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Use θ and ϕ as generalised coordinates.
To find equilibrium points, we study the potential energy. Only the gravity force on the rod con-

tributes. Denoting the centre of mass of the rod as Gr, we can write rOGr
= rOA + rAGr

. From the
vertical component of this vector, we get

V = −mgr [cos(θ) + cos(ϕ)] .

Equilibrium points are found from

∂V

∂θ
= mgr sin(θ) = 0

∂V

∂ϕ
= mgr sin(ϕ) = 0.

The first equation gives θ = 0 or θ = π. The second equation gives ϕ = 0 or ϕ = π. Of the four
combinations only

θ∗ = 0, ϕ∗ = 0

gives a positive definite stiffness matrix, which is

K = mgr

[
1 0
0 1

]
.

To compute the kinetic energy we use the instantaneous centre of rotation O for the disc, and the
“two parts” formula for the rod. Thus we need the velocity of the centre of mass Gr and the angular
velocities ωd and ωr for the disc and rod, respectively. For the angular velocities, we find ωd = θ̇ez,
ωr = ϕ̇ez. As we are considering small oscillations about the equilibrium point, it is enough to compute
the velocities in the equilibrium point configuration where O, A, and Gr lie below each other. The
velocity connection formula then gives

vA = vO + ωd × rOA = rθ̇ex.
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and
vGr

= vA + ωr × rAGr
= r

(
θ̇ + ϕ̇

)
ex.

Together with the moments of inertia of a disc Jd = (2m/3)r2/2 and rod Jr = m(2r)2/12 about their
respective centres of mass, we get a total kinetic energy of

T ∗ =
1

2
Jdθ̇

2 +
1

2
m|vGr

|2 +
1

2
Jrϕ̇

2 = mr2
[

2

3
θ̇2 + θ̇ϕ̇+

2

3
ϕ̇2

]
.

(Had we computed T for an arbitrary configuration, we would have found

T = mr2
[

2

3
θ̇2 + θ̇ϕ̇ cos(θ − ϕ) +

2

3
ϕ̇2

]
instead). This gives the mass matrix

M1 = mr2
[
4
3 1
1 4

3

]
.

The eigenvalue problem now becomes

(K − λM)a = 0.

With λ = gβ/r we get

mgr

[
1− 4

3β −β
−β 1− 4

3β

]
a = 0.

The matrix is singular when the determinant is zero, which gives

(1− 4

3
β)2 − β2 = 0⇒ β =

12± 9

7
.

As expected, both β values are positive, confirming that the equilibrium point is stable. We get the
answer

ω2
1 = λ1 =

3

7

g

r
, ω2

2 = 3
g

r
.

Note that this system has a curious symmetry where θ and ϕ can be exchanged. This means that
synchronised motion θ(t) = ϕ(t) or θ(t) = −ϕ(t) is possible. For the eigenvalue eigenvalue problem the
symmetry gives that the mode shapes must be

a1 =

[
1
−1

]
, a2 =

[
1
1

]
from which the eigenvalues can be directly read off whithout solving a second order equation. Both of
these modes extend to finite amplitudes.
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Problem 2.

A S

We note that the system is in the equilibrium configuration from Problem 1. Thus we can use the
same generalised coordinates, and reuse the kinetic energy. Since the system is at rest, θ̇i = ϕ̇i = 0.
Lagrange’s equations for impact thus becomes

mr2
[
4
3 1
1 4

3

] [
θ̇f − 0
ϕ̇f − 0

]
=

[
Iθ
Iϕ

]
.

It remains to compute the generalised impulses. The physical impulse is S = Sex acting on the point
A. Again from Problem 1 we know that

vA = rθ̇ex

so we can read off the tangent vectors for vA as

τvA

θ = rex, τvA
ϕ = 0.

Thus
Iθ = τvA

θ • S = rS, Iϕ = τvA
ϕ • S = 0.

Now we solve

mr2
[
4
3 1
1 4

3

] [
θ̇f
ϕ̇f

]
= rS

[
1
0

]
to get

θ̇f =
12

7

S

mr
, ϕ̇f = −9

7

S

mr
.

