Introduction

Michael
Hanke

© Michael Hanke 2018

Classes in C4++

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

1 (30)

Introduction

Michael Outline

Hanke
Classes
Constructors

and
Destructors

Summary

@ Classes

@® Constructors and Destructors

©®© Summary

© Michael Hanke 2018 2 (30)

Introduction

Michael What is a Class?

Hanke

Classes

e An abstract data type is a (nonempty, finite) set and the
collection of operations defined on this set.

o A C++ class is the programmatic description of a data type.

e An object is an instance of a class.

An abstract data type is a suitable model for implementing abstract
mathematical structures.

© Michael Hanke 2018 3 (30)

Introduction

Michael Formal Class Declaration

Hanke
Classes C++ class declaration

class identifier {
public:
// Public class members
protected:
// Protected class members
private:
// Private class members
}; // Do not forget the semicolon here!!

where identifier is the name of the class.
e The members can be basic data types, other classes or functions.
e Public members can be accesses from anywhere in the program.

e Private members can only be accessed from member functions
of the class.

e Protected members can be accessed from derived classes
additionally to member functions of the class.

© Michael Hanke 2018 4 (30)

Introduction
L Class Declaration (cont)

Classes

e Instead of class, the reserved word struct can be used. The
difference lies in the default access behavior.

e Default access behavior: class = private; struct = public.

e Convention: Names of classes start usually with a capital letter.

© Michael Hanke 2018 5 (30)

Introduction
i A Simple Class

Classes

The mathematical notion: Points in the two-dimensional
Cartesian plane

The implementation of this mathematical notion should look to
the user as if it were a standard type.

The user of the class does not need to know how the internals
look like.

Example: The user should be able to write something like

Point P;
Point W(1.0,2.0);
Point Q = P;

© Michael Hanke 2018 6 (30)

Introduction

Michael

o A C-Style Implementation

Classes

class Point {
public:
double x;
double y;
};
Note: The keyword class can be replaced by struct. The latter is
the way one would do it in C.

e The coordinates can be accessed via P.x and P.y using
explicitly the implementation.

e What if we instead would use polar coordinates in the
implementation? The user must rewrite his/her code!

© Michael Hanke 2018 7 (30)

Introduction
e A C++-Style Implementation

Classes

class Point {
private: // Can be omitted here
double x;
double y;
public:
double X() { return x; } // return x coordinate
double Y() { return y; } // return y coordinate
void zero() { x =y = 0.0; } // set point to origi
};

The user can access the Cartesian coordinates via P.X() and P.Y(Q),
respectively.

© Michael Hanke 2018 8 (30)

Introduction

Michael Another Implementation

Hanke

Classes

class Point {
private:
double r;
double phi;
public:
double X() { return r*std::cos(phi); }
double Y() { return r#*std::sin(phi); }
void zero() { r = phi = 0.0; }
};

The user interface did not change!

e The variables r, phi are called data members of the class.

e The functions X, Y, zero are the member functions of the class.

© Michael Hanke 2018

9 (30)

Introduction

Michael
Hanke

Classes

Programming Style: Separation of
Interface and Implementation

The interface file point.hpp may look like this:

© Michael Hanke 2018

#ifndef POINT_HPP
#define POINT_HPP

class Point {
double x;
double y;
public:
double XQ);
double Y();
void zero();

};

#endif

10 (30)

Introduction
= Implementation

Classes
#include ‘‘point.hpp”’

double Point::X() {
return x;

¥

double Point::Y() {
return y;

}

void Point::zero() {
x =y =0.0;

¥

The user of the class will most probably never see the
implementation!

© Michael Hanke 2018 11 (30)

Introduction

Michael
Hanke

Classes

© Michael Hanke 2018

Efficiency Considerations: Inlining

The principle of data hiding leads often to very many small
member functions.

Calling a function includes an overhead compared with the
simple data member access (e.g., P.x).

The overhead can lead to low efficiency if calls happen rather
often (inside innermost loops).

This overhead can be avoided by function inlining.

