
SF2812 Applied linear optimization, final exam
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Brief solutions

1. As x̂j > 0, j = 1, 2, 4, the active constraints at x̂ are given by

 3 1 −1 0

2 2 0 −1

0 0 1 0



x̂1
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x̂4

 =
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 .

These constraints remain active for x̂+ αp, where p satisfies 3 1 −1 0

2 2 0 −1

0 0 1 0
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 =

 0

0

0

 .

From the given hint we obtain p = (−1 3 0 4)T . The additional requirement
x̂+ αp ≥ 0 gives

1

9

0

4

+ α


−1
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0
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 ≥


0

0

0

0

 .

It follows that x̂+αp ≥ 0 for −1 ≤ α ≤ 1. In addition, it holds that cTp = 0, so that
x̂+ αp has the same objective function value as x̂ for all α. By taking the limiting
values of α, we get two new points at which four constraints are active, namely

x(1) = x̂− p =


2

6

0

0

 , x(2) = x̂+ p =


0

12

0

8

 .

It follows that x̂ = 1/2x(1) + 1/2x(2). As there are four active constraints at these
points, we expect them to be basic feasible solutions. By assuming that x1 and x2
are basic variables, we may compute y and s from BTy = cB, s = c−ATy, i.e.,(

3 2

1 2

)(
y1

y2

)
=

(
−1

1

)
,

with solution y = (−1 1)T , so that s = c − ATy = (0 0 1 0)T . As s ≥ 0, we have
verified optimality of x(1), and cTp = 0 implies that x̂ and x(2) are optimal as well.
It is straightforward to verify that x(2) is also a basic feasible solution at which x2
and x4 are basic variables.

2. (a) With X = diag(x) and S = diag(s), the linear system of equations takes the
form  A 0 0

0 AT I

S 0 X


 ∆x

∆y

∆s

 = −

 Ax− b
ATy + s− c
XSe− µe

 .
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Insertion of numerical values gives

2 1 −1 0 0 0 0 0 0 0

1 3 0 −1 0 0 0 0 0 0

0 0 0 0 2 1 1 0 0 0

0 0 0 0 1 3 0 1 0 0

0 0 0 0 −1 0 0 0 1 0

0 0 0 0 0 −1 0 0 0 1

1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1





∆x1

∆x2

∆x3

∆x4

∆y1

∆y2

∆s1

∆s2

∆s3

∆s4



=



0

0

0

0

0

0

−0.9

−0.9

−0.9

−0.9



.

(b) If we compute αmax as the largest step α for which x+α∆x ≥ 0 and s+α∆s ≥ 0
we see that the limiting step is given by x4 + αmax(∆x)4 = 0, i.e.,

αmax ≈
1

1.0756
≈ 0.9297.

As αmax < 1 we cannot accept the unit step. If we let α = 0.99αmax the new
iterate becomes x+α∆x ≈ (0.6161 0.7980 0.0302 0.0100)T , y+α∆y ≈ (1.1414
− 0.8384)T , and s+ α∆s ≈ (0.5555 0.3737 1.1414 1.1616)T .

(The numeric value of αmax is not required. It suffices to note how αmax is
determined and that it is less than one. Analogously, the numeric values of the
new iterates are not required, it suffices to state how they are computed.)

3. (See the course material.)

4. The suggested initial extreme points v1 = (–1 –1 –1 –1)T and v2 = (1 –1 –1 1)T

give the initial basis matrix

B =

(
Av1 Av2

1 1

)
=

(
−3 3

1 1

)
.

The right-hand side in the master problem is b = (1 1)T . Hence, the basic variables
are given by(

−3 3

1 1

)(
α1

α2

)
=

(
1

1

)
, which gives

(
α1

α2

)
=

(
1
3
2
3

)
.

The cost of the basic variables are given by (cTv1 c
Tv2) = (−5 − 1). Consequently,

the simplex multipliers are given by(
−3 1

3 1

)(
y1

y2

)
=

(
−5

−1

)
, which gives

(
y1

y2

)
=

(
2
3

−3

)
.
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By forming cT − y1A = (2/3 4/3 5/3 –2/3) we obtain the subproblem

3+ minimize 2
3x1 + 4

3x2 + 5
3x3 −

2
3x4

subject to −1 ≤ xj ≤ 1, j = 1, 2, 3.

An optimal extreme point to the subproblem is given by v3 = (–1 –1 –1 1)T with
optimal value -4/3. Hence, α3 should enter the basis. The corresponding column in
the master problem is given by(

Av3

1

)
=

(
−1

1

)
.

The change to the basic variables is given by(
−3 3

1 1

)(
p1

p2

)
= −

(
−1

1

)
, which gives

(
p1

p2

)
=

(
−2

3

−1
3

)
.

Finding the maximum step η for which α+ ηp ≥ 0 gives(
1
3
2
3

)
+ η

(
−2

3

−1
3

)
≥

(
0

0

)
,

i.e., η = 1/2 so that α1 leaves the basis.

Hence, the new basis corresponds to v2 and v3 so that

B =

(
Av3 Av2

1 1

)
=

(
−1 3

1 1

)
.

The right-hand side in the master problem is b = (1 1)T . Hence, the basic variables
are given by(

−1 3

1 1

)(
α3

α2

)
=

(
1

1

)
, which gives

(
α3

α2

)
=

(
1
2
1
2

)
.

The cost of the basic variables are given by (cTv3 c
Tv2) = (−5 − 1). Consequently,

the simplex multipliers are given by(
−1 1

3 1

)(
y1

y2

)
=

(
−5

−1

)
, which gives

(
y1

y2

)
=

(
1

−4

)
.

By forming cT − y1A = (0 1 2 –1) we obtain the subproblem

4+ minimize x2 + 2x3 − x4
subject to −1 ≤ xj ≤ 1, j = 1, 2, 3.

Both v2 and v3 are optimal extreme points to the subproblem, so the optimal value
of the subproblem is 0. Hence, the master problem has been solved. The solution
to the original problem is given by

v3α3 + v2α2 =


−1

−1

−1

1

 1

2
+


1

−1

−1

1

 1

2
=


0

−1

−1

1

 .

The optimal value is -3.
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5. Remark: This example comes from
A. Fredriksson, A characterization of robust radiation therapy treatment planning
methods—from expected value to worst case optimization, Medical Physics 39(8):
5169–5181, 2012.

(a) For α = 1, the last constraint reads 0 ≤ πs ≤ ps. If πs′ < ps′ for some scenario
s′, then

∑S
s=1 πs <

∑S
s=1 ps. But since ps, s = 1, . . . , S, is a given probability

distribution, we have ps ≥ 0, s = 1, . . . , S, and
∑S

s=1 ps = 1. Hence, if πs′ < ps′

for some s′, we conclude that
∑S

s=1 πs < 1 so that π is infeasible. It follows
that πs = ps, s = 1, . . . , S, is the only feasible solution so that Pexpected and
(Pα) are equivalent.

(b) For α ≤ mins=1,...,S ps, the constraints πs ≤ 1
αps, s = 1, . . . , S, become redun-

dant in (Pα), as they are dominated by πs ≤ 1. Hence, in the inner maxi-
mization problem, it is optimal to let πs′ = 1 for one scenario s′ such that
f(x, s′) = maxs=1,...,S f(x, s), and πs = 0, s 6= s′. Therefore, (Pα) is equivalent
to (Probust).

(c) For a given x, the inner maximization problem is a linear program in the form

(PLPα)

maximize
π∈IRS

∑S
s=1 πsf(x, s)

subject to
∑S

s=1 πs = 1,
πs ≤ 1

αps, s = 1, . . . , S,
π ≥ 0.

We may state the dual linear program (DLPα) directly from known results.
For completeness, we derive it by Lagrangian relaxation. The first step is to
form the Lagrangian relaxation problem

maximize
π≥0

∑S
s=1 πsf(x, s) + λ(1−

∑S
s=1 πs) +

∑S
s=1 µs(

1
αps − πs)

where λ and µs, s = 1, . . . , S, are Lagrange multipliers. We must require µs ≥ 0,
s = 1, . . . , S, to obtain a relaxation. This problem may be rewritten as

λ+
1

α

S∑
s=1

µsps +
S∑
s=1

maximize
πs≥0

(f(x, s)− λ− µs)πs

=

{
λ+ 1

α

∑S
s=1 psµs if f(x, s)− λ− µs ≤ 0, s = 1, . . . , S,

+∞ otherwise.

The dual problem may now be written as

(DLPα)

minimize
λ∈IR,µ∈IRS

λ+ 1
α

∑S
s=1 psµs

subject to λ+ µs ≥ f(x, s), s = 1, . . . , S,
µs ≥ 0, s = 1, . . . , S.

By strong duality for linear programming, the optimal values of (PLPα) and
(DLPα) are equal. Hence, the original problem may be written as

minimize
x∈X

minimize
λ∈IR,µ∈IRS

λ+ 1
α

∑S
s=1 psµs

subject to λ+ µs ≥ f(x, s), s = 1, . . . , S,
µs ≥ 0, s = 1, . . . , S.

https://people.kth.se/~albfre/
https://people.kth.se/~albfre/robustmethods.pdf
https://people.kth.se/~albfre/robustmethods.pdf
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This may now be written as one minimization problem on the form

minimize λ+ 1
α

∑S
s=1 psµs

subject to λ+ µs − f(x, s) ≥ 0, s = 1, . . . , S,
µs ≥ 0, s = 1, . . . , S,
x ∈ X .


