
My Malloc: Mylloc and Mhysa

Implement your own malloc()

1

malloc(size)

● Allocate memory dynamically on the heap (std lib)

● Returns a pointer to the start of the memory area

● May return NULL

● Has to be deallocated by calling free()

● Calls something called sbrk() internally

2

sbrk(size)

● The almost raw way of asking for memory

● Increments the program break by the defined size in bytes

● Returns the previous address of the program break

● sbrk(0) – returns current address of the program break

3

brk(address)

● The raw way of asking for memory

● Sets the program break to the specified address

● Returns 0 on success

4

free(pointer)

Going back to malloc...

● Deallocates the memory that malloc() pointed to

● Meta data is kept in the memory header to allow it to be freed (and maybe other stuff)

● Also calls sbrk() internally

MemoryMeta

return address of malloc() 5

Allocation Strategies

The problem of how to get and return memory: How to split and coalesce

● List based allocation
○ Best fit

■ slow
○ Worst fit

■ low external fragmentation, high internal fragmentation
○ First fit / next fit

■ quick but high external fragmentation

● Buddy allocation

6

List based approach

● Contains blocks of the available free
space on the heap

● Naïve: one list for all blocks

○ Different selection strategies exists

● One list for each size: segregated list

○ Similar structure used in malloc

32 b

64 b

128 b

7

Segregated list

Selection strategies for lists

Which block will each strategy choose for a request of size 15?

● Best fit: 20

● Worst fit: 30

● First/Next fit: 30

8

Buddy allocation

● Similar structure used on OS level

● Easy to coalesce

● Memory is recursively splitted into two to appropriate
size

● Cons – Internal fragmentation with only size 2^n

9

2017-08-21

10

2017-08-21

Answers:
One of the obvious upsides of this approach would be that we don’t have to search through “all” of the
blocks. Decreasing the time it takes to find a free block.

If we were to split the selected block we also get less external fragmentation than best fit.
However if we don’t split the selected block we end up with a lot of internal fragmentation.

11

2017-08-21

12

2017-08-21

Answers:
By explicitly setting the top of the heap using the brk() or by giving sbrk() a
negative value

13

2017-12-18

14

2017-12-18

Answers:
Every thread has its own list of free blocks, meaning that it’s safe operate on the list of free blocks
without semaphores and locks. This maximises the chances of good cache performance on the
individual thread.
However this creates the risk of creating an imbalance between the amount of free blocks on the
threads. Hence we could end up with a thread that’s out of free space, and the free space on the other
threads can’t be used.

15

16

17

2017-06-07

18

2017-06-07

Answers:
We can use the buddy-algorithm strategy to simply toggle a bