
SF2812 Applied linear optimization, final exam
Friday March 8 2019 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain carefully.

Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the linear programming problem (PLP ) and its dual (DLP ) defined as

(PLP )

minimize cTx

subject to Ax = b,
x ≥ 0,

(DLP )

maximize bTy

subject to ATy + s = c,
s ≥ 0.

In the discussion below, we let optval(PLP ) = ∞ if (PLP ) is infeasible and anal-
ogously optval(DLP ) = −∞ if (DLP ) is infeasible, where “optval” denotes the
optimal value.

Assume that x̃ is a feasible solution to (PLP ).

(a) Give an upper bound on the optimal value of (PLP ). . . . . . . . . . . . . . . . . . . . (2p)

(b) Give an upper bound on the optimal value of (DLP ). Is (DLP ) necessarily
feasible? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Can there exist η and q such that ATη + q = 0, q ≥ 0 and bTη > 0? . . . . . . (3p)

(d) Assume that (DLP ) has a feasible solution ỹ, s̃ and in addition assume that
x̃Ts̃ = 1. Is it possible that ỹ, s̃ is an optimal solution to (DLP )? . . . . . . . (3p)

2. Consider the linear programming problem (PLP ) and its dual (DLP ) defined as

(PLP )

minimize cTx

subject to Ax = b,
x ≥ 0,

(DLP )

maximize bTy

subject to ATy + s = c,
s ≥ 0,

where

A =


1 4 5 −1 3 1

−1 3 2 0 4 0

−1 2 4 3 0 0

 , b =


12

3

1

 ,
c =

(
1 3 8 4 0 1

)T
.

1
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The related barrier transformed problem (Pµ), defined by

(Pµ)

minimize cTx− µ
4∑
j=1

lnxj

subject to Ax = b,
(x > 0),

has an optimal solution x̃ and Lagrange multiplier vector λ̃ for µ = 0.01 which
numerically is given by approximately

xtilde =

3.0136

1.9828

0.0085

0.0046

0.0120

0.9812

lambdatilde =

0.9898

-0.9505

0.9437

(a) Use the above numbers to give an approximate solution x(µ), y(µ) and s(µ)
to the primal-dual nonlinear equations, associated with a primal-dual interior
method for solving (PLP ), for µ = 0.01. If there are quantities that you
cannot calculate easily without a calculator, explain how you would calculate
them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4p)

(b) The above problems (PLP ) and (DLP ) have optimal solutions which are inte-
ger valued. Given this knowledge, use your results from Question 2a to make a
qualified guess of optimal solutions to (PLP ) and (DLP ) respectively. Motivate
your guess and verify optimality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) If the simplex method had been used to solve (PLP ), would the same opti-
mal solutions to (PLP ) and (DLP ) that you gave in Question 2b have been
obtained? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2p)

3. Consider the stochastic program (P ) given by

(P )

minimize cTx

subject to Ax = b,
T (ω)x = h(ω),
x ≥ 0,

where ω is a stochastic variable and T (ω)x = h(ω) is to be interpreted as an “in-
formal” stochastic constraint. Assume that ω takes on a finite number of values
ω1, . . . , ωN with corresponding probabilities p1, . . . , pN . Let Ti denote T (ωi) and let
hi denote h(ωi).



SF2812 Final exam March 8 2019 Page 3 of 5

(a) Explain how the deterministically equivalent problem

minimize cTx+
N∑
i=1

piq
T
i yi

subject to Ax = b,
Tix+Wyi = hi, i = 1, . . . , N,
x ≥ 0,
yi ≥ 0, i = 1, . . . , N,

arises. (We assume, for simplicity, “fix compensation”, i.e., W does not depend
on i.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) Define VSS in terms of suitable optimization problems. . . . . . . . . . . . . . . . . . (2p)

(c) Define EVPI in terms of suitable optimization problems. . . . . . . . . . . . . . . . . (2p)

4. Consider the linear program (LP ) given by

(LP )

minimize −3x1 − 2x2 + x3 + 2x4

subject to 2x1 + x2 − 2x3 − 2x4 = 2,
−1 ≤ xj ≤ 1, j = 1, . . . , 4.

Solve (LP ) by Dantzig-Wolfe decomposition. Consider 2x1 +x2− 2x3− 2x4 = 2 the
complicating constraint. Use the extreme points v1 = (1 1 –1 –1)T and v2 = (1 1
1 1)T for obtaining an initial basic feasible solution to the master problem.

The subproblem(s) that arise may be solved in any way, that need not be systematic.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

5. Consider the integer program (IP ) defined by

(IP )

minimize cTx

subject to Ax ≥ b,
Cx ≥ d,
x ≥ 0, x integer.

