
Vad är pseudokod?
En vägledning till hur man skriver pseudokod i mästarprovet

Emma Enström

26 september 2019

1 Att beskriva en algoritm
Saker som kan variera mellan olika beskrivningar av en algoritm är detaljnivå, avsett syfte,
målgrupp och vilka uttrycksmedel som står till förfogande. Syftet med beskrivningen kan variera,
och syftet kan också påverka hur beskrivningen ser ut. Är den t.ex. skriven för att pedagogiskt
förklara något, för att ge en snabb inblick i idén bakom en algoritm, eller som skiss för att senare
implementera algoritmen – kanske till och med i något särskilt programspråk? Är den avsedda
publiken matematiskt skolad, är de programmerare, eller är de skolbarn?

Man kan förstås beskriva algoritmer utan vare sig programspråk eller pseudokod. Det finns
fördelar och nackdelar med alla framställningsformer.

Ju fler detaljer man beskriver, desto längre blir texten och desto svårare blir det att överblicka
beskrivningen. Å andra sidan, om det finns för få detaljer kan det både bli svårt att förstå hur
algoritmen ska kunna lösa sitt problem och svårt att analysera den.

De uttrycksmedel som vi jämför här är naturligt språk, programspråk, matematisk notation
av idag och pseudokod.

1.1 Naturligt språk
Varför krångla till det med notation? Varför inte bara berätta på ren svenska vad algoritmen
gör? Vardagsspråket kan uppfattas som mindre krångligt än mer tekniska notationssätt, men går
budskapet fram? Det kan visa sig att många begrepp och termer blir luddiga och det behövs
väldigt många ord. Så många, att det blir jobbigt att läsa texten. Läsaren får då anstränga sig
mycket för att skaffa sig en överblick över algoritmen.

1.2 Ett Javaprogram
Här finns det regler och inget annat än regler! Kompilatorn har ingen som helst förmåga att
tolka oklara beskrivningar, och inget kan tas för givet. Datorn kan utföra instruktionerna - om
man kan programmera algoritmen kan man beskriva den för en dator. Den här notationen blir
pladdrig på ett annat sätt än om man använder naturligt språk, och det görs ingen som helst
skillnad på viktiga, bärande principer och triviala påståenden.

1.3 Modern matematisk notation
Kompakthet! Att införa notationssätt som har en mycket väldefinierad, begränsad betydelse gör
att man slipper skriva så mycket. Det är dock ofta en lång väg att gå från notationen till idén
bakom algoritmen, och även om texten tar liten plats går den inte nödvändigvis snabbt att läsa.

1

1.4 Pseudokod

För att kunna välja vilka av ovanstående för- och nackdelar man vill ha, kan man blanda in olika
mycket av ovanstående notationsformer när man skriver pseudokod. Om algoritmen handlar om
matematik, kan matematisk notation användas för att beskriva vad man håller på med, t.ex.
aktuellaNoder = {v ∈ V : d(v) > 3} för ”skapa en mängd av alla hörn i grafen som har minst
tre grannar” Om det blir tydligare så kan istället vanliga meningar användas, som t.ex. ”för varje
bok i biblioteket”.

Pseudokodens första kännetecken är att den inte har en syntax. Vilken kodliknande sekvens
som helst som inte kompilerar är inte användbar som pseudokod. För att producera bra pseu-
dokod kan det till och med vara bra om du inte börjar med ”vanlig” kod och försöker ta bort
det som är onödigt, utan istället låtsas att du ska hålla en lektion om det du vill beskriva, hitta
vilka poänger du absolut vill få fram, skriva ner dem och sedan komplettera med de detaljer som
behövs för att någon annan lätt ska kunna implementera algoritmen utifrån din beskrivning.

Vid labbredovisningar händer det att assistenten vill kolla studentens uppfattning om sitt
program genom att fråga ”Så vad gör det här programmet?”. Den frågan brukar besvaras på något
av följande sätt: ”Det går igenom en text och kontrollerar vilka ord som finns med mer än en gång”,
respektive: ”Först läser det in filen och sen skapar det en lista och sen sätter man i till 0 och sen...”.
Personen som svarar på det senare sättet kan mycket väl förstå sitt program, men har en annan
uppfattning om vilket slags svar som var förväntat än vad assistenten troligen hade. Det är som
bekant en besvärlig uppgift att modellera verkligheten i matematik eller programkod, men det är
en lika delikat uppgift att översätta åt andra hållet – att beskriva i vardagsspråk vad ett program
gör, det vill säga vilket problem det löser och genom vilka principer. En övergripande beskrivning
kan ibland gå att ha med i själva pseudokoden, men behöver ibland ingå i en kompletterande
beskrivning i naturligt språk.

