Microdisk resonator

a. Calculate the number of modes with frequencies lying between 0 and \(\nu \) in a two-dimensional square resonator (of size \(L \times L \), with \(L \) much greater than the wavelength), allowing two orthogonal polarizations per mode. Determine then the density of modes [number of modes per unit area per unit frequency] at a frequency \(\nu \) in the 2D resonator. [Assume a refractive index \(n = 1 \) in the derivations].

b. Light can be confined in a two-dimensional circular resonator by repeated reflections from its circular boundary, as sketched in the figure here on the right. Consider the case of light confined in a disk of diameter \(D \) and refractive index \(n \), as a result of \(N \) reflections with equal path lengths. Derive the expression for the frequency spacing of the optical modes supported by the resonator as function of \(D \) and \(N \) and calculate the lowest possible value of \(N \) for full-confinement of a mode in a disk made of silicon, with \(D = 10 \, \mu\text{m} \) and \(n = 3.5 \). Sketch the corresponding optical trajectory in the disk and comment on the result. [For the sake of simplicity, consider only: non-crossing ray trajectories - as the one illustrated by Fig.1 for the case \(N = 6 \), one polarization and one direction of propagation out of the two possible for the same ray trajectory].

c. Derive the expression of the intermodal frequency spacing in the circular resonator of task b) for \(N \to \infty \). Calculate its value for the same values of \(D \) and \(n \) as above. How do the optical trajectories look like in this case?