SF2812 Applied linear optimization, final exam
 Monday March 122018 8.00-13.00
 Brief solutions

1. (a) The primal variables x are the dual variables of the constraints $A^{T} y \leq c$ in $(D L P)$. Therefore, the marginal costs for "EQU cons" give $x=\left(\begin{array}{llll}2 & 1 & 0 & 1\end{array} 3\right)^{T}$.
(b) We assume that the given solution is a basic feasible solution, i.e., that columns $1,2,5$ and 6 of A form a nonsingular basis matrix B. As long as the change in c_{1} gives the same optimal basis, we expect the change in optimal solution to be given by $c_{B}^{T} x_{B}+\delta e_{1}^{T} x$, i.e., $5+2 \delta$.
(c) We have $B^{T} y=c_{B}$. If c_{B} is changed to $c_{B}+\delta e_{1}$, we get the corresponding dual solution y_{δ} by $B^{T} y_{\delta}=c_{B}+\delta e_{1}$, i.e., $y_{\delta}=y+\delta \eta$, where $B^{T} \eta=e_{1}$. Insertion of numerical values gives

$$
\left(\begin{array}{rrrr}
1 & 2 & 1 & -1 \\
1 & 1 & 3 & 4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3} \\
\eta_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

The assumption that B is nonsingular is valid, and the solution is given by $\eta=\left(\begin{array}{lll}-1 & 1 & 0\end{array} 0\right)^{T}$. The bound on δ is then given by dual feasibility, i.e., $N^{T}(y+$ $\delta \eta) \leq c_{N}$ or equivalently $\delta N^{T} \eta \leq c_{N}-N^{T} y$. Insertion of numerical values gives

$$
\delta\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right) \leq\binom{ 3}{3}-\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right)
$$

i.e.,

$$
\begin{aligned}
0 & \leq 1 \\
-2 \delta & \leq 2
\end{aligned}
$$

The bound is consequently given by $\delta \geq-1$. Therefore, the optimal value is given by $5+2 \delta$ for $\delta \geq-1$.
2. (a) The system of primal-dual nonlinear equations is given by

$$
\begin{align*}
x_{1}+x_{2}+2 x_{3} & =2, \tag{1a}\\
y+s_{1} & =1, \tag{1b}\\
y+s_{2} & =1, \tag{1c}\\
2 y+s_{3} & =3, \tag{1d}\\
x_{1} s_{1} & =\mu, \tag{1e}\\
x_{2} s_{2} & =\mu, \tag{1f}\\
x_{3} s_{3} & =\mu . \tag{1~g}
\end{align*}
$$

where we also implicitly require $x>0$ and $s>0$.

We will throughout use the fact that the problem is small and has a particular structure. We may use (1b)-(1g) to express x and s as a function of y according to

$$
s_{1}=s_{2}=1-y, \quad s_{3}=3-2 y, \quad x_{1}=x_{2}=\frac{\mu}{s_{1}}=\frac{\mu}{1-y}, \quad x_{3}=\frac{\mu}{s_{3}}=\frac{\mu}{3-2 y} .
$$

Insertion of the expressions for x into (1a) gives

$$
\frac{\mu}{1-y}+\frac{\mu}{3-2 y}=1
$$

(b) For completeness, we derive the expression for $y(\mu)$. This is not asked for in the question. If both sides of the equation in y are multiplied by $(1-y)(3-2 y)$, we obtain

$$
(3-2 y) \mu+(1-y) \mu=(1-y)(3-2 y)
$$

which can be simplified to

$$
y^{2}-\frac{5-3 \mu}{2} y+\frac{3-4 \mu}{2}=0
$$

Solving this equation gives

$$
y=\frac{5-3 \mu}{4}-\sqrt{\frac{(5-3 \mu)^{2}}{16}-\frac{3-4 \mu}{2}}=\frac{5-3 \mu}{4}-\frac{\sqrt{1+2 \mu+9 \mu^{2}}}{4}
$$

where the minus sign has been chosen to make $y<1$, required by $s_{1}=1-y>0$.
Taylor series expansion of $\sqrt{1+2 \mu+9 \mu^{2}}$ gives

$$
\sqrt{1+2 \mu+9 \mu^{2}}=1+\frac{2 \mu+9 \mu^{2}}{2}-\frac{\left(2 \mu+9 \mu^{2}\right)^{2}}{8}+o\left(\mu^{2}\right)=1+\mu+4 \mu^{2}+o\left(\mu^{2}\right)
$$

