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Brief solutions

1. (a) The first-order necessary optimality conditions for (EQP ) are given by Hx+c =
0. As H is nonsingular, there is a unique solution given by x1 = (1 1 1)T .

The matrix H is not positive semidefinite, since the leading two-by-two prin-
cipal submatrix is indefinite. With d = (1 − 1 0)T , we obtain dTHd = −2.
Consequently, x1 does not satisfy the second-order necessary optimality condi-
tions to (EQP ).

Consequently, there is no point that satisfies the second-order necessary opti-
mality conditions for (EQP ).

(b) The first-order necessary optimality conditions for (EQP ) are given by(
H AT

A 0

)(
x

−λ

)
=

(
−c
b

)

which has unique solution x2 = (0 3 1)T , λ2 = 3. We may for example form a
matrix Z whose columns form a basis for null(A) as

Z =


0 0

1 0

0 1

 ,
for which ZTHZ = I. Hence, x2 satisfies the second-order necessary optimality
conditions.

(c) Since A has only one row, a local minimizer to (IQP ) has to be a local minimizer
to (QP ) or a local minimizer to (EQP ). Since x1 does not satisfy the second-
order necessary optimality conditions to (QP ), it is not a local mininimizer
to (QP ). Hence, it is not a local minimizer to (IQP ). Since x2 satisfies the
second-order sufficient optimality conditions to (EQP ), it is a local minimizer
to (EQP ). In addition, since λ2 > 0, it is also a local minimizer to (IQP ).

(d) Let q(x) = 1
2x

THx+cTx. With d given as in (1a), it follows that q(x1+αd) and
q(x1−αd) tend to minus infinity as α→∞. Since we have only one constraint,
at least one of x1 + αd and x1 − αd must remain feasible in (IQP ) as α→∞.
We conclude that no global minimizer can exist.

2. We have

f(x) =
1

2
(x1 + 1)2 +

1

2
(x2 + 2)2, g(x) = −3(x1 + x2 − 2)2 − (x1 − x2)2 + 6,

∇f(x) =

(
x1 + 1

x2 + 2

)
, ∇g(x) =

(
−8x1 − 4x2 + 12

−4x1 − 8x2 + 12

)
,

∇2f(x) =

(
1 0

0 1

)
, ∇2g(x) =

(
−8 −4

−4 −8

)
.

(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min 1
2p

2
1 + 1

2p
2
2 + p1 + 2p2

subject to 12p1 + 12p2 = 6.
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This is a convex QP-problem with a globally optimal solution given by

p1 − 12λ = −1,

p2 − 12λ = −2,

12p1 + 12p2 = 6.

The prinout from the SQP-solver suggests p1 = 3/4, p2 = −1/4 and λ = 7/48.
Insertion of these values show that they satisfy the optimality conditions.

(b) We can see that ∇2f(x) is positive definite and ∇2g(x) is negative definite,
independently of x. Moreover λ is nonnegative in all iterations. This implies
that the solution to each QP subproblem is locally optimal also for the case
when the equality constraint is changed to a greater than or equal constraint.
Hence, the iterates would not change at all if the constraint was changed as
suggested.

(c) The inequality-constrained problem is a convex problem, and in addition a
relaxation of the original problem. Hence we get convergence towards a global
minimizer of this problem, which is also a global minimizer of (NLP ).

3. (a) The problem (QP ) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Pµ) min 1
2x

2
1 + 1

2x
2
2 − µ ln(x1 + x2)

under the implicit condition that x1 + x2 > 0. The first-order optimality con-
ditions of (Pµ) gives

x1(µ)− µ

x1(µ) + x2(µ)
= 0,

x2(µ)− µ

x1(µ) + x2(µ)
= 0.

These equations are symmetric in x1(µ) and x2(µ). Hence, x1(µ) = x2(µ).
This mean that 2x1(µ)2 − µ = 0, from which it follows that x1(µ)2 = µ/2. If
one includes x1(µ) = x2(µ) in the implicit constraint, it follows that x1(µ) =
x2(µ) =

√
µ/2. Since (Pµ) is a convex problem, this is a global minimizer.

The dual part of the trajectory, i.e. λ(µ), is normally given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ√

µ
2 +

√
µ
2

=

√
µ

2
.

(b) As µ → 0 it follows that x(µ) → (0 0)T and λ(µ) → 0. Let x∗ = (0 0)T and
λ∗ = 0. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have ‖x(µ) − x∗‖2 =
√
µ. The square root comes from the fact that we

do not have strict complementarity at the solution, i.e., the constraint is active
with a zero multiplier.

If the constraint was given by x1 + x2 ≥ a, for a given a, we obtain

x1(µ) = x2(µ) =
a

4
+

√
a2

16
+
µ

2
.
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Hence, for a 6= 0, we obtain ‖x(µ)− x∗‖2 = O(µ). It is only for the degenerate
case, a = 0, we obtain ‖x(µ)− x∗‖2 = O(

√
µ).

4. (See the course material.)

5. (a) The relaxed problem is a non-convex quadratic programming problem. To ob-
tain a lower bound of the original problem we do need to calculate a global
minimizer of this non-convex relaxed problem, which in general is not compu-
tationally tractable.

(b) If we let (SDP ′) be the problem arising as the constraint Y = xxT is added to
(SDP ) we can replace Y with xxT , which by (i) gives

(SDP ′)

min cTx+ 1
2x

THx

subject to

(
xxT x

xT 1

)
�
(

0 0

0 0

)
,

x2j = xj , j = 1, . . . , n.

By hint (ii) we can see that the constraint(
xxT x

xT 1

)
�
(

0 0

0 0

)

is always fulfilled, hence (SDP ′) may be written as

(SDP ′)
min cTx+ 1

2x
THx

x2j = xj , j = 1, . . . , n.

But x2j = xj if and only if xj ∈ {0, 1}. Hence, (SDP ′) and (P ) are equivalent.