Pseudokod ska typiskt sett innehålla tillräckligt mycket information för att vara precis och
inte luddig i kanten, men inte så mycket information att den blir svåröverblickbar och pladdrig.
Normalt är det onödigt att ta med variabeldeklarationer, speciellt deklarationer av styrande
variabler i slingor. Indextrixande ska finnas med i den mån algoritmen bygger på ett särskilt sätt
att hantera index (i t.ex. arrayer), eller om det lättaste sättet att förklara vad som görs är att
numrera element. Här kan formuleringar liknande dem i satser och bevis i matematiken ibland
vara tydligare än formuleringar hämtade från programspråk: jämför ”För varje bokstav b i ordet”
med ”for i← 1 to ordlängd(w) do b← w[i]”.

För att göra något bra, kan man ibland behöva försöka göra det dåligt först. Försök att
beskriva en beräkning av summan av alla element som är delbara med 3 som förekommer i
mängden X. . .

1. . . . pladdrigt med vardagsspråk,

2. . . . korrekt i Java eller C++ på ett sätt som inte är gjort för att vara lättläst,

3. . . . så kompakt som möjligt med hjälp av matematisk notation,

4. . . .med pseudokod inspirerad av vardagsspråk, nästan utan programspråkskonstruktioner,

5. . . .med pseudokod inspirerad även av programspråk,

6. . . .med pseudokod inspirerad även av matematik.

Något av ovanstående var antagligen lättare att utföra, eller kändes naturligare, för dig. Någon
av beskrivningarna kändes svår att överhuvudtaget klämma ur sig (speciellt som den inte var
bra till något). Alla kommer inte att ha samma favoritbeskrivning.

2

2 Exempel: Euklides algoritm

Här ställer vi ytterligheten naturligt språk mot kompakt pseudokod där matematisk notation
ingår.

2.1 Språket i Euklides Elementa

När Euklides Elementa skrevs, fanns inte många av de konventioner vi idag använder tillgängliga
för den som ville uttrycka sig om matematik. Nollan och positionssystemet var inte införda
fullt ut, och det hade inte etablerats notationsstandarder för så triviala saker som + och -.
Bevisen av satser och algoritmer i Euklides Elementa är skrivna med naturligt språk, men man
använde ”variabler” för att resonera om olika entiteter. För att titta närmare på boken, se t.ex.
http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII1.html.

2.2 Euklides algoritm, engelsk översättning av Elementa

Proposition 1: Two unequal numbers (being) laid down, and the lesser being continually
subtracted, in turn, from the greater, if the remainder never measures the (number) preceding
it, until a unit remains, then the original numbers will be prime to one another.

Proposition 2: To find the greatest common measure of two given numbers not relatively prime
to one another.
Let AB and CD be two given numbers (which are) not prime to one another. So it is required
to find the greatest common measure of AB and CD.

In fact, if CD measures AB, CD is thus a common measure of CD and AB, (since CD) also
measures itself. And (it is) manifest that (it is) also the greatest (common measure). For nothing
greater than CD can measure CD.

But if CD does not measure AB then some number will remain from AB and CD, the
lesser being continually subtracted, in turn, from the greater, which will measure the (number)
preceding it. For a unit will not be left. But if not, aB and CD will be prime to one another
(Prop. 7.1). The very opposite thing was assumed. Thus, some number will remain which will
measure the (number) preceding it. And let CD measuring BE leave EA less than itself, and
let EA measuring DF leave FC less than itself, and let CF measure AE. Therefore, since CF
measures AE, and AE measures DF, CF will thus also measure DF. And it also measures itself.
Thus, it will also measure the whole of CD. And CD measures BE. Thus, CF also measures BE.
And it also measures EA. Thus, it will also measure the whole of BA. And it also measures CD.
Thus, CF measures (both) AB and CD. Thus CF is a common measure of AB and CD. So I say
that (it is) also the greatest (common measure). For if CF is not the greatest common measure of
AB and CD then some number which is greater than CF will measure the numbers AB and CD.
Let it (so) measure (AB and CD) and let it be G. And since G measures CD, and CD measures
BE, G thus also measures BE. And it also measures the whole of BA. Thus, it will also measure
the remainder AE. And AE measures DF. Thus, G will also measure DF. And it also measures
the whole of DC. Thus, it will also measure the remainder CF, the greater (measuring) the lesser.
The very thing is impossible. Thus, some number which is greater than CF cannot measure the
numbers AB and CD. [(Which is) the very thing it was required to show].