Insertion into $y(\mu)$ gives

$$
\begin{aligned}
y(\mu) & =\frac{5-3 \mu}{4}-\frac{\sqrt{1+2 \mu+9 \mu^{2}}}{4}=\frac{5-3 \mu}{4}-\frac{1+\mu+4 \mu^{2}}{4}+o\left(\mu^{2}\right) \\
& =1-\mu-\mu^{2}+o\left(\mu^{2}\right)
\end{aligned}
$$

which is the given expression.
The answer to the question starts here. The given expression for $y(\mu)$ gives

$$
\begin{aligned}
& s_{1}(\mu)=s_{2}(\mu)=1-y(\mu) \approx 1-(1-\mu)=\mu \\
& s_{3}(\mu)=3-2 y(\mu) \approx 3-2(1-\mu)=1+2 \mu \\
& x_{1}(\mu)=x_{2}(\mu)=\frac{\mu}{1-y(\mu)} \approx \frac{\mu}{1-1+\mu+\mu^{2}}=\frac{1}{1+\mu} \approx 1-\mu \\
& x_{3}(\mu)=\frac{\mu}{3-2 y(\mu)}=\frac{\mu}{3-2(1-\mu)}=\frac{\mu}{1+2 \mu} \approx \mu
\end{aligned}
$$

where in all cases $o(\mu)$ approximations have been derived.
(c) Letting $\mu \rightarrow 0$ gives

$$
x=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad y=1, \quad s=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

It is straightforward to verify that $A x=b, x \geq 0, A^{T} y+s=c, s \geq 0, x^{T} s=0$. Consequently, optimality holds. The given x is not a basic feasible solution, which can be seen from two positive components of x with only one row in A. This situation arises because this particular primal problem does not have a unique optimal solution. The barrier trajectory leads to a basic feasible solution only if the primal problem has a unique solution.
3. The suggested initial extreme points $v_{1}=\left(\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{lll}-1 & 0 & 1\end{array} 0\right)^{T}$ give the initial basis matrix

$$
B=\left(\begin{array}{cc}
A v_{1} & A v_{2} \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
-3 & -1 \\
1 & 1
\end{array}\right)
$$

The right-hand side in the master problem is $b=(-21)^{T}$. Hence, the basic variables are given by

$$
\left(\begin{array}{rr}
-3 & -1 \\
1 & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{-2}{1}, \quad \text { which gives } \quad\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{1}{2}}{\frac{1}{2}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=(-4-2)$. Consequently, the simplex multipliers are given by

$$
\left(\begin{array}{ll}
-3 & 1 \\
-1 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{-4}{-2}, \quad \text { which gives } \quad\binom{y_{1}}{y_{2}}=\binom{1}{-1}
$$

By forming $c^{T}-y_{1} A=\left(\begin{array}{llll}1 & 0 & 0 & 4\end{array}\right)$ we obtain the subproblem

$$
\begin{aligned}
1+\quad \text { minimize } & x_{1}+4 x_{4} \\
\text { subject to } & -1 \leq x_{1}+x_{2} \leq 1 \\
& -1 \leq x_{1}-x_{2} \leq 1 \\
& -1 \leq x_{3}+x_{4} \leq 1 \\
& -1 \leq x_{3}-x_{4} \leq 1
\end{aligned}
$$

An optimal extreme point to the subproblem is given by $v_{3}=\left(\begin{array}{llll}-1 & 0 & 0 & -1\end{array}\right)^{T}$ with optimal value -4 . Hence, α_{3} should enter the basis. The corresponding column in the master problem is given by

$$
\binom{A v_{3}}{1}=\binom{-1}{1}
$$

The change to the basic variables is given by

$$
\left(\begin{array}{rr}
-3 & -1 \\
1 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}=-\binom{-1}{1}, \quad \text { which gives } \quad\binom{p_{1}}{p_{2}}=\binom{0}{-1}
$$

Finding the maximum step η for which $\alpha+\eta p \geq 0$ gives

$$
\binom{\frac{1}{2}}{\frac{1}{2}}+\eta\binom{0}{-1} \geq\binom{ 0}{0}
$$

i.e., $\eta=1 / 2$ so that α_{2} leaves the basis.

Hence, the new basis corresponds to v_{1} and v_{3} so that

$$
B=\left(\begin{array}{cc}
A v_{1} & A v_{3} \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
-3 & -1 \\
1 & 1
\end{array}\right)
$$

The basic variables are given by

$$
\left(\begin{array}{rr}
-3 & -1 \\
1 & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{3}}=\binom{-2}{1}, \quad \text { which gives } \quad\binom{\alpha_{1}}{\alpha_{3}}=\binom{\frac{1}{2}}{\frac{1}{2}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{3}\right)=(-4-6)$. Consequently, the simplex multipliers are given by

$$
\left(\begin{array}{cc}
-3 & 1 \\
-1 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{-4}{-6}, \quad \text { which gives } \quad\binom{y_{1}}{y_{2}}=\binom{-1}{-7}
$$

By forming $c^{T}-y_{1} A=\left(\begin{array}{llll}5 & 2 & -2 & 2\end{array}\right)$ we obtain the subproblem

$$
\begin{aligned}
7+\quad \text { minimize } & 5 x_{1}+2 x_{2}-2 x_{3}+2 x_{4} \\
\text { subject to } & -1 \leq x_{1}+x_{2} \leq 1 \\
& -1 \leq x_{1}-x_{2} \leq 1 \\
& -1 \leq x_{3}+x_{4} \leq 1 \\
& -1 \leq x_{3}-x_{4} \leq 1
\end{aligned}
$$

