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Brief solutions

1. (a) Both constraints are active at x∗. The first-order necessary optimality condi-
tions then require the existence of nonnegative λ∗1 and λ∗2 such that

1

−2

0

 =


1

0

0

λ∗1 +


−1

−1

0

λ∗2.
There is a unique solution with λ∗1 = 3 and λ∗2 = 2, so that x∗ satisfies the
first-order necessary optimality conditions together with λ∗.

(b) Both Lagrange multipliers are strictly positive, so that strict complementarity
holds. A matrix Z+(x∗) whose columns form a basis for the nullspace of the
matrix formed of the constraint gradients of the constraints with positive La-
grange multipliers, evaluated at x∗, is given by Z+(x∗) = (0 0 1)T . In addition
to the first-order necessary optimality conditions, the second-order sufficient
optimality conditions require

Z+(x∗)T
(
∇2f(x∗)− λ∗2∇2g2(x

∗)
)
Z+(x∗) � 0,

which gives

−1− 2∇2g2(x
∗)33 > 0.

Hence, x∗ is a local minimizer if ∇2g2(x
∗)33 < −1/2.

(c) Since conditions on f are only known at x∗, it is not sufficient to put any
conditions on ∇2g2(x) to ensure global minimality.

2. (See the course material.)

3. (a) The iterates are illustrated in the figure below:
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At the first iteration constraint 3 is in the working set. The direction points
at (5 3)T , which is infeasible. The maximum step gives the new point (5 5

2)T .
Constraint 4 is added, which gives a vertex and hence a zero step. Constraint
3 has a negative multiplier, –4, and it is hence deleted. The direction points at
(277

43
14)T , which is feasible. Constraint 5 has a negative multiplier, − 9

28 , and it
is hence deleted. The direction points at (3 2) which is feasible. No constraints
are active, and we have found the optimal solution.

(b) The iterates are illustrated in the figure below:

At the first iteration constraint 2 is in the working set. The direction points at
(2 0)T , which is feasible. Constraint 2 has a negative multiplier, –3, and it is
hence deleted. The direction points at (3 2) which is feasible. No constraints
are active, and we have found the optimal solution.

4. The QP subproblem becomes

minimize 1
2p

T∇2
xxL(x(0), λ(0))p+∇f(x(0))Tp

subject to ∇gi(x(0))Tp ≥ −gi(x(0)), i = 1, 2, 3.

Insertion of numerical values gives

min p21 + p22
subject to p1 + p2 ≥ −2,

p1 ≥ 1,
p2 ≥ 1.

If we let p(0) denote the optimal solution of the QP subproblem, we obtain x(1) =
x(0) + p(0). We obtain λ(1) as the Lagrange multipliers of the QP subproblem.

The quadratic program is convex, and the optimal solution is given by p(0) = (1 1)T ,
so that x(2) = x(0)+p(0) = (1 1)T . The Lagrange multiplier of the quadratic program
is given byλ(1) = (0 2 2)T .
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5. (a) The function f(y) = y2+ has derivative f ′(y) = 0 for y < 0 and f ′(y) = 2y for
y > 0. Hence, f ′(y) is continuous with f ′(0) = 0. The second derivative is given
by f ′′(y) = 0 for y < 0 and f ′′(y) = 1 for y > 0. Hence, f ′′ is discontinuous at
y = 0. As a consequence, the objective function has discontinuous Hessian at
points where pTi x = ui for some i.

(b) Consider a fixed x and minimize over y in (QP ). We want to show that yi =
(pTi x− ui)+, i = 1, . . . ,m. Assume that pTi x− ui < 0 for some i. Then, yi = 0,
since yi = 0 is the unconstrained minimizer of y2i . Similarly, if pTi x − ui ≥ 0,
the optimal choice of yi is yi = pTi x− ui, as y2i is a strictly increasing function
for yi > 0. Hence, yi = (pTi x− ui)+, i = 1, . . . ,m, as required.

(c) We may write the Lagrangian function as

l(x, y, λ, η) = 1
2

m∑
i=1

y2i −
m∑
i=1

λi(yi − pTi x+ ui)− ηTx,

for Lagrange multiplier vectors λ ≥ 0 and η ≥ 0. Let P be the matrix whose
rows comprise pTi , i = 1, . . . ,m. Also, let Λ = diag(λ), X = diag(x) and
N = diag(η). Finally, let e denote the vector of ones. For a positive barrier
parameter µ, the perturbed first-order optimality conditions may be written

P Tλ− η = 0,

y − λ = 0,

Λ(y − Px+ u) = µe,

Nx = µe.