Detta är från bok 7 från Euclid’s Elements, hämtat från en utgåva redigerad/editerad av
Richard Fitzpatrick. (http://farside.ph.utexas.edu/euclid/elements.pdf)

Proposition 1 behandlar samma sak som proposition 2, men med tal som är relativt prima.
”The unit”, 1, betraktades inte som ett tal och därför behövde situationerna med tal som är

3

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII1.html
http://farside.ph.utexas.edu/euclid/elements.pdf

relativt prima och tal som inte är det behandlas separat.
Poängen med texten är att lägga fram matematiska sanningar, därför handlar den till största

delen om korrekthetsresonemanget, som här är helt integrerat i framställningen men också har
en egen avdelning i slutet.

2.3 Euklides algoritm i pseudokod (utan korrekthetsresonemang)

Data: Two numbers a and b, a ≥ b > 0
Result: The greatest number that divides both a and b
function gcd(a,b)

while b 6= 0 do
t := b ;
b := a mod b;
a := t;

return a

Algoritm 1: Euklides algoritm, iterativ version

Data: Two numbers a and b, a ≥ b > 0
Result: The greatest number that divides both a and b
function gcd(a,b)

if b = 0 then
return a

else
return gcd(b, a mod b)

Algoritm 2: Euklides algoritm, rekursiv version
Det är uppenbart att algoritmen är lättare att urskilja i pseudokodsversionen än i original-

beskrivningen. Korrekthetsbeviset skulle likna Euklides text lite mer, men även där går det idag
att använda notation som ger bättre överblick och kortare beskrivningar.

3 Riktlinjer för pseudokodsskrivande

• Beskriv din algoritm både med text och med pseudokod. Låt texten sköta förklaringen på
en övergripande nivå och pseudokoden ha med tillräckligt med detaljer för att övertyga
läsaren om att algoritmen går att implementera. Om din pseudokod är skriven efter att
du löst problemet i något programspråk, tänk en extra vända på vad det är för uppgifter
varje slinga eller sats har och fundera på om dessa blir tydligare, kortare eller klarare med
matematisk notation eller med naturligt språk istället!

• Sträva efter att ha lättläst, tillräckligt detaljerad och förhållandevis kort/kompakt pseu-
dokod. Undvik i regel att deklarera variabler och att använda konstruktioner från ditt
favoritspråk som egentligen bara är till för kompilatorn eller interpretatorn!

• För att åstadkomma kompakthet och inte inkräkta på läsbarhet är det ibland bra att
använda matematiska symboler som ∅, mod ,∃,+,−, ·,≤, 6=, /∈,∀,∞,∪ osv.

• Man kan beskriva datat i termer av mängder även om implementationen kommer att an-
vända t.ex. en matris, hashtabell, länkad lista eller ett binärträd. Om du gör det bör du
ha i åtanke att uppslagning i de olika datastrukturerna tar olika tid, och kommentera det i
texten och när du gör komplexitetsanalysen. (Om uppgiften handlar om att välja lämpliga

4

datastrukturer är det förstås nödvändigt att basera pseudokoden och analysen på den valda
datastrukturen.)

• Vanliga verb, eller hela meningar, ger ibland bättre beskrivningar än lånade uttryck från
ett programspråk.

• Indentering är lika användbart för att göra pseudokod lättläst som för att producera lättläst
programkod.

Konstruktioner som är lämpliga i pseudokod är t.ex. if–then, do–while, while–do, for i ←x to y
do, for each, break, return, comment, function/procedure, input, output, invariant, assert.

Skriva algoritmer i LATEX

Om du renskriver dina uppgifter i Latex, kan du faktiskt få ytterligare vägledning i vad som
brukar ingå i pseudokod av de olika paket som finns för att typsätta algoritmer. Där finns såda-
na kommandon som är vanligt förekommande i pseudokod definierade, och indenteringen sköts
automatiskt. De kräver alla en viss ansträngning för att komma igång med, men de producerar
snygga resultat. En hel del av algoritmerna i det här kompendiet är typsatta med hjälp av pa-
ketet algorithm2e. De algoritmer som beskrivs i övningarna är ofta typsatta med Viggos egna
kommandon. Andra paket som finns tillgängliga är algorithmic, algorithmicx, algpseudocode och
program. Paketen beskrivs bl. a. på http://en.wikibooks.org/wiki/LaTeX/Algorithms.

