
Lecture 2 (adapted from K. Jöns, Optical and Quantum Optical Properties of Site-controlled 

and Strain-tuned Quantum Dots. Verlag Dr. Hut; 2013) 

Photon Statistics 

Introduction 

This lecture discusses what is light and how can we can categorize different light sources. 
Interestingly, when Maxwell published his famous four equations in the years 1861 and 1862, 
it seemed that light was finally fully understood. However, the wave-particle duality of light, 
already discussed in the 17th century by Huygens and Newton, was still unsolved. Planck’s 
formula for black-body radiation in 1901 [Planck1900, Planck1901] and Einstein’s 
interpretation of it as a quantized electromagnetic radiation [Einstein1905] made a new 
quantum mechanical description of light necessary. Dirac gave the first quantum mechanical 
solution for the interaction between atoms and the light field [Dirac1927] and shortly after, 
Fermi [Fermi1932] gave a complete review of quantum electrodynamics. In quantum 
electrodynamics the electromagnetic field is quantized and the photon is the smallest 
quantum of light. A complete derivation of the quantization of the light field can be found in 
several textbooks [Loudon1983, Fox2006]. In this lecture, the focus lies on photon statistics 
where the quantum description of light is required to fully classify different states of light. 
Therefore, we give a brief introduction to the quantization of the electromagnetic field. In 
simplified terms we can replace the field amplitudes in the classical electrodynamics 
description with bosonic creation â† and annihilation operators â. These operators follow the 
bosonic commutator relation. Each mode of the light field (k, λ) can be independently 
described by a harmonic oscillator. The consecutive operation of first the annihilation and 
then the creation operator is equal to an operation of a new quantum mechanical operator 𝑛̂, 
the so-called photon number operator which gives the number of photons in one mode:  𝑛̂ = 
â†â. The quantum mechanical approach allows to sum up all modes as independent quantum 
mechanical harmonic oscillators. The Hamiltonian of the electromagnetic field Ĥem for an 
arbitrary number of field modes is given by:  

 

If we consider only the fundamental mode, we can rewrite the Hamiltonian with the help of 
the photon number operator:  

 

Similar to the quantum mechanical harmonic oscillator, there is a ground state with finite 
energy, called vacuum state. The photon number operator 𝑛̂ states how many photons with 
an energy ħω are in the fundamental mode. The mean photon number of a mode <n> is an 
important figure of merit for the characterization of the light states. Together with the photon 
number variance (Δn)2, we will later identify different light states and use it to categorize light 
sources. 
 

 



Number of Photons in a given Volume 

To give an intuitive introduction to the topic of photon statistics we will take a look at a simple 
experiment adapted from Ref. [Fox2006]. A light source emits photons which are detected on 
an ideal click detector. Such a detector is sensitive down to the single photon level and 
produces a short electrical pulse in response to a single photon absorbed on the detector. The 
counting electronics registers the number of electrical pulses within a defined time interval T. 
The detection scheme is similar to the principles of a Geiger counter.  

 

For the example we start with a perfectly monochromatic beam of angular frequency ω and 

constant intensity I and calculate the mean number of photons <n(T)> passing through a cross 

section A of the beam in a given time interval T, set by the counting electronics.  
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where P is the power of the light beam. Remember that this equation represents the average 

properties of the beam and any given light source will have fluctuations at short time scales. 

These fluctuations or differences in statistics of the photon numbers are used to characterize 

different light sources. Coming back to our example we can now calculate the constant photon 

flux Φ, i.e. the mean number of photons in a given cross-section of a beam of light of photon 

energy 1.0eV with an average power of 1nW:  
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Now consider that light travels with approximately 3 × 108 𝑚/𝑠 you will realize that the 

photons are quite spread in space during this one second. (A beam segment with a length of 

3 × 108 𝑚 contains 6.2 ×  109 photons). If we now reduce the volume we are interested, let 

us say down to one meter instead of 3 × 108 𝑚 we have on average 20.67 photons in volume. 

Since photons are the smallest quantum of light and are discrete 20.67 mean photons does 

not make sense physically. Instead there will be fluctuations in the number of photons and 

these fluctuations in mean photon numbers will increase the smaller we make the volume we 

are looking at. Similarly speaking one can also look at shorter and shorter time windows. Let 

us look at a segment of 1.5m which on average contains 31 photons. We will divide the 1.5m 

in 31 sub-segments. There are different options how the photons will be distributed within 

these sub-segments: 

 



0 0 2 1 0 4 0 3 1 0 1 0 2 0 2 0 1 0 0 2 1 0 3 0 0 5 0 1 1 0 1 

0 1 0 0 2 1 0 2 1 4 0 2 1 0 1 0 0 1 1 0 1 2 1 1 0 2 1 3 0 2 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Even though in all 3 cases the mean photon number <n> for each sub-segment is 1, the 

distribution function for each case is fundamentally different. In the first row it is super-

Poissonian, second row Poissonian, and in the third row sub-Poissonian. We will now define 

these distributions. 

