Hello Dolly

Forks, zombies, orphans, pipes, exec... '

Hannes Rabo, Katariina Martikainen, Charlotta Spik

With credit to Isabel Ghourchian who's slide text from last year
was used for this presentation

2019-11-04

KTH Kista, Stockholm

Read about the (not strictly related) sheep

Dolly here:
https://en.wikipedia.org/wiki/Dolly' (shee

https://en.wikipedia.org/wiki/Dolly_(sheep)

Intro - processes Q

e A process is a running program, an execution of instructions and a set of resources
e A process can be represented by a unique number called process id (pid)

fork()

Function that creates a new process
Creates a copy (child process) of the current process (parent process)
Returns twice

o child’s pid to the parent
o 0 to the child
The processes have separate address spaces ...
... but they share some things, such as references to open files

uuuuuuuuuuuuuuu

Example - fork()

int pid = fork();
if (pid ==0) {
printf(”I'm the child”);

}
else {
printf(”I’'m the parent”);

mmmmmmmmmmmmmm

Zombie

Created by Taras Makar
from Noun Project

e Child process that has finished executing but still exists in the process table
e Happens if parent does not call wait()

else { //parent process
printf(”I’'m the parent”);

wait(NULL); //wait for child process to terminate, prevent zombie

image from FreePik

Orphans

e Child process that is still running but the parent process has finished executing or
terminated
e \Will be "adopted” by another process, get a new parent process

e In UNIX the new parent process is the init or systemd process
o parent of all processes
o processidl

uuuuuuuuuuuuuuuu

Created by Taras Makar
from Noun Project

Groups and Sessions

e The child and parent belong to the same group
e getpgid() gives the group leader’s pid

A session consists of several groups and a session leader
getsid() gives the session leader’s pid
e \When a session terminates, all processes belonging to the session terminate

Daemon

Process that runs in the background instead of under direct control of a user
Has its own session

Performs operations at predefined times or in response to events

Runs most of the tasks in a system

Created by Taras Makar
from Noun Project

exec()

e Runs an executable file in the context of an existing process, replacing the previous

execution context
e execlp(”ls”, "Is”, NULL);

o check if ’ls’ exists
o run it with the rest of the arguments
e exec functions do not return when successful

..................

Created by Iconic
from Noun Project

exec() family of functions

e execl, execlp, execle, execv, execvp, execvpe
o e: pass an array of pointers to environment variables
o l:arguments are passed individually to the function
o v:arguments are passed as an array of strings
o p:uses PATH environment variable to find the file that is to be executed

=

..................

Created by Iconic
from Noun Project

Pipes

e Sends the output of one program to another programs input
e Denoted by symbol’|’

e Piping in the shell: combine several commands
o Ex: cat countries.txt | grep a | sort

o Displays all countries that start with an 'a’ and sorts them

in alphabetical order

designed by @ freepik.com

Exam question $a6
1.3 Arghhh! |2 points]|

Assume that we have a program boba that writes “Don’t get in my way” to
stdout. What will the result be if we run the program below and why is this

the result? (the procedure dprintf () takes a file descriptor as argument) o o prafas Makar

int main() {
int fd = open("quotes.txt", O RDWR | O_CREAT, S _IRUSR | S IWUSR);
int pid = fork();

if (pid == 0) {
dup2 (fd, 1);
close (fd);
execl ("boba", "boba", NULL);
} else {
dprintf (fd, "Arghhh!");
close (fd);
}

return 0;

Exam question
1.3 Arghhh! |2 points]|

Assume that we have a program boba that writes “Don’t get in my way” to
stdout. What will the result be if we run the program below and why is this
the result? (the procedure dprintf () takes a file descriptor as argument)

int main() {
int fd = open("quotes.txt", O RDWR | O_CREAT, S _IRUSR | S IWUSR);
int pid = fork ();
if (pid == 0) {

dup2(fd, 1);
close (fd);

from o Frojet

Created by Taras Makar
from Noun Project

execl ("boba", "boba", NULL); Answer: In dup2(fd,1) we redirect stdout to the opened file. Boba will

} else { write its line to the file quites.txt. At the same time the mother process
.1 5 " - " v . v

dprintf (fd, "Arghhh!"); will write “Arghhh!” to the same file. The two processes will share the file

close (fd);
}

return 0;
} other.

current position and combine the write oprations. The result is a mixture
of the two texts in the file quotes.txt i.e. the texts will not overwrite each

Exam question: What is the value of count after?

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>

int count = 0;
int main() {
int *status;
int pid = fork();

if(pid == 0) {
for (int i = 0; i < 10; i++) {
count += 1;
}

return 0;

} else { v
for (int i 0; i < 10; i++) { a

count += 1;
}
wait (status);
}
printf ("count = %d\n", count);

return 0;

} Created by Taras Makar
from Noun Project

Exam question

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>

int count = 0;
int main() {
int *status;
int pid = fork();

if(pid == 0) {
for (int i
count +=
}
return 0;
} else {
for (int i = 0; i < 10; i++) {
count += 1;
}
wait (status);
}
printf ("count = %d\n", count);
return 0;

= 0; i < 10; i++) {
1;

: What is the value of count after?

As both processes have their own virtual memory
which means that the value of count will be 10 for
both of them.

rom o Froct

Created by Taras Makar
from Noun Project

Exam question: How does pipe work?

2.2 pipes |2 points|

If we have two processes, one producer and one consumer, that are communi-
cating through a so called pipe. How can we then prevent that the producer
sends more information than the consumer is ready to receive and thereby
crash the system.

Exam question: How does pipes work?

2.2 pipes |2 points|

If we have two processes, one producer and one consumer, that are communi-
cating through a so called pipe. How can we then prevent that the producer
sends more information than the consumer is ready to receive and thereby

crash the system.

Answer: Pipes have built-in flow controll. If the consumer does not read
from the pipe the producer will be suspended when it tries to write the filled

pipe.

