Vad ar pseudokod?

En vigledning till hur man skriver pseudokod i méstarprovet

Emma Enstrom

26 september 2019

1 Att beskriva en algoritm

Saker som kan variera mellan olika beskrivningar av en algoritm &r detaljniva, avsett syfte,
malgrupp och vilka uttrycksmedel som star till férfogande. Syftet med beskrivningen kan variera,
och syftet kan ocksa paverka hur beskrivningen ser ut. Ar den t.ex. skriven for att pedagogiskt
forklara nagot, for att ge en snabb inblick i idén bakom en algoritm, eller som skiss for att senare
implementera algoritmen — kanske till och med i nagot sérskilt programsprak? Ar den avsedda
publiken matematiskt skolad, &r de programmerare, eller &r de skolbarn?

Man kan forstas beskriva algoritmer utan vare sig programsprak eller pseudokod. Det finns
fordelar och nackdelar med alla framstéllningsformer.

Ju fler detaljer man beskriver, desto langre blir texten och desto svarare blir det att 6verblicka
beskrivningen. A andra sidan, om det finns for fa detaljer kan det bade bli svart att forsta hur
algoritmen ska kunna 16sa sitt problem och svart att analysera den.

De uttrycksmedel som vi jamfor hér dr naturligt sprak, programsprak, matematisk notation
av idag och pseudokod.

1.1 Naturligt sprak

Varfor krangla till det med notation? Varfor inte bara berdtta pa ren svenska vad algoritmen
gbr? Vardagsspraket kan uppfattas som mindre krangligt &n mer tekniska notationssétt, men gar
budskapet fram? Det kan visa sig att manga begrepp och termer blir luddiga och det behdvs
valdigt manga ord. S& méanga, att det blir jobbigt att ldsa texten. Lésaren far da anstrénga sig
mycket for att skaffa sig en 6verblick 6ver algoritmen.

1.2 Ett Javaprogram

Hér finns det regler och inget annat &n regler! Kompilatorn har ingen som helst forméaga att
tolka oklara beskrivningar, och inget kan tas for givet. Datorn kan utfora instruktionerna - om
man kan programmera algoritmen kan man beskriva den for en dator. Den hér notationen blir
pladdrig pa ett annat sétt &n om man anvdnder naturligt sprak, och det gérs ingen som helst
skillnad pa viktiga, béarande principer och triviala pastaenden.

1.3 Modern matematisk notation

Kompakthet! Att inféra notationsséitt som har en mycket vildefinierad, begransad betydelse gor
att man slipper skriva s& mycket. Det &r dock ofta en lang vig att ga fran notationen till idén
bakom algoritmen, och &ven om texten tar liten plats gar den inte nédvéandigvis snabbt att lisa.

1.4 Pseudokod

For att kunna vilja vilka av ovanstaende for- och nackdelar man vill ha, kan man blanda in olika
mycket av ovanstaende notationsformer nédr man skriver pseudokod. Om algoritmen handlar om
matematik, kan matematisk notation anvindas for att beskriva vad man haller pa med, t.ex.
aktuellaNoder = {v € V : d(v) > 3} for "skapa en méngd av alla horn i grafen som har minst
tre grannar” Om det blir tydligare sa kan istéllet vanliga meningar anvéndas, som t.ex. "for varje
bok i biblioteket”.

Pseudokodens forsta kdnnetecken &r att den inte har en syntax. Vilken kodliknande sekvens
som helst som inte kompilerar ar inte anvidndbar som pseudokod. For att producera bra pseu-
dokod kan det till och med vara bra om du inte borjar med "vanlig” kod och forsoker ta bort
det som dr onddigt, utan istallet latsas att du ska halla en lektion om det du vill beskriva, hitta
vilka podnger du absolut vill fa fram, skriva ner dem och sedan komplettera med de detaljer som
behovs for att ndgon annan latt ska kunna implementera algoritmen utifran din beskrivning.

Vid labbredovisningar hiander det att assistenten vill kolla studentens uppfattning om sitt
program genom att fraga ”Sa vad gor det hér programmet?”. Den fragan brukar besvaras pa nagot
av foljande sdtt: "Det gar igenom en text och kontrollerar vilka ord som finns med mer &n en gang”,
respektive: "Forst ldser det in filen och sen skapar det en lista och sen sétter man i till 0 och sen...”.
Personen som svarar pa det senare sittet kan mycket vél forsta sitt program, men har en annan
uppfattning om vilket slags svar som var forvintat &n vad assistenten troligen hade. Det &r som
bekant en besvérlig uppgift att modellera verkligheten i matematik eller programkod, men det &r
en lika delikat uppgift att Gversdtta at andra hallet — att beskriva i vardagssprék vad ett program
gor, det vill séga vilket problem det 16ser och genom vilka principer. En 6vergripande beskrivning
kan ibland ga att ha med i sjdlva pseudokoden, men behéver ibland ingéd i en kompletterande
beskrivning i naturligt sprak.