Problem 3.
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By continuous rotation symmetry, the symmetry axis is a principal axis and so is any perpendicular
axis. Take the 3-axis to be along the symmetry axis.
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JA33 = JA33,disc + JA33,rod =
mr2

2
+ 0 =

mr2

2
.

JA11 = JA11,disc +JA11,rod = JB11,disc +m|rBA|2 +
m(ar)2

3
=
mr2

4
+ma2r2 +

ma2r2

3
=

(
1

4
+

4

3
a2
)
mr2.

By symmetry JA22 = JA11.
To get all principal moments of inertia to be equal, we need

1

4
+

4

3
a2 =

1

2
⇒ a2 =

3

16
.

Problem 4.
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Use a basis triad with e3 in the rAB direction and e2 horizontal. For the considered motion the
angular velocity of the triad is

ωb = ω0ez, ez = −cθe3 + sθe1,

and the angular velocity of the body is

ω = ωb + ω1e3 = sθω0e1 + (ω1 − cθω0) e3.

Thus the angular momentum of the body about the point A is

LA = J1sθω0e1 + J3 (ω1 − cθω0) e3

where the moments of inertia J1 and J3 are computed in Problem 3. The time derivative is

L̇A =
b dLA
dt

+ωb×LA = ω0 (−cθe3 + sθe1)×(J1sθω0e1 + J3 (ω1 − cθω0) e3) = −sθω0 [J3ω1 + (J1 − J3) cθω0] e2

Considering forces

MA = rAG ×m0g (−ez) , rAG = le3 ⇒MA = −m0glsθe2,

where m0 = 2m is the body mass and l gives the position of the centre of mass for the composite body:

l =
1

2

(
ar +

1

2
ar

)
=

3

4
ar.
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Since A is a fixed point, angular momentum balance gives

L̇A = MA ⇒ −sθω0 [J3ω1 + (J1 − J3) cθω0] e2 = −m0glsθe2.

We see this is fulfilled if
sθω0 [J3ω1 + (J1 − J3) cθω0] = m0glsθ,

or with values from Problem 3 inserted

sθω0

[
1

2
ω1 +

(
4

3
a2 − 1

4

)
cθω0

]
=

3

2
sθa

g

r
.

If a2 = 3/16 then for any angle 0 < θ < π this simplifies to

ω0ω1 =
3
√

3

4

g

r
.

Note that, apart from the particular values of J1, J3, m0, and l, this is precisely the precession of a
heavy symmetry top, as treated in the text book.

Problem 5. Hamilton’s equations are

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= 0.

Thus p is constant (q is a cyclic coordinate) and by the initial conditions p(t) = p0. Inserting this into
the other equation, and using the initial conditions gives q(t) = q0 + p0

m t, so q has a linear drift.
A concrete example is a particle of mass m on a smooth track with all applied forces perpendicular

to the track, if the q coordinate measures length along the track.

Problem 6. Let L = T − V . First we note that θ is a cyclic coordinate, so

pθ =
∂L

∂θ̇
= mr2θ̇ = constant.

Secondly, since L is time independent and of type L2 + L0, we have that

E = L2 − L0 = T + V =
1

2
m

(
ṙ2 + r2θ̇2

)
− mGM

r
= constant.

Thus we have the required two expressions.
To find the values of pθ and E, we eliminate θ̇ to get

E =
1

2
mṙ2 +

p2θ
2mr2

− mGM

r
.

At time point t0 of minimal value of r(t) we must have ṙ(t0) = 0, r(t0) = r0. Inserting gives

E =
p2θ

2mr20
− mGM

r0
.

Similarly we get at the time point of maximal r(t)

E =
p2θ

8mr20
− mGM

2r0
.
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Solving for E and p2θ, we find

E = −1

3

mGM

r0
, p2θ =

4

3
m2GMr0.

Note that E and pθ have the interpretation of mechanical energy and angular momentum, respectively.
Thus the negative value of E was expected for this bounded orbit.
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