My Malloc: Mylloc and Mhysa

Implement your own malloc()

malloc(size)

e Allocate memory dynamically on the heap (std lib)
e Returns a pointer to the start of the memory area
e May return NULL

e Has to be deallocated by calling free()

e (Calls something called sbrk() internally

OXFFFFFFFF

oxffffoole

oxffffooee

0x9

Reserved

Memory mapped 10

Kernel data

ox

Kernel text

Stack segment

User level

Dynamic data

Static data

Text segment

Reserved

sbrk(size)

e The almost raw way of asking for memory
e Increments the program break by the defined size in bytes
e Returns the previous address of the program break

e sbrk(0) — returns current address of the program break

brk(address)

e The raw way of asking for memory
e Sets the program break to the specified address

e Returns 0 on success

free(pointer)

Going back to malloc...
e Deallocates the memory that malloc() pointed to
e Meta data is kept in the memory header to allow it to be freed (and maybe other stuff)

e Also calls sbrk() internally

Meta Memory

return address of malloc()

Allocation Strategies

The problem of how to get and return memory: How to split and coalesce

e List based allocation

o Best fit
n slow
o Worst fit

m low external fragmentation, high internal fragmentation
o First fit/ next fit
m quick but high external fragmentation

e Buddy allocation

List based approach

Segregated list
e Contains blocks of the available free

space on the heap 32b g
e Naive: one list for all blocks
64 b g
o Different selection strategies exists
e One list for each size: segregated list 128 b -

o Similar structure used in malloc

Free list: head —» 10 —» 30 —» 20 —>» NULL

Selection strategies for lists

Free list: head —» 10 —» 30 —» 20 —» NULL

Which block will each strategy choose for a request of size 157

e Best fit: 20
e Worst fit: 30

e First/Next fit: 30

Buddy allocation

Similar structure used on OS level
Easy to coalesce

Memory is recursively splitted into two to appropriate
size

Cons — Internal fragmentation with only size 2An

32 KB

32 KB

16 KB

16 KB

8 KB

2017-08-21

One strategy to find a suitable memory block is to find the block that best
suites our needs (without being too small); this must by all aspects be the
a good strategy. Another approach is to simply take the first block that is
found even if it is considerably larger than what we need. What would the
benefit be for the latter strategy and what is the possible downside?

10

2017-08-21

One strategy to find a suitable memory block is to find the block that best
suites our needs (without being too small); this must by all aspects be the
a good strategy. Another approach is to simply take the first block that is
found even if it is considerably larger than what we need. What would the
benefit be for the latter strategy and what is the possible downside?

Answers:
One of the obvious upsides of this approach would be that we don’t have to search through “all” of the
blocks. Decreasing the time it takes to find a free block.

If we were to split the selected block we also get less external fragmentation than best fit.
However if we don’t split the selected block we end up with a lot of internal fragmentation.

11

2017-08-21

You can use the system call sbrk() to allocate more memory for the heap
but how can a process return memory?

12

2017-08-21

You can use the system call sbrk() to allocate more memory for the heap
but how can a process return memory?

Answers:
By explicitly setting the top of the heap using the brk() or by giving sbrk() a
negative value

13

2017-12-18

Assume that we implement a memory manager (alloc/free) where the free

list is handled using the construct below. Which advantages and possible
disadvantages would this give us?

_thread chunk *free = NULL;

void free(void *memory) {
if (memory != NULL) {

struct chunk *xcnk = (struct chunkx)((struct chunksx)memory — 1);
cnk—>next = free;
free = cnk;

}

return ;

}

14

2017-12-18

_thread chunk *xfree = NULL;

void free (void xmemory) {

if (memory != NULL) {

struct chunk xcnk = (struct chunkx)((struct chunks)memory — 1);
cnk—>next = free;
free = cnk;

return ;

}

Answers:

Every thread has its own list of free blocks, meaning that it's safe operate on the list of free blocks
without semaphores and locks. This maximises the chances of good cache performance on the
individual thread.

However this creates the risk of creating an imbalance between the amount of free blocks on the
threads. Hence we could end up with a thread that’s out of free space, and the free space on the other

threads can’t be used. s

1.4 the size of the block? [2 points]

When implementing free() we need to know the size of the block that should
be freed. How do we know the size? Draw and explain in the figure below

what an implementation could look like.

16

1.4 the size of the block? [2 points]

When implementing free() we need to know the size of the block that should
be freed. How do we know the size? Draw and explain in the figure below
what an implementation could look like.

Answer: You can hide a header before the allocated block where the size of
the block is recorded.

int xnew_table(int elements) {
return (ints*)malloc(sizeof (int)*elements); table Heap

}

int main() {)
int xtable = new_table(24);

: 29

table [0] = 29; 13

table [1] = 13;]7
= 87; :

table [2]

free (table);
return 0;

2017-06-07

A strategy to implement handling of so called free lists in memory manage-
ment is to let all blocks be of a size equal to a power of 2 (with some smallest
value, for example 32 bytes). If a block of a particular size is not available
the next largest block is chosen and divided in two. When we free a block
we might want to check if adjacent block is free in order to coalesce them
into one block and prevent an accumulation of small blocks. How can we
easily determine what adjacent block to check? Does the strategy have any
limitations?

18

2017-06-07

A strategy to implement handling of so called free lists in memory manage-
ment is to let all blocks be of a size equal to a power of 2 (with some smallest
value, for example 32 bytes). If a block of a particular size is not available
the next largest block is chosen and divided in two. When we free a block
we might want to check if adjacent block is free in order to coalesce them
into one block and prevent an accumulation of small blocks. How can we
easily determine what adjacent block to check? Does the strategy have any
limitations?

Answers:

We can use the buddy-algorithm strategy to simply toggle a bit to get the
address of the “Buddy”, which is a VERY quick operation.

A limitation of this algorithm however is that we can’t merge two blocks unless
they’re buddies, even though they're side by side.

Also we can only allocate these fixed sizes leading to internal fragmentation

19

4.2 implement the buddy algorithm [2 points]

Assume that you should implment the buddy-algorithm for memory mana-
gement. To help you a function that locates the buddy of a block of size k
1s given. Assume that all blocks are taged as either free ortaken and have a
field that gives the size of the block. Free blocks also have two pointers that
links the block in a double linked list of free blocks of its size.

Assume that you should free a block and have found its buddy - what do
you have to check before you can coalece the block with it’s buddy? If the
blocks can me coaleced, what are the operations that you need to perform.

21

Assume that you should implment the buddy-algorithm for memory mana-
gement. To help you a function that locates the buddy of a block of size k
1s given. Assume that all blocks are taged as either free ortaken and have a
field that gives the size of the block. Free blocks also have two pointers that
links the block in a double linked list of free blocks of its size.

Assume that you should free a block and have found its buddy - what do
you have to check before you can coalece the block with it’s buddy? If the
blocks can me coaleced, what are the operations that you need to perform.

Answer: You have to check if the buddy is free and of the same size. If
this is the case they can be coalesced. This i1s done by removing the buddy
from its free-list, determine which block is the mayor one, change the size of
this block. One then must free the coalesced block recursively. When no
free buddy is found the block is inserted first in the list of its size.