Both v_{1} and v_{3} are optimal extreme points to the subproblem, so the optimal value of the subproblem is 0 . Hence, the master problem has been solved. The solution to the original problem is given by

$$
v_{1} \alpha_{1}+v_{3} \alpha_{3}=\left(\begin{array}{r}
-1 \\
0 \\
1 \\
0
\end{array}\right) \frac{1}{2}+\left(\begin{array}{r}
-1 \\
0 \\
0 \\
-1
\end{array}\right) \frac{1}{2}=\left(\begin{array}{r}
-1 \\
0 \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)
$$

The optimal value is -5 .
4. (See the course material.)
5. (a) We have

$$
\phi_{x}(\lambda)=\lambda+\frac{1}{\alpha} \sum_{i: d_{i}>\lambda} \Delta_{i}\left(d_{i}-\lambda\right)
$$

since $\left(d_{i}-\lambda\right)_{+}=0$ for $d_{i} \leq \lambda$. If $\lambda \neq d_{j}, j=1, \ldots, n$, then $\left\{i: d_{i}>\lambda\right\}$ is constant in a neighborhood of λ. Therefore,

$$
\frac{d \phi_{x}(\lambda)}{d \lambda}=1-\frac{1}{\alpha} \sum_{i: d_{i}>\lambda} \Delta_{i}
$$

We first consider $\lambda<d_{m_{\alpha}}$. Then, by the ordering of the $d_{i} \mathrm{~s}, d_{i}>\lambda, i=$ $1, \ldots, m_{\alpha}$, so that

$$
\frac{d \phi_{x}(\lambda)}{d \lambda} \leq 1-\frac{1}{\alpha} \sum_{i=1}^{m_{\alpha}} \Delta_{i}=\frac{1}{\alpha}\left(\alpha-\sum_{i=1}^{m_{\alpha}} \Delta_{i}\right)<0
$$

if $\lambda \neq d_{j}, j=1, \ldots, m_{\alpha}-1$, where the last inequality follows from the definition of m_{α}.
Analogously, if $\lambda>d_{m_{\alpha}}$, then $d_{i}<\lambda, i=m_{\alpha}, m_{\alpha}+1, \ldots, m$. Therefore,

$$
\frac{d \phi_{x}(\lambda)}{d \lambda} \geq 1-\frac{1}{\alpha} \sum_{i=1}^{m_{\alpha}-1} \Delta_{i}=\frac{1}{\alpha}\left(\alpha-\sum_{i=1}^{m_{\alpha}-1} \Delta_{i}\right) \geq 0
$$

if $\lambda \neq d_{j}, j=m_{\alpha}+1, \ldots, n$, where the last inequality again follows from the definition of m_{α}.
Consequently, ϕ_{x} is a piecewise linear function which is decreasing for $\lambda<d_{m_{\alpha}}$ and nondecreasing for $\lambda \geq d_{m_{\alpha}}$. We conclude that $d_{m_{\alpha}}$ is a global minimizer of ϕ_{x}.
(b) We may introduce a new variable u and rewrite $\left(P_{\alpha}\right)$ as

$$
\begin{array}{ll}
\operatorname{minimize} & u \\
\text { subject to } & u \geq \lambda+\frac{1}{\alpha} \sum_{i=1}^{m} \Delta_{i}\left(d_{i}-\lambda\right)_{+} \\
& d=P x \\
& x \geq 0
\end{array}
$$

It remains to rewrite $\left(d_{i}-\lambda\right)_{+}$. Since $\left(d_{i}-\lambda\right)_{+}$is to be minimized, we may introduce a new variable μ_{i} and require $\mu_{i} \geq d_{i}-\lambda$ and $\mu_{i} \geq 0$. Then, the minimum value of μ_{i} equals $\left(d_{i}-\lambda\right)_{+}$.
The resulting linear program takes the form

$$
\begin{array}{ll}
\operatorname{minimize} & u \\
\text { subject to } & u \geq \lambda+\frac{1}{\alpha} \sum_{i=1}^{m} \Delta_{i} \mu_{i} \\
& \mu_{i} \geq d_{i}-\lambda, \quad i=1, \ldots, m \\
& \mu_{i} \geq 0, \quad i=1, \ldots, m \\
& d=P x \\
& x \geq 0
\end{array}
$$

Remark: For an example when CVaR is used in radiation therapy optimization, see L. Engberg, A. Forsgren, K. Eriksson and B. Hårdemark, Explicit optimization of plan quality measures in intensity-modulated radiation therapy treatment planning. Medical Physics 44 (2017) 2045-2053.
A challenge in this application is that $m \gg n$. In the paper, a tailored interior point method for handling $m \gg n$ is designed to solve the linear program.