Note: Inlining is a hint to the compiler. The compiler can do it
or not.

Function bodies defined in header files are inlined be default,

while functions defined in the implementation are not. (Guess
why?)

12 (30)

Introduction
Michacl Efficiency Considerations: const

Classes

A compiler can often optimize the code much better if it can use
additonal assumptions about the function behavior.

e One important property is if certain objects are constant.

Example: In the definition
const int N = 10;

the variable N will never change its value. Doing so will result in
a compilation error.

As a byproduct, the user interface may become safer.

© Michael Hanke 2018 13 (30)

Introduction

Michael const And Pointers

Hanke

Classes

Consider the definition

const double *p;

This construct indicates that the double the pointer p is pointing
to will never change its value.

Consider instead

double *const p = &q;

Here, the pointer p will never change its value.

© Michael Hanke 2018 14 (30)

Introduction

Michacl Efficiency Considerations: point
Class

Classes

For efficiency, the header file should look like this:

#ifndef POINT_HPP
#define POINT_HPP
class Point {
private:
double x;
double y;
public:
double X() const { return x; }
double Y() const { return y; }
void zero() { x =y = 0.0; }

// Can be omitted here

};

#endif
The keyword const indicates that the object will not change its state
when queuried for the coordinates.

© Michael Hanke 2018 15 (30)

Introduction

Michael
Hanke

Constructors
an
Destructors

© Michael Hanke 2018

Constructors

Constructors determine what happens if an instance of a class
(an object) is created.

Built-in data types have default constructors: E.g., a statement
int i; reserves memory for one instance of type integer.

The initial value of an instance of a built-in type is undefined!

A definition of the type int i = 0; invokes another type of
constructor, the so-called copy constructor.

A definition of the kind class wariable; invokes a constructor
class::class()

as a member function of the instance variable. (the so-called
default constructor)

16 (30)

Introduction

Michacl Constructors (cont)

Hanke

Constructors
an
Destructors

o If no constructors are defined in a class, the so-called synthesized
default constructor is automatically defined by the compiler.

e The synthesized default constructor invokes recursively the
default constructors of the data members.

e As soon as at least one constructor is defined in the class, the
default constructor is not available (unless it is explicitely
required by class() = default;)

e Be careful: The synthesized default constructor might not be
what you want! (Shallow vs deep copy)

© Michael Hanke 2018 17 (30)

Introduction

Michael point Class Constructors

Hanke

Constructors
an
Destructors

e We want something like

Point();
Point (double xx, double yy);

e The default constructor is “do nothing but reserve memory™
Point) {2}

e The next one seems also easy:

Point(double xx, double yy) { x = xx; y = yy; }

© Michael Hanke 2018 18 (30)

Introduction

i point Class Constructors (cont)

e A more efficient way: Use initialization lists:

Constructors
an
Destructors

Point (double xx, double yy) : x(xx), y(yy) { %}
(uses the copy constructors)

e And finally: A versatile version (even replacing the default
constructor):

Point (double xx = 0.0, double yy = 0.0)
x(xx), yyy) { X
e Now, we can define:

Point P(3.0,5.0);
Point Q(3.0);
Point W;

but even:

Point *p; p = new Point(2.0);

© Michael Hanke 2018 19 (30)

Introduction

Michael
Hanke

Constructors
an
Destructors

© Michael Hanke 2018

Constructors: Intialization Lists

We must use the constructor initializer list to provide values for

members that are const, reference, or of class type that does not
have a default constructor.
Example:

class ConstRef {
public:
ConstRef (int ii);
private:
int 1i;
const int ci;
int &ri;

};

20 (30)

Introduction

Michacl Initialization Lists (cont)

Hanke

Constructors
an
Destructors

Correct
ConstRef::ConstRef (int ii): i(ii), ci(ii), ri(i) { }
Errorneous ConstRef::ConstRef (int ii) {
i=4ii; // ok
ci = ii; // wrong since ci is const
ri = i; // wrong: ri was never initialized

}

© Michael Hanke 2018 21 (30)

Introduction

pa The Copy Constructor

Constructors

Aim: Initialize an instance of a class by another instance of the
e same class:

Point P(3.0,5.0);

Point Q(P);
Point W = Q;

The creation of the objects Q and W are handled by the copy
constructor.

e The copy constructor is invoked when

e objects are defined by = or class(object of that class)

e objects are passed as actual parameters for non-reference
arguments

e return object from a function that has a non-reference return
type.

