Michael Hanke

Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summary

Structured Grids

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

Michael Hanke

Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summary

Outline

- 1 Introduction
- 2 Algebraic Grid Generation
- 3 Node Distributions on a Line
- **4** Summary

© Michael Hanke 2018 2 (22)

Michael Hanke

Introduction

Algebraic Gri Generation

Node Distribution on a Line

Summa

Introduction

Given

- a geometry
- a partial differential equation
- initial and boundary conditions

we need to

- 1 Discretize the domain (generate a grid)
- 2 Approximate the PDE on the grid (e.g., by finite elements or finite differences)
- 3 Solve the discretized pde

Aim: Develop C++ features when implementing a class for so-called structured grids.

Michael Hanke

Introduction

Algebraic Gri Generation

Node Distribution on a Line

Summary

Different Types of Grids

Grid

Subdivision of domain into small cells or a finite set of points intended for approximating PDEs by algebraic equations

Structure

- Unstructured grids
- Structured grids
 - Cartesian
 - Boundary-fitted

Boundary representation

- Cartesian
- Boundary-fitted
 - Unstructured
 - Structured

Here, we will use structured boundary-fitted grids.

© Michael Hanke 2018 4 (22)

Michael Hanke

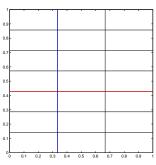
Introduction

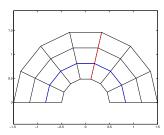
Algebraic Gric Generation

Node Distributions on a Line

Summar

A Structured Grid





Structured grids are indexed along coordinate axes:

$$\xi$$
 = "radius", η = "angle"
 $x = (1/2 + \xi) \cos(\pi \eta)$, $y = (1/2 + \xi) \sin(\pi \eta)$

Note: The stright lines in the right plot are an artifact from matlab.

© Michael Hanke 2018 5 (22)

Michael Hanke

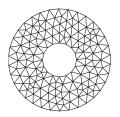
Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summary

Unstructured Grids



- + Generality
 - Handles complex geometries
 - "Straightforward" generation and refinement
 - Inefficiency
 - Indirect addressing (inefficient cache usage, many dereferences)
 - Parallelization difficult

© Michael Hanke 2018 6 (22

Michael Hanke

Introduction

Algebraic Gri Generation

Node Distribution

Summary

Unstructured Grids (cont)

```
Example implementation:
   double x[n], y[n]; // Node coordinates
   int triang[m][3];  // Nodes in triangles
Coordinates must be accessed via
   x[triang[i][0]], y[triang[i][0]]
Alternatively:
   Point P[n];  // Node coordinates
   int triang[m][3];
Access:
   P[triang[i][j]]
```

© Michael Hanke 2018 7 (22)

Michael Hanke

Introduction

Algebraic Gr

Node Distribution on a Line

Summa

General Considerations

Grid generation

- Should the grid be used once or several times?
- Many grid points gives better accuracy at expense of increased computation time.
- How to distribute grid points: resolve geometry or solution?
 Both?

Grid properties

- Orthogonality a "skewed" grid has larger coefficient in truncation error
- Grid size variation numerical diffusion and stability restrictions in numerical schemes

Michael Hanke

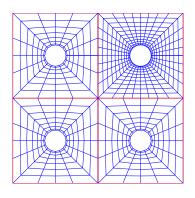
Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summai

Multi Block Grids



Divide the domain into blocks when a mapping from the unit square (cube) cannot be found.

- Blocks can be overlapping instead of adjacent (eg, NURBS)
- · Nodes on common edges may be different
- Division usually done by hand or "semi-automatically"

Michael Hanke

Introduction

Algebraic Gri Generation

Node Distribution on a Line

Summa

Generating a Single Grid

We consider boundary-fitted structured grids, only. Methods:

- Explicit methods
 - Analytical transformations
 - Algebraic grid generation (transfinite interpolation)
- Implicit methods: The transformation is implicitely determined, often by PDEs.
 - Elliptic grid generation
 - Variational grid generation
 - Hyperbolic and parabolic grid generation

Approach:

- Divide domain into blocks
- @ Generate grid on edges
- 3 Generate grid on domain (2D) or sides (3D)
- 4 Generate grid on volume (3D)

© Michael Hanke 2018 10 (22)

Michael Hanke

Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summa

Algebraic Grid Generation

- We consider domains $\Omega \subset \mathbb{R}^2$ which can be naturally mapped onto the unit square.
- More precisely, we assume $(\xi, \eta) \in [0, 1]^2 \subset \mathbb{R}^2$.
- Moreover, we assume that a one-to-one mapping Φ from the boundary of the unit square onto the boundary of Ω is known.

Aim: Extend Φ to a (smooth) one-to-one mapping $\Phi: [0,1]^2 \to \Omega$.

Summai

Basic Idea

- Assume that the mapping Φ as described above is available.
- For given m, n, a uniform grid on $[0, 1]^2$ can be defined by:

$$\xi_i = ih_1, \quad h_1 = 1/m, \quad i = 0, \dots, m,$$

 $\eta_j = jh_2, \quad h_2 = 1/n, \quad j = 0, \dots, n.$

ullet A strucured grid on Ω can then simply be obtained via

$$x_{ij}=\Phi_x(\xi_i,\eta_j), \quad y_{ij}=\Phi_y(\xi_i,\eta_j), \quad i=0,\ldots,m, j=0,\ldots,n.$$

How to get Φ?