4 Exempel från ett mästarprov

Det här är första uppgiften på ett mästarprov 1. Sist, i Algoritm 5, är lösningsförslaget som
Viggo skrev.

Kvadrattäckning med dekomposition
Betygskriterium: utveckla algoritmer med datastrukturer för enkla problem givet en kon-
struktionsmetod.
Ett trevligt (?) tidsfördriv är att försöka täcka en given yta med många likadana bitar. I
denna uppgift ska du konstruera en algoritm som (nästan) täcker en kvadrat med sidan
2n med bitar som ser ut som små L. Varje L-bit har ytan 3 och kan vridas och läggas på
4 sätt. Det går inte att täcka precis hela kvadraten, så innan vi börjar klipper vi bort en
1× 1-ruta i övre högra hörnet på kvadraten. I vänstra figuren nedan visas hur en täckning
av en 4× 4-kvadrat med utklippt hörn kan göras.
Din algoritm ska ta n som indata och returnera en 2n × 2n-matris som beskriver hur
täckningen kan göras. Ge varje L ett eget nummer och märk dom tre platserna i matrisen
som den täcker med detta nummer, se exemplet nedan till höger.
Din algoritm ska använda dekomposition för att konstruera täckningen. Lägg första L-biten
precis mitt i kvadraten och dela sedan upp problemet i fyra delar.
Beskriv algoritmen med pseudokod. Analysera algoritmens tidskomplexitet (med enhets-
kostnad). 

5 5 2 0
5 1 2 2
4 1 1 3
4 4 3 3



5

http://en.wikibooks.org/wiki/LaTeX/Algorithms

Nedan i Algoritm 3 följer en kort och möjligtvis pedagogiskt upplagd förklaring av samma
metod. Notera att den här lösningen har ett annat n än den förra. Det finns flera saker som gör
denna framställning mindre lämpad för en skriftlig inlämningsuppgift som ett mästarprov.

• Det som ska skrivas i matrisen, aktuelltNr, nämns bara när det ska fyllas i. Ska samma
nummer alltid användas? Hur vet vi att vi kan hålla reda på vårt nummer?

• ”Fyll i basfall” är inte en så bra instruktion, även om den text man skrivit tillsammans med
pseudokoden förklarar vad denna manöver går ut på.

• ”Kolla vilken bit som redan är täckt” och ”Dela upp M i fyra delar” är också oklara instruk-
tioner – de kan dölja komplexitet och ger inte programmeraren någon idé om hur uppgiften
ska utföras. De är inte heller särskilt lämpliga för att övertyga en lärare om att man har
tänkt igenom hur algoritmen ska operera.

Det som beskrivningen i Algoritm 3 däremot gör bra är att svara, på ett övergripande plan,
på assistentens fråga ”Så, hur fungerar din algoritm?”.

n← antal rader i utdatamatrisen
M ← tom matris
M [1, n]← täckt
if n < 4 then

Fyll i basfall
else

fyllIDel(M)
fyllIDel()

Kolla vilken bit som är täckt
Fyll mitten med aktuelltNr
if M.rows == 4 then

Fyll delmatrisen som basfall
else

Dela upp M i fyra delar
och anropa fyllIDel med dessa

Algoritm 3: Lösning med pseudokod i naturligt språk utan detaljer.

Pseudokoden i Algoritm 4 nedan lyckas beskriva hur många anrop som görs och i stort sett hur
matrisen delas upp för de olika anropen. Den har istället fastnat på basfallen, som inte beskrivs
i pseudokod alls. Ett tecken på att den som gjorde så här tyckte att ”matematiseringen” av
basfallen är knepig är användandet av bokstaven L i olika orienteringar. Grafiska framställningar
kan fungera i pseudokod, men de kan också missa målet. Det finns detaljer som i det här fallet är
onödiga att ha med, som initieringen av alla värden i matrisen till −1 och att ange returdatatyp
på funktionerna. Algoritmen bortser dock helt ifrån något väldigt viktigt i uppgiftslydelsen - att
beskriva vad som fylls i. Inget utdata finns heller beskrivet, så det är faktiskt oklart vad vi gör med
delarna. Själva dekompositionssteget beskrivs som sagt detaljerat – men blir det rätt hela vägen?
Kommer den här algoritmen att fylla i matrisen på rätt sätt, om vi antar att basfallsfunktionen
skrivL i varje anrop skriver nästa siffra på de ställen som svarar mot de beskrivna fallen?