In the course, Lagrangian relaxation of the constraints Ax ≥ b or the constraints
Cx ≥ d have been considered. The corresponding dual problems (D1) and (D2) are
given by

(D1)
maximize ϕ1(u)

subject to u ≥ 0,

where ϕ1(u) = min{cTx− uT(Ax− b) : Cx ≥ d, x ≥ 0, x integer}, and

(D2)
maximize ϕ2(v)

subject to v ≥ 0,

where ϕ2(v) = min{cTx − vT(Cx − d) : Ax ≥ b, x ≥ 0, x integer}. In addition,
the optimal value of the Lagrange dual problem has been related to the optimal
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value of the linear programming relaxation. We will now do some additional work
in comparing different Lagrangian relaxations.

For a particular setX of vectors in IRn with integer components, we will be concerned
with its convex hull, denoted by conv(X). For a given X, conv(X) is defined as
the smallest convex set that contains X, or equivalently as the set of all convex
combinations of points in X. By construction, X ⊆ conv(X) and any extreme point
of conv(X) belongs to X. Consequently, if minimizing a linear function over X, it
is equivalent to minimize the linear function over conv(X), since there is always a
minimizer in conv(X) which is an extreme point. In addition, for an X formed by
vectors in IRn with integer components, conv(X) is a polytope. These properties
may be used without proof in the analysis.

(a) Show that

optval(D1) = minimize cTx

subject to Ax ≥ b,
x ∈ conv{x : Cx ≥ d, x ≥ 0, x integer},

and

optval(D2) = minimize cTx

subject to Cx ≥ d,
x ∈ conv{x : Ax ≥ b, x ≥ 0, x integer}.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Hint: Consider optval(D1). Since the set conv{x : Cx ≥ d, x ≥ 0, x integer} is
a polytope, we may write

conv{x : Cx ≥ d, x ≥ 0, x integer} = {x : C̄x ≥ d̄},

for some matrix C̄ and vector d̄. In general, C̄ and d̄ will have an exponential
number of rows, so this approach is not practical. It will, however, do for our
purposes.

The result may now be shown by motivating the sequence of equalities

maximize
u≥0

ϕ1(u) = maximize
u≥0

{
bTu+ minimize (c−ATu)Tx

subject to C̄x ≥ d̄

}

= maximize
u≥0

{
bTu+ maximize d̄Tū

subject to C̄Tū = c−ATu, ū ≥ 0,

}
= maximize bTu+ d̄Tū

subject to ATu+ C̄Tū = c, u ≥ 0, ū ≥ 0,

= minimize cTx

subject to Ax ≥ b,
C̄x ≥ d̄.

If these equalities are used, each step must be motivated.

(b) An alternative to forming Lagrangian duals (D1) or (D2) would be to use so-
called variable splitting or Lagrangian decomposition and rewrite (IP ) as the
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equivalent problem

(IP ′)

minimize cTx

subject to Ax ≥ b,
Cy ≥ d,
x = y,
x ≥ 0, x integer,
y ≥ 0, y integer,

where additional variables y have been introduced. We may now do Lagrangian
relaxation of the constraint x−y = 0 in (IP ′), which gives the Lagrangian dual
problem

(D3) maximize
w

ϕ3(w)

where

ϕ3(w) = minimize cTx− wT(x− y)

subject to Ax ≥ b,
Cy ≥ d,
x ≥ 0, x integer,
y ≥ 0, y integer,

= minimize (c− w)Tx + minimize wTy

subject to Ax ≥ b, subject to Cy ≥ d,
x ≥ 0, x integer y ≥ 0, y integer.

Show that

optval(D3) = minimize cTx

subject to x ∈ conv{x : Ax ≥ b, x ≥ 0, x integer},
x ∈ conv{x : Cx ≥ d, x ≥ 0, x integer}.

In addition, motivate optval(D3) ≥ optval(D1) and optval(D3) ≥ optval(D2).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Hint: You may use technique analogous to what was suggested for Question 5a.

Comment 1: The implication is that (D3) always gives at least as tight lower bound
on the optimal value of (IP ) as the best of (D1) and (D2). This may appear strange
at first sight, but note that evaluation of the objective function in (D3) means solving
both a problem in x analogous to evaluation of the objective function in (D2), and
a problem in y analogous to evaluation of the objective function in (D1).

Comment 2: Note that (IP ) may be written as

(IP )
minimize cTx

subject to x ∈ conv{x : Ax ≥ b, Cx ≥ d, x ≥ 0, x integer}.

Good luck!


