturbed problem is given by

4 4

D (cj+ €)@+ apy) =D (cj+¢)T Z ¢j +€)p

j=1 j=1

Taking into account 0 = ¢’p = Z?Zl c;jpj, it follows that
4 4

Z cj +€)(T; + apj) = Z(cj+ej)a_:j+6426jpj.
7j=1 i— i

But ¢; >0, j=1,2,3,4 and 0 # p > 0 implies Z§:1 €;p; > 0, so that
4 4

Z ¢+ 6] (Ej + dpj) > Z(Cj + ej)fj,

j=1 J=1
for @ > 0. Therefore, deleting constraint z3 = 0 at Z results in a strict in-
crease of objective function value for the perturbed problem. Hence, z is the
unique optimal solution. The perturbation has to be sufficiently small so that
s4 remains positive for the perturbed problem.



