SF2812 Applied linear optimization, final exam
 Monday March 172014 8.00-13.00
 Brief solutions

1. The basis corresponding to \widetilde{y} and \widetilde{s} is $\mathcal{B}=\{2,3\}$. If b_{1} is changed, the basis remains dual feasible. Hence, it is suitable to use the dual simplex method starting with this dual basic feasible solution. Let $y=\widetilde{y}$ and $s=\widetilde{s}$.
The basic variables are given by

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\binom{x_{2}}{x_{3}}=\binom{1}{1}
$$

which gives $x_{2}=-1, x_{3}=1$. As $x_{2}<0$, the dual solution is not optimal. Consequently, since $x_{2}<0, x_{2}$ becomes nonbasic, and as x_{2} is the first basic variable, the step in the y-direction is given by

$$
\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\binom{q_{1}}{q_{2}}=\binom{-1}{0}
$$

which gives $q_{1}=-1, q_{2}=2$. With $y \leftarrow y+\alpha q$, dual feasibility requires $s \leftarrow s+\alpha \eta$, with $A^{T} q+\eta=0$ and $s+\alpha \eta \geq 0$. Consequently, the nonnegativity of s requires $s-\alpha A^{T} q \geq 0$, i.e.,

$$
\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+\alpha\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The maximum value of α is given by $\alpha_{\max }=3$ making component 1 of $s-\alpha A^{T} q$ zero, so that the new basis becomes $\mathcal{B}=\{1,3\}$. The basic variables are given by

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{3}}=\binom{1}{1}
$$

which gives $x_{1}=1, x_{3}=0$. As $x \geq 0$, an optimal solution has been obtained. Together with $y+\alpha_{\max } q$ and $s-\alpha_{\max } A^{T} q$ the primal and dual optimal solutions are given by

$$
x=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad y=\binom{-1}{5} \quad \text { and } \quad s=\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right)
$$

2. (See the course material.)
3. (a) The suggested initial extreme points $v_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$ give the initial basis matrix

$$
B=\left(\begin{array}{cc}
A v_{1} & A v_{2} \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right)
$$

The right-hand side in the master problem is $b=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$. Hence, the basic variables are given by

$$
\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{2}{1}, \quad \text { which gives } \quad\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{1}{2}}{\frac{1}{2}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=(-11)$. Consequently, the simplex multipliers are given by

$$
\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{-1}{1}, \quad \text { which gives } \quad\binom{y_{1}}{y_{2}}=\binom{1}{-2} .
$$

By forming $c^{T}-y_{1} A=\left(\begin{array}{ll}-2 & -1\end{array}\right)$ we obtain the subproblem

$$
\begin{array}{rll}
2+ & \text { minimize } & -2 x_{1}-x_{2}-2 x_{3} \\
& \text { subject to } & x \in S
\end{array}
$$

Both v_{1} and v_{2} are optimal extreme points to the subproblem, so that an optimal solution to the master problem has been found. The solution to the original problem is given by

$$
v_{1} \alpha_{1}+v_{2} \alpha_{2}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \frac{1}{2}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \frac{1}{2}=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right) .
$$

The optimal value is 0 .
(b) Given c_{2}, the subproblem is given by

$$
\begin{array}{rll}
2+ & \text { minimize } & -2 x_{1}+\left(c_{2}-2\right) x_{2}-2 x_{3} \\
& \text { subject to } & x \in S
\end{array}
$$

Hence, the subproblem has been solved as long as $c_{2}-2 \geq-2$, i.e., as long as $c_{2} \geq 0$. For $c_{2}<0$, a new extreme point would enter the basis, $v_{3}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$.
4. (a) We have

$$
\begin{array}{rll}
\varphi(u)=u- & \text { maximize } & (2+u) x_{1}+(3+u) x_{2}+(3+u) x_{3} \\
& \text { subject to } & x_{1}+2 x_{2}+3 x_{3} \leq 2, \\
& x_{j} \geq 0, x_{j} \text { integer, } \quad j=1, \ldots, 3 .
\end{array}
$$

For this small problem, we may enumerate the feasible solutions. They are (0 $\left.\begin{array}{c}0\end{array}\right)^{T},\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T},\left(\begin{array}{lll}2 & 0 & 0\end{array}\right)^{T}$, and $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$. Hence,
Consequently, $\varphi(u)=u$ for $u \leq-3, \varphi(u)=-3$ for $-3 \leq u \leq-1$ and $\varphi(u)=$ $-4-u$ for $u \geq-1$. The corresponding optimal solutions to the problem that defines $\varphi(u)$ are $x(u)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T}$ for $u \leq-3, x(u)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$ for $-3 \leq u \leq-1$ and $x(u)=\left(\begin{array}{lll}2 & 0 & 0\end{array}\right)^{T}$ for $u \geq-1$. (The optimal solution is nonunique for $u=-3$ and $u=-1$.)
(b) The dual problem is defined as

$$
\begin{array}{ll}
\underset{u \in \mathbb{R}}{\operatorname{maximize}} & \varphi(u) \tag{D}\\
\text { subject to } & u \geq 0
\end{array}
$$