Summar

Interpolation Construction

• Assume that we have two strictly monotone functions φ_0, φ_1 with the properties

$$\varphi_0(0) = 0, \quad \varphi_0(1) = 1,
\varphi_1(0) = 1, \quad \varphi_1(1) = 0.$$

• Then, an interpolation between two points $x,y\in\mathbb{R}^2$ can be be defined by

$$f(s) = \varphi_0(s)x + \varphi_1(s)y.$$

• Example: $\varphi_0(s) = s$, $\varphi_1(s) = 1 - s$. (linear interpolation)

Michael Hanke

Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summar

Transfinite Grid Generation

• Application of this interpolation in both ξ -directions provides us with

$$\begin{aligned} x(\xi,\eta) &= \varphi_{0}(\xi)x(0,\eta) + \varphi_{1}(\xi)x(1,\eta) + \varphi_{0}(\eta)x(\xi,0) + \\ &\varphi_{1}(\eta)x(\xi,1) - \varphi_{0}(\xi)\varphi_{0}(\eta)x(0,0) - \\ &\varphi_{1}(\xi)\varphi_{0}(\eta)x(1,0) - \varphi_{0}(\xi)\varphi_{1}(\eta)x(0,1) - \\ &\varphi_{1}(\xi)\varphi_{1}(\eta)x(1,1) \end{aligned}$$

- The subtractions take care of the domain corners.
- This procedure can be generalized to have different kind of interpolations in the ξ and η directions.

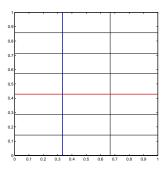
Michael Hanke

Introduction

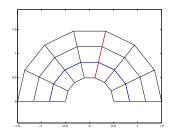
Algebraic Grid Generation

Node Distributions on a Line

Summary



A Simpe Example



© Michael Hanke 2018 15 (22)

Michael Hanke

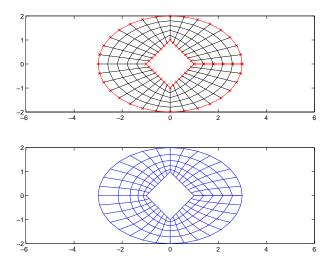
Introduction

Algebraic Grid Generation

Node Distribution

Summary

Example: Domain With a Hole



The upper figure shows a grid generated by algebraic grid generation while the second one contains an enhancement by an elliptic process.

Michael Hanke

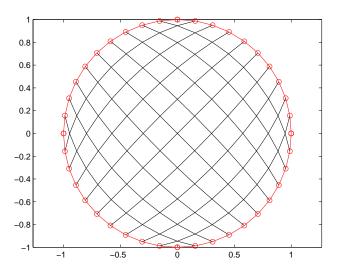
Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summary

A Final Example



© Michael Hanke 2018 17 (22)

Michael Hanke

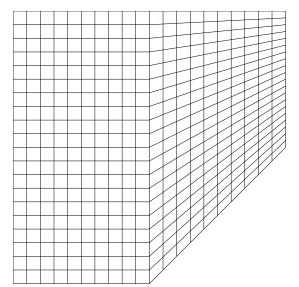
Introduction

Algebraic Grid Generation

Node Distribution on a Line

Summary

Problem: Propagating Boundary Discontinuity



Michael Hanke

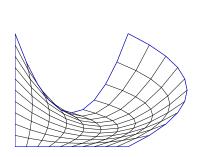
Introduction

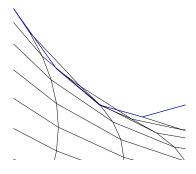
Algebraic Grid Generation

Node Distribution on a Line

Summary

Problem: Non-Convex Domains





Michael Hanke

Introduction

Algebraic Gr Generation

Node Distributions on a Line

Summai

Node Distribution

- In the examples above, we have started with a uniform discretization (with respect to the arc length parameter $s \in [0,1]$) at the boundaries.
- In case of highly non-uniform solutions (e.g., with boundary layers), it might be wise to use a nonuniform distribution in order to keep the grid small.
- Idea:
 - Let us be given a uniform distribution with respect to an artificial parameter σ ∈ [0, 1].
 - The artificial parameter is then mapped analytically to $s \in [0,1]$: $s = T(\sigma)$.
 - This provides the nodes $s_i = T(\sigma_i)$ with respect to the arc length.

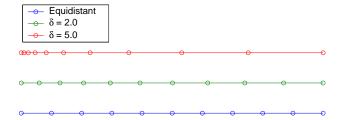
For this to work, $T:[0,1] \to [0,1]$ must be strictly monotone, continuous and T(0)=0, T(1)=1.

Summar

Node Distribution (cont)

- *T* is often chosen according to the principle of truncation error equidistribution.
- Example: Hyperbolic tangent stretching

$$T(\sigma) = 1 + rac{ anh \, \delta(\sigma-1)}{ anh \, \delta}$$



Michael Hanke

Introduction

Generation

Node Distribution

Summary

Summary

- Principles of structured grid generation
- Implications on computational efficiency
- Algebraic grid generation
- Nonuniform grids

- What comes next:
 - Inheritance: How to implement classes for structured grids