Pseudokod ska typiskt sett innehéalla tillrackligt mycket information for att vara precis och
inte luddig i kanten, men inte s& mycket information att den blir svaréverblickbar och pladdrig.
Normalt dr det onddigt att ta med variabeldeklarationer, speciellt deklarationer av styrande
variabler i slingor. Indextrixande ska finnas med i den mén algoritmen bygger pa ett sérskilt sitt
att hantera index (i t.ex. arrayer), eller om det littaste sittet att forklara vad som gors ar att
numrera element. Har kan formuleringar liknande dem i satser och bevis i matematiken ibland
vara tydligare dn formuleringar hédmtade fran programsprak: jamfor "Fér varje bokstav b i ordet”
med “for ¢ < 1 to ordlangd(w) do b + w[i]”.

For att gora nagot bra, kan man ibland behova forsoka gora det daligt forst. Forsok att
beskriva en berdkning av summan av alla element som &r delbara med 3 som férekommer i
méngden X. ..

1. ...pladdrigt med vardagssprak,

2. ...korrekt i Java eller C++ pa ett sitt som inte &r gjort for att vara lattlast,

3. ...sa kompakt som mdjligt med hjalp av matematisk notation,

4. ...med pseudokod inspirerad av vardagssprak, ndstan utan programsprakskonstruktioner,
5. ...med pseudokod inspirerad dven av programsprak,

6. ...med pseudokod inspirerad dven av matematik.

Négot av ovanstaende var antagligen lattare att utfora, eller kiindes naturligare, fér dig. Nagon
av beskrivningarna kéndes svar att 6verhuvudtaget klaimma ur sig (speciellt som den inte var
bra till ndgot). Alla kommer inte att ha samma favoritbeskrivning.

2 Exempel: Euklides algoritm

Hér stéller vi ytterligheten naturligt sprak mot kompakt pseudokod dir matematisk notation
ingar.

2.1 Spraket i Euklides Elementa

Nar Euklides Elementa skrevs, fanns inte manga av de konventioner vi idag anvander tillgdngliga
for den som ville uttrycka sig om matematik. Nollan och positionssystemet var inte inférda
fullt ut, och det hade inte etablerats notationsstandarder for s& triviala saker som -+ och -.
Bevisen av satser och algoritmer i Euklides Elementa &r skrivna med naturligt sprak, men man
anvande “variabler” for att resonera om olika entiteter. For att titta ndrmare pa boken, se t.ex.
http://alephO.clarku.edu/~djoyce/java/elements/bookVII/propVII1.html.

2.2 Euklides algoritm, engelsk oversattning av Elementa

Proposition 1: Two unequal numbers (being) laid down, and the lesser being continually
subtracted, in turn, from the greater, if the remainder never measures the (number) preceding
it, until a unit remains, then the original numbers will be prime to one another.

Proposition 2: 7o find the greatest common measure of two given numbers not relatively prime
to one another.

Let AB and CD be two given numbers (which are) not prime to one another. So it is required
to find the greatest common measure of AB and CD.

In fact, if CD measures AB, CD is thus a common measure of CD and AB, (since CD) also
measures itself. And (it is) manifest that (it is) also the greatest (common measure). For nothing
greater than CD can measure CD.

But if CD does not measure AB then some number will remain from AB and CD, the
lesser being continually subtracted, in turn, from the greater, which will measure the (number)
preceding it. For a unit will not be left. But if not, aB and CD will be prime to one another
(Prop. 7.1). The very opposite thing was assumed. Thus, some number will remain which will
measure the (number) preceding it. And let CD measuring BE leave EA less than itself, and
let EA measuring DF leave FC less than itself, and let CF measure AE. Therefore, since CF
measures AE, and AE measures DF, CF will thus also measure DF. And it also measures itself.
Thus, it will also measure the whole of CD. And CD measures BE. Thus, CF also measures BE.
And it also measures EA. Thus, it will also measure the whole of BA. And it also measures CD.
Thus, CF measures (both) AB and CD. Thus CF is a common measure of AB and CD. So I say
that (it is) also the greatest (common measure). For if CF is not the greatest common measure of
AB and CD then some number which is greater than CF will measure the numbers AB and CD.
Let it (so) measure (AB and CD) and let it be G. And since G measures CD, and CD measures
BE, G thus also measures BE. And it also measures the whole of BA. Thus, it will also measure
the remainder AE. And AE measures DF. Thus, G will also measure DF. And it also measures
the whole of DC. Thus, it will also measure the remainder CF, the greater (measuring) the lesser.
The very thing is impossible. Thus, some number which is greater than CF cannot measure the
numbers AB and CD. [(Which is) the very thing it was required to show].

Detta ar fran bok 7 fran Euclid’s Elements, hdmtat fran en utgava redigerad/editerad av
Richard Fitzpatrick. (http://farside.ph.utexas.edu/euclid/elements.pdf)

Proposition 1 behandlar samma sak som proposition 2, men med tal som dr relativt prima.
”The unit”, 1, betraktades inte som ett tal och darfor behdvde situationerna med tal som &r

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII1.html
http://farside.ph.utexas.edu/euclid/elements.pdf

relativt prima och tal som inte ar det behandlas separat.

Podngen med texten ar att ldgga fram matematiska sanningar, darfér handlar den till storsta
delen om korrekthetsresonemanget, som hér &r helt integrerat i framstéllningen men ocksa har
en egen avdelning i slutet.

2.3

Euklides algoritm i pseudokod (utan korrekthetsresonemang)

Data: Two numbers a and b, a > b > 0
Result: The greatest number that divides both a and b
function gcd(a,b)

while b # 0 do

t:=b;

b :=a mod b;

a =t
return a

Algoritm 1: Euklides algoritm, iterativ version

Data: Two numbers @ and b, a > b > 0
Result: The greatest number that divides both a and b
function gcd(a,b)

if b =0 then
| return a
else
| return gcd(b, a mod b)

Algoritm 2: Euklides algoritm, rekursiv version

Det dr uppenbart att algoritmen &r ldttare att urskilja i pseudokodsversionen &n i original-
beskrivningen. Korrekthetsbeviset skulle likna Euklides text lite mer, men dven dér gar det idag
att anvianda notation som ger béttre 6verblick och kortare beskrivningar.

3 Riktlinjer for pseudokodsskrivande

Beskriv din algoritm bade med text och med pseudokod. Lat texten skota forklaringen pé
en overgripande niva och pseudokoden ha med tillrackligt med detaljer for att Gvertyga
ldsaren om att algoritmen gar att implementera. Om din pseudokod &r skriven efter att
du 16st problemet i nagot programsprak, tdnk en extra vinda pa vad det dr fér uppgifter
varje slinga eller sats har och fundera pa om dessa blir tydligare, kortare eller klarare med
matematisk notation eller med naturligt sprak istéallet!

Strava efter att ha lattldst, tillrickligt detaljerad och forhallandevis kort/kompakt pseu-
dokod. Undvik i regel att deklarera variabler och att anvinda konstruktioner fran ditt
favoritsprak som egentligen bara &r till for kompilatorn eller interpretatorn!

For att astadkomma kompakthet och inte inkrdkta péa ldsbarhet &r det ibland bra att
anvinda matematiska symboler som (), mod ,3,+, —, -, <, #, &,V, 00, U osv.

Man kan beskriva datat i termer av mingder &ven om implementationen kommer att an-
vinda t.ex. en matris, hashtabell, lankad lista eller ett bindrtrdd. Om du goér det bor du
ha i atanke att uppslagning i de olika datastrukturerna tar olika tid, och kommentera det i
texten och nér du gor komplexitetsanalysen. (Om uppgiften handlar om att vélja lampliga

datastrukturer dr det forstas nédviandigt att basera pseudokoden och analysen pa den valda
datastrukturen.)

e Vanliga verb, eller hela meningar, ger ibland béattre beskrivningar &n lanade uttryck fran
ett programsprak.

e Indentering ar lika anvandbart for att gora pseudokod lattlast som for att producera lattlast
programkod.

Konstruktioner som &r lampliga i pseudokod &r t.ex. if-then, do—while, while-do, for i +—x to y
do, for each, break, return, comment, function/procedure, input, output, invariant, assert.