This explains why the argument must be of reference type!
(Why?)

© Michael Hanke 2018 22 (30)

Introduction

Michael
Hanke

Constructors
an
Destructors

© Michael Hanke 2018

The Default Copy Constructor

The default copy constructor invokes the copy constructors of all
data members.

For built-in types, this is a simple copy.
In our example, it is equivalent to:

Point(const Point& Q): x(Q.x), y(@Q.y) { }
Note: This is not identical to

Point(const Point& Q) {x = Q.x; y = Q.y; }
Why?

If the class manages its own dynamic memory (e.g. using new
type[n]), one must most probably define its own copy
constructor!

Discussion: Should one define one’s own copy constructor?

23 (30)

Introduction

Michael Remark

Hanke

Constructors
an
Destructors

e In the following, Q is constructed via the copy constructor:

Point P(3.0,5.0);

Point Q = P;

e Compare:
Point P(3.0,5.0), Q;
Q=P

This case is handled by the copy-assignment constructor! This is
different from the previous one!

© Michael Hanke 2018 24 (30)

Introduction

Michael Copy Constructor: Efficiency

Hanke

Constructors
an
Destructors

Consider the following ordinary (non-member) function:

const Point negative(const Point P) {
return Point(-P.X(),-P.Y());
}

e This version is very expensive, since it uses the constructor 3
times!

It’s demo time!

© Michael Hanke 2018 25 (30)

Introduction

Michae Efficiency (cont)

Hanke

Constructors
an
Destructors

o Better:
const Point negative(const Point& P) {
return Point(-P.X(),-P.Y());
}
e Note: The return type cannot be const Point&! Why?
e The C+4++11 and later standards have means to avoid certain
copies of temporary objects (move and move-assignment
constructors).

© Michael Hanke 2018

26 (30)

Introduction

Michael The Destructor

Hanke

Constructors
an
Destructors

e Inverse operation of constructors.

e Destructors do whatever work is needed to free the resources
used by an object.

e The destructor is a member function with empty argument list
with the name of the class prefixed by a tilde:

“Point() { }

In our simple example, it is a no-op. The runtime system
releases the memory.

o In general, releasing resources must be handled very carefully in
order to avoid memory leaks etc!

© Michael Hanke 2018 27 (30)

Introduction

Michael
Hanke

Constructors
an
Destructors

© Michael Hanke 2018

Type Conversion

What happens in the following situation?
double d = 1;
The constant “1” is int, the variable defined of type double.

The integer constant is implicitely converted to type double
(1.0) and then assigned.

In case of the definition
Point P = 1.0;
the constructor Point(1.0) is invoked.
This way, the constructor includes an implicit type conversion!

Note: Explicit type conversion (“type casting”) is included in this
mechanism:

Point P; P = (Point) 1.0;
Be careful! Avoid explicit type casting!

28 (30)

Introduction

Michael static Class Members

Hanke

Constructors
an
Destructors

e Any member of a class can be static.

e A static member exists only once for each class. Thus, it is not
bound to a concrete object.

e A static member function does not contain a this pointer. It
can only use static class members.

e Definition of a static member outside of a class body: Omit the
static keyword.

e Static data members must be initialized outside the class (No
constructor will be called!)

e constexpr static data members will be initialized in the class
definition.

© Michael Hanke 2018 20 (30)

Introduction

Michael S umma ry

Hanke

ey What we learned:
e Basic definitions of classes

Private and public members

Constructors and destructors

Constructors: Efficiency considerations

What comes next:

e Operator overloading

© Michael Hanke 2018 30 (30)

	Classes
	Constructors and Destructors
	Summary

