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Brief solutions

1. The basis corresponding to ỹ and s̃ is B = {2, 3}. If b1 is changed, the basis remains
dual feasible. Hence, it is suitable to use the dual simplex method starting with this
dual basic feasible solution. Let y = ỹ and s = s̃.

The basic variables are given by(
1 2

0 1

)(
x2

x3

)
=

(
1

1

)
,

which gives x2 = −1, x3 = 1. As x2 < 0, the dual solution is not optimal. Conse-
quently, since x2 < 0, x2 becomes nonbasic, and as x2 is the first basic variable, the
step in the y-direction is given by(

1 0

2 1

)(
q1

q2

)
=

(
−1

0

)
,

which gives q1 = −1, q2 = 2. With y ← y+ αq, dual feasibility requires s← s+ αη,
with ATq + η = 0 and s + αη ≥ 0. Consequently, the nonnegativity of s requires
s− αATq ≥ 0, i.e.,

3

0

0

+ α


−1

1

0

 ≥


0

0

0

 .
The maximum value of α is given by αmax = 3 making component 1 of s − αATq
zero, so that the new basis becomes B = {1, 3}. The basic variables are given by(

1 2

1 1

)(
x1

x3

)
=

(
1

1

)
,

which gives x1 = 1, x3 = 0. As x ≥ 0, an optimal solution has been obtained.
Together with y+αmaxq and s−αmaxA

Tq the primal and dual optimal solutions are
given by

x =


1

0

0

 , y =

(
−1

5

)
and s =


0

3

0

 .

2. (See the course material.)

3. (a) The suggested initial extreme points v1 = (1 0 0)T and v2 = (0 0 1)T give
the initial basis matrix

B =

(
Av1 Av2

1 1

)
=

(
1 3

1 1

)
.

1
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The right-hand side in the master problem is b = (2 1)T . Hence, the basic
variables are given by(

1 3

1 1

)(
α1

α2

)
=

(
2

1

)
, which gives

(
α1

α2

)
=

(
1
2
1
2

)
.

The cost of the basic variables are given by (cTv1 c
Tv2) = (−1 1). Consequently,

the simplex multipliers are given by(
1 1

3 1

)(
y1

y2

)
=

(
−1

1

)
, which gives

(
y1

y2

)
=

(
1

−2

)
.

By forming cT − y1A = (–2 –1 –2) we obtain the subproblem

2+ minimize −2x1 − x2 − 2x3

subject to x ∈ S.

Both v1 and v2 are optimal extreme points to the subproblem, so that an
optimal solution to the master problem has been found. The solution to the
original problem is given by

v1α1 + v2α2 =


1

0

0

 1

2
+


0

0

1

 1

2
=


1
2

0
1
2

 .
The optimal value is 0.

(b) Given c2, the subproblem is given by

2+ minimize −2x1 + (c2 − 2)x2 − 2x3

subject to x ∈ S.

Hence, the subproblem has been solved as long as c2 − 2 ≥ −2, i.e., as long as
c2 ≥ 0. For c2 < 0, a new extreme point would enter the basis, v3 = (0 1 0)T .

4. (a) We have

ϕ(u) = u− maximize (2 + u)x1 + (3 + u)x2 + (3 + u)x3

subject to x1 + 2x2 + 3x3 ≤ 2,
xj ≥ 0, xj integer, j = 1, . . . , 3.

For this small problem, we may enumerate the feasible solutions. They are (0
0 0)T , (1 0 0)T , (2 0 0)T , and (0 1 0)T . Hence,

ϕ(u) = u−max{0, 2 + u, 4 + 2u, 3 + u}.

Consequently, ϕ(u) = u for u ≤ −3, ϕ(u) = −3 for −3 ≤ u ≤ −1 and ϕ(u) =
−4 − u for u ≥ −1. The corresponding optimal solutions to the problem that
defines ϕ(u) are x(u) = (0 0 0)T for u ≤ −3, x(u) = (0 1 0)T for −3 ≤ u ≤ −1
and x(u) = (2 0 0)T for u ≥ −1. (The optimal solution is nonunique for u = −3
and u = −1.)

(b) The dual problem is defined as

(D)
maximize

u∈IR
ϕ(u)

subject to u ≥ 0.
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Consequently, it is only u ≥ 0 that is considered, and for these values of u, we
have a relaxation. We do not consider u < 0.

(c) Since ϕ(u) = −4− u for u ≥ −1, the dual problem takes the form

(D)
maximize

u∈IR
−4− u

subject to u ≥ 0.

The optimal solution is given by u∗ = 0 with ϕ(u∗) = −4. By inspection, it
has been found that x = (2 0 0)T is optimal to (IP ) so that optval(IP ) = −4.
Hence, the duality gap is zero.

5. (a) Insertion of numerical values shows that the given x, y and s satisfy Ax = b,
x ≥ 0, ATy + s = c, s ≥ 0, and xjsj = 0, j = 1, 2, 3. Hence, the optimality
conditions are satisfied so x is optimal to (PLP ) and (y, s) are optimal to
(DLP ).

(b) In order to identify an optimal extreme point, we may find a feasible variation
around the current point, keeping the same constraints active. This means
finding a direction p such that


2 2 −1 0

1 −1 0 −1

0 0 0 1



p1

p2

p3

p4

 =


0

0

0

 .

Such a p is uniquely defined up to a scalar from the vector given in the hint, so
we may let p = (1 1 4 0)T . Since x is optimal and p is a feasible direction from
x, it holds that cTp = 0. We may now identify optimal points with additional
constraints active by considering x+ αp for α positive and negative, i.e.,

2

2

4

0

+ α


1

1

4

0

 .
The most limiting negative value of α is α = −1, for which we get the point x̄ =
(1 1 0 0)T . This point is an extreme point, since (A1 A2) has full column rank.
However, since p ≥ 0, there is no limit on α for α ≥ 0. In addition, starting
from x̄, the only constraint that may be deleted from the active constraints
while maintaining optimality is x3 = 0. Therefore, there is only one optimal
extreme point, namely x̄.

(c) By letting ᾱ = α − 1 in the previous analysis, it follows that any optimal
solution to (PLP ) takes the form x̄ + ᾱp for ᾱ ≥ 0. Optimality follows since
(x̄+ ᾱp) = cTx̄ independently of ᾱ.

Now consider a perturbed problem, where cj is replaced by cj + εj , where εj
is a “small positive number”. The point is that since cTp = 0 and 0 6= p ≥ 0,
it follows that p becomes an ascent direction for this perturbed problem, i.e.,∑4

j=1(cj +εj)pj =
∑4

j=1 εjpj > 0, so that it is now optimal to let ᾱ = 0, making
x̄ the unique optimal solution. The technical details follow below, but these
details are not expected from a student in the course.
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The objective function value at x̄+ ᾱp for this perturbed problem is given by

4∑
j=1

(cj + εj)(x̄j + ᾱpj) =
4∑

j=1

(cj + εj)x̄j + ᾱ
4∑

j=1

(cj + εj)pj .

Taking into account 0 = cTp =
∑4

j=1 cjpj , it follows that

4∑
j=1

(cj + εj)(x̄j + ᾱpj) =
4∑

j=1

(cj + εj)x̄j + ᾱ
4∑

j=1

εjpj .

But εj > 0, j = 1, 2, 3, 4 and 0 6= p ≥ 0 implies
∑4

j=1 εjpj > 0, so that

4∑
j=1

(cj + εj)(x̄j + ᾱpj) >
4∑

j=1

(cj + εj)x̄j ,

for ᾱ > 0. Therefore, deleting constraint x3 = 0 at x̄ results in a strict in-
crease of objective function value for the perturbed problem. Hence, x̄ is the
unique optimal solution. The perturbation has to be sufficiently small so that
s4 remains positive for the perturbed problem.