Skriva algoritmer i BKTEX

Om du renskriver dina uppgifter i Latex, kan du faktiskt fa ytterligare végledning i vad som
brukar inga i pseudokod av de olika paket som finns for att typsétta algoritmer. Dér finns sada-
na kommandon som &r vanligt féorekommande i pseudokod definierade, och indenteringen skots
automatiskt. De kraver alla en viss anstrangning for att komma igang med, men de producerar
snygga resultat. En hel del av algoritmerna i det hér kompendiet ar typsatta med hjélp av pa-
ketet algorithm2e. De algoritmer som beskrivs i 6vningarna ar ofta typsatta med Viggos egna
kommandon. Andra paket som finns tillgdngliga ar algorithmic, algorithmicx, algpseudocode och
program. Paketen beskrivs bl. a. pa http://en.wikibooks.org/wiki/LaTeX/Algorithms|

4 Exempel fran ett mastarprov

Det hir ar forsta uppgiften pa ett méstarprov 1. Sist, i Algoritm [5] &r 16sningsférslaget som
Viggo skrev.

Kvadrattickning med dekomposition
Betygskriterium: utveckla algoritmer med datastrukturer for enkla problem givet en kon-
struktionsmetod.

Ett trevligt (?) tidsfordriv dr att forsoka ticka en given yta med méanga likadana bitar. I
denna uppgift ska du konstruera en algoritm som (néstan) ticker en kvadrat med sidan
2™ med bitar som ser ut som smé L. Varje L-bit har ytan 3 och kan vridas och laggas pa
4 sétt. Det gar inte att técka precis hela kvadraten, sa innan vi boérjar klipper vi bort en
1 x 1-ruta i 6vre hogra hornet pa kvadraten. I vanstra figuren nedan visas hur en téckning
av en 4 x 4-kvadrat med utklippt hérn kan goras.

Din algoritm ska ta n som indata och returnera en 2" x 2"-matris som beskriver hur
tédckningen kan goras. Ge varje L ett eget nummer och méirk dom tre platserna i matrisen
som den técker med detta nummer, se exemplet nedan till hoger.

Din algoritm ska anvénda dekomposition for att konstruera téackningen. Lagg forsta L-biten
precis mitt i kvadraten och dela sedan upp problemet i fyra delar.

Beskriv algoritmen med pseudokod. Analysera algoritmens tidskomplexitet (med enhets-
kostnad).

5 5 2 0
5 1 2 2
4 1 1 3
4 4 3 3

http://en.wikibooks.org/wiki/LaTeX/Algorithms

Nedan i Algoritm [3| f6ljer en kort och mdojligtvis pedagogiskt upplagd forklaring av samma
metod. Notera att den hér l6sningen har ett annat n dn den férra. Det finns flera saker som gor
denna framstéllning mindre ldmpad f6r en skriftlig inlamningsuppgift som ett méstarprov.

e Det som ska skrivas i matrisen, aktuellt Nr, ndmns bara nar det ska fyllas i. Ska samma
nummer alltid anvéindas? Hur vet vi att vi kan hélla reda pa vart nummer?

e "Fyll i basfall” ar inte en s bra instruktion, &ven om den text man skrivit tillsammans med
pseudokoden forklarar vad denna manéver gar ut pé.

e "Kolla vilken bit som redan ar téckt” och "Dela upp M i fyra delar” &r ocksa oklara instruk-
tioner — de kan dolja komplexitet och ger inte programmeraren nagon idé om hur uppgiften
ska utforas. De ar inte heller sarskilt lampliga for att 6vertyga en larare om att man har
tankt igenom hur algoritmen ska operera.

Det som beskrivningen i Algoritm [3] ddremot gor bra &r att svara, pa ett dvergripande plan,
pa assistentens fraga “Sa, hur fungerar din algoritm?”.

n < antal rader i utdatamatrisen
M <+ tom matris
M1, n] « tackt
if n < 4 then
| Fyll i basfall
else
| fyllIDel(M)
£y11IDel ()
Kolla vilken bit som &r tackt
Fyll mitten med aktuellt Nr

if M.rows == 4 then
| Fyll delmatrisen som basfall

else
Dela upp M i fyra delar

och anropa fyllIDel med dessa

Algoritm 3: Losning med pseudokod i naturligt sprak utan detaljer.

Pseudokoden i Algoritm [] nedan lyckas beskriva hur manga anrop som gors och i stort sett hur
matrisen delas upp for de olika anropen. Den har istdllet fastnat pa basfallen, som inte beskrivs
i pseudokod alls. Ett tecken pa att den som gjorde sa hér tyckte att “matematiseringen” av
basfallen &r knepig &r anvindandet av bokstaven L i olika orienteringar. Grafiska framstéllningar
kan fungera i pseudokod, men de kan ocksa missa malet. Det finns detaljer som i det hér fallet ar
onddiga att ha med, som initieringen av alla virden i matrisen till —1 och att ange returdatatyp
pa funktionerna. Algoritmen bortser dock helt ifran nigot véildigt viktigt i uppgiftslydelsen - att
beskriva vad som fylls i. Inget utdata finns heller beskrivet, sa det ar faktiskt oklart vad vi gor med
delarna. Sjélva dekompositionssteget beskrivs som sagt detaljerat — men blir det rétt hela vigen?
Kommer den hér algoritmen att fylla i matrisen pé ratt sitt, om vi antar att basfallsfunktionen
skrivL i varje anrop skriver nésta siffra pa de stéllen som svarar mot de beskrivna fallen?