Consequently, it is only $u \geq 0$ that is considered, and for these values of u, we have a relaxation. We do not consider $u<0$.
(c) Since $\varphi(u)=-4-u$ for $u \geq-1$, the dual problem takes the form

$$
\begin{array}{ll}
\underset{u \in \mathbb{R}}{\operatorname{maximize}} & -4-u \tag{D}\\
\text { subject to } & u \geq 0 .
\end{array}
$$

The optimal solution is given by $u^{*}=0$ with $\varphi\left(u^{*}\right)=-4$. By inspection, it has been found that $x=(200)^{T}$ is optimal to $(I P)$ so that optval $(I P)=-4$. Hence, the duality gap is zero.
5. (a) Insertion of numerical values shows that the given x, y and s satisfy $A x=b$, $x \geq 0, A^{T} y+s=c, s \geq 0$, and $x_{j} s_{j}=0, j=1,2,3$. Hence, the optimality conditions are satisfied so x is optimal to $(P L P)$ and (y, s) are optimal to ($D L P$).
(b) In order to identify an optimal extreme point, we may find a feasible variation around the current point, keeping the same constraints active. This means finding a direction p such that

$$
\left(\begin{array}{rrrr}
2 & 2 & -1 & 0 \\
1 & -1 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Such a p is uniquely defined up to a scalar from the vector given in the hint, so we may let $p=\left(\begin{array}{lll}1 & 1 & 4\end{array}\right)^{T}$. Since x is optimal and p is a feasible direction from x, it holds that $c^{T} p=0$. We may now identify optimal points with additional constraints active by considering $x+\alpha p$ for α positive and negative, i.e.,

$$
\left(\begin{array}{l}
2 \\
2 \\
4 \\
0
\end{array}\right)+\alpha\left(\begin{array}{l}
1 \\
1 \\
4 \\
0
\end{array}\right) .
$$

The most limiting negative value of α is $\alpha=-1$, for which we get the point $\bar{x}=$ (1100) This point is an extreme point, since $\left(A_{1} A_{2}\right)$ has full column rank. However, since $p \geq 0$, there is no limit on α for $\alpha \geq 0$. In addition, starting from \bar{x}, the only constraint that may be deleted from the active constraints while maintaining optimality is $x_{3}=0$. Therefore, there is only one optimal extreme point, namely \bar{x}.
(c) By letting $\bar{\alpha}=\alpha-1$ in the previous analysis, it follows that any optimal solution to ($P L P$) takes the form $\bar{x}+\bar{\alpha} p$ for $\bar{\alpha} \geq 0$. Optimality follows since $(\bar{x}+\bar{\alpha} p)=c^{T} \bar{x}$ independently of $\bar{\alpha}$.
Now consider a perturbed problem, where c_{j} is replaced by $c_{j}+\epsilon_{j}$, where ϵ_{j} is a "small positive number". The point is that since $c^{T} p=0$ and $0 \neq p \geq 0$, it follows that p becomes an ascent direction for this perturbed problem, i.e., $\sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right) p_{j}=\sum_{j=1}^{4} \epsilon_{j} p_{j}>0$, so that it is now optimal to let $\bar{\alpha}=0$, making \bar{x} the unique optimal solution. The technical details follow below, but these details are not expected from a student in the course.

The objective function value at $\bar{x}+\bar{\alpha} p$ for this perturbed problem is given by

$$
\sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right)\left(\bar{x}_{j}+\bar{\alpha} p_{j}\right)=\sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right) \bar{x}_{j}+\bar{\alpha} \sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right) p_{j}
$$

Taking into account $0=c^{T} p=\sum_{j=1}^{4} c_{j} p_{j}$, it follows that

$$
\sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right)\left(\bar{x}_{j}+\bar{\alpha} p_{j}\right)=\sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right) \bar{x}_{j}+\bar{\alpha} \sum_{j=1}^{4} \epsilon_{j} p_{j}
$$

But $\epsilon_{j}>0, j=1,2,3,4$ and $0 \neq p \geq 0$ implies $\sum_{j=1}^{4} \epsilon_{j} p_{j}>0$, so that

$$
\sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right)\left(\bar{x}_{j}+\bar{\alpha} p_{j}\right)>\sum_{j=1}^{4}\left(c_{j}+\epsilon_{j}\right) \bar{x}_{j}
$$

for $\bar{\alpha}>0$. Therefore, deleting constraint $x_{3}=0$ at \bar{x} results in a strict increase of objective function value for the perturbed problem. Hence, \bar{x} is the unique optimal solution. The perturbation has to be sufficiently small so that s_{4} remains positive for the perturbed problem.