 

Different light states 

Glauber state 

The Glauber state, or coherent state |𝛼̂𝑖⟩, describes the electromagnetic wave of a laser mode 

i. In 1963, Glauber provided a complete quantum mechanical description of these light states 

[180]. The Glauber state is an eigenstate of the annihilation operator â: 

 

Being an eigenstate of â, a coherent state remains unchanged by the annihilation of a photon. 
Additionally, since the vacuum state can be written as an eigenstate of the annihilation 
operator with α = 0, all coherent states have the same minimal uncertainty as the vacuum 
state. Linear superposition of these states allows for an expression of the Glauber state in the 
basis of the photon number operator 𝑛̂ [Loudon1983]: 

 

We can now calculate the probability distribution P for n photons in a given mode i. 

 

This is the characteristic Poisson statistics used to describe coherent light states. The expected 

value of the photon number in one mode of a coherent state is therefore: 

 

The variance of a Glauber (coherent) state is given as: 

 



For the coherent state the maximum probability to find n photons in a mode is at the expected 

value 〈𝑛〉. The probability distribution of the photon number obeys a Poisson distribution. Any 

light state with larger (smaller) variance is called super (sub)- Poissonian light. The photon 

number distribution for a Glauber state is plotted below for 2 different mean photon numbers. 

 

 

Fock state 

The Fock or photon number state |𝑛̂𝑖⟩ results directly from the quantization of the 

electromagnetic field, since the Fock state is the eigenstate of the photon number operator 

𝑛̂𝑖: 

 
The eigenvalue ni of the photon number operator describes the number of photons in a 

specific mode i. The probability PFock(n) to find ni photons in one mode is either 1 for n = ni or 

0 for n ≠ ni. This is a special characteristic of the Fock state: The photon number is fully 

determined. Thus. the probability distribution of the photon number follows a δ-distribution. 

The expected value of the photon number in a Fock state is equal to the number of photons 

in the state: 

 
For the Fock state the variance is therefore: 

 

The Fock state fulfills the inequality ∆𝑛 <  √𝑛, showing a variance smaller than the Glauber 

state. Such sub-Poisson statistics cannot be described by classical electromagnetic theory; 

thus such light is classified as non-classical light. The figure below shows the photon number 

distribution for two Fock states. Light emitters with a Fock state n = 1 are called single photon 

sources, since they can only emit one single photon at a time. 



 
 

Thermal state 

The thermal state which is well described by the black-body radiation 

[Planck1900,Planck1901], is an incoherent mixture of different photon number states |𝑛̂𝑖⟩. A 

quantum mechanical description of the thermal state takes advantage of the density matrix 

notation. The thermal state, being a quantum mechanical mixed state, can be written as the 

sum over all possible photon number states |𝑛̂𝑖⟩ weighted with their occurrence probability: 

 
where 𝜌̂ is the density matrix operator and P(n) gives the probability of finding n photons in a 

certain mode i of the thermal state. This is identical to the probability of having a certain 

photon number state occupied. P(n) can be expressed as a function of n and 〈𝑛〉 for a single 

mode: 

 
P(n, 〈𝑛〉) has the form of a Bose-Einstein distribution; the state with the maximum probability 

is always the vacuum state with n = 0. The variance for a thermal state is given by: 

 
It follows that the fluctuation in the photon number is typically larger than the mean photon 

number. Therefore, thermal light states are also called chaotic light. Since ∆𝑛 >  √𝑛 one often 

describes thermal state statistics as super-Poissonian statistics. The thermal state distribution 

for 2 different mean photon numbers is plotted below. Finding zero photons in the mode 

always has the highest probability. 



 
 

References 

[Planck1900] M. Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum, 

Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237 (1900) 

[Planck1901] M. Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum, Annalen 

der Physik 309, 553 (1901) 

[Einstein1905] A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes 

betreffenden heuristischen Gesichtspunkt, Annalen der Physik 322, 132 (1905)  

[Dirac1927] P. A. M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation, 

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical 

and Physical Character 114, 243 (1927) 

[Fermi1932] E. Fermi, Quantum theory of radiation, Rev. Mod. Phys. 4, 87 (1932) 

[Loudon1983] R. Loudon, The quantum theory of light, Oxford University Press (1983) 

[Fox2006] M. Fox, Quantum Optics: An Introduction, Oxford University Press (2006) 