Data: matris med sidan 2"
for i < 1 to 2" do
for j < 1 to 2" do
| matris[i,j] + —1
void rekursivSkrivL (sida, posX, posY, vinkel)
if vinkel = 0 then
| matris[posX|[posY] + L
else if vinkel =1 then
| matris[posX|[posY] + 1
else
| matris[posX|[posY] + —
if sida = 2 then
| skrivL(posX,posY, "Kvadrant 1/3”)
else if sida < 8 then
skrivL(posX, posY, "Kvadrant 1/3”) skrivL(posX,posY, "Kvadrant 1/3”)
skrivL (posX, posY, "Kvadrant 47)
skrivL (posX, posY, "Kvadrant 27)
Ise if sida > 8 then
rekursivSkrivL(sida/2, posX + sida/2,posY — sida/2,0) // Har gar vi
uppat till hoger.
rekursivSkrivL (sida/2,posX — sida/2,posY + sida/2,0) // Hir gir vi
uppat till vénster.
rekursivSkrivL (sida/2, posX — sida/2,posY — sida/2,0) // Hir gr vi
uppdt till vénster.
rekursivSkrivL(sida/2,posX + sida/2,posY + sida/2,0) // Har gar vi
neddt till hoger.

o

void skrivL(posX, posY, Matrissort)

/* Har lagger vi till en 4x4-matris utifr&n positionerna som
skickats med. Vi l&mnar 1 tom ruta i ett hérn. Parametern
Matrissort avgér vilket horn som ska lé&mnas tomt.

T.ex. &r matrisen med L i mitten en ’’Kvadrant 1/3’-matris och

den med T i mitten &r en ’’Kvadrant 2’’-matris. */
rekursivSkrivL(2", 2", 2°,0)

Algoritm 4: Losning som har mycket detaljer trots att det finns viktiga steg som utelamnats.

Algoritmen blir:
Q[1,2"] + 0; Cover(1,1,n,1,0); return Q
Daér den rekursiva funktionen definieras som:

Cover(z,y,n, quadrant, lastL) =
// L-técker en 2™ x 2™-kvadrat med 6vre vanstra hornet i (z,y),
// déar den urklippta biten finns i kvadrant quadrant (tal mellan 1 och 4)
// och dar senast utlagda L-biten har nummer lastL.
// Numret for den sista L-biten som anvéindes i tdckningen returneras.
lastL < lastL + 1
h + 2n—t
if quadrant # 1 then Q[z + h — 1,y + h] < lastL
if quadrant # 2 then Q[z +h — 1,y + h — 1] + lastL
if quadrant # 3 then Q[z + h,y + h — 1] + lastL
if quadrant # 4 then Q[z + h,y + h] < lastL
if n =1 then return lastL
lastL + Cover(x,y + h,n — Lif quadrant =1 then 1 else 3,lastL)
lastL + Cover(x + h,y + h,n — 1,if quadrant = 4 then 4 else 2,lastL)
lastL < Cover(z + h,y,n — 1,if quadrant = 3 then 3 else 1,lastL)
lastL < Cover(z,y,n — 1,if quadrant = 2 then 2 else 4,lastL)
return lastL

Algoritm 5: Viggos 16sningsforslag till kvadrattickning med dekomposition.

I Algoritm [f finns Viggos pseudokodsbeskrivning av hur algoritmen for kvadrattéckning med
dekomposition ska gé till. Hans fokus har varit pa att visa exakt vad som ska géras, ner pa
detaljniva, dvs vilken siffra som skrivs pé vilket stélle. Pseudokoden dr kompakt och precis, men
eftersom uppgiften handlar om indextrixande behdver den atfoljas av en text som skoter den
overgripande forklaringen av vilka principer algoritmen bygger pa.

	Att beskriva en algoritm
	Naturligt språk
	Ett Javaprogram
	Modern matematisk notation
	Pseudokod

	Exempel: Euklides algoritm
	Språket i Euklides Elementa
	Euklides algoritm, engelsk översättning av Elementa
	Euklides algoritm i pseudokod (utan korrekthetsresonemang)

	Riktlinjer för pseudokodsskrivande
	Exempel från ett mästarprov