6

Data: matris med sidan 2n

for i← 1 to 2n do
for j ← 1 to 2n do

matris[i, j]← −1
void rekursivSkrivL(sida, posX, posY, vinkel)

if vinkel = 0 then
matris[posX][posY]← L

else if vinkel = 1 then
matris[posX][posY]←

L

else
matris[posX][posY]← L

if sida = 2 then
skrivL(posX, posY, ”Kvadrant 1/3”)

else if sida < 8 then
skrivL(posX, posY, ”Kvadrant 1/3”) skrivL(posX, posY, ”Kvadrant 1/3”)
skrivL(posX, posY, ”Kvadrant 4”)
skrivL(posX, posY, ”Kvadrant 2”)

else if sida ≥ 8 then
rekursivSkrivL(sida/2, posX + sida/2, posY − sida/2, 0) // Här går vi

uppåt till höger.
rekursivSkrivL(sida/2, posX − sida/2, posY + sida/2, 0) // Här går vi

uppåt till vänster.
rekursivSkrivL(sida/2, posX − sida/2, posY − sida/2, 0) // Här går vi

uppåt till vänster.
rekursivSkrivL(sida/2, posX + sida/2, posY + sida/2, 0) // Här går vi

nedåt till höger.

void skrivL(posX, posY,Matrissort)
/* Här lägger vi till en 4x4-matris utifrån positionerna som

skickats med. Vi lämnar 1 tom ruta i ett hörn. Parametern
Matrissort avgör vilket hörn som ska lämnas tomt.
T.ex. är matrisen med L i mitten en ”Kvadrant 1/3”-matris och
den med

L

i mitten är en ”Kvadrant 2”-matris. */
rekursivSkrivL(2n, 2n

2 , 2n

2 , 0)

Algoritm 4: Lösning som har mycket detaljer trots att det finns viktiga steg som utelämnats.

7

Algoritmen blir:

Q[1, 2n]← 0; Cover(1, 1, n, 1, 0); return Q

Där den rekursiva funktionen definieras som:

Cover(x, y, n, quadrant, lastL) =
// L-täcker en 2n × 2n-kvadrat med övre vänstra hörnet i (x, y),
// där den urklippta biten finns i kvadrant quadrant (tal mellan 1 och 4)
// och där senast utlagda L-biten har nummer lastL.
// Numret för den sista L-biten som användes i täckningen returneras.
lastL← lastL+ 1
h← 2n−1

if quadrant 6= 1 then Q[x+ h− 1, y + h]← lastL
if quadrant 6= 2 then Q[x+ h− 1, y + h− 1]← lastL
if quadrant 6= 3 then Q[x+ h, y + h− 1]← lastL
if quadrant 6= 4 then Q[x+ h, y + h]← lastL
if n = 1 then return lastL
lastL← Cover(x, y + h, n− 1,if quadrant = 1 then 1 else 3, lastL)
lastL← Cover(x+ h, y + h, n− 1,if quadrant = 4 then 4 else 2, lastL)
lastL← Cover(x+ h, y, n− 1,if quadrant = 3 then 3 else 1, lastL)
lastL← Cover(x, y, n− 1,if quadrant = 2 then 2 else 4, lastL)
return lastL

Algoritm 5: Viggos lösningsförslag till kvadrattäckning med dekomposition.

I Algoritm 5 finns Viggos pseudokodsbeskrivning av hur algoritmen för kvadrattäckning med
dekomposition ska gå till. Hans fokus har varit på att visa exakt vad som ska göras, ner på
detaljnivå, dvs vilken siffra som skrivs på vilket ställe. Pseudokoden är kompakt och precis, men
eftersom uppgiften handlar om indextrixande behöver den åtföljas av en text som sköter den
övergripande förklaringen av vilka principer algoritmen bygger på.

8

	Att beskriva en algoritm
	Naturligt språk
	Ett Javaprogram
	Modern matematisk notation
	Pseudokod

	Exempel: Euklides algoritm
	Språket i Euklides Elementa
	Euklides algoritm, engelsk översättning av Elementa
	Euklides algoritm i pseudokod (utan korrekthetsresonemang)

	Riktlinjer för pseudokodsskrivande
	Exempel från ett mästarprov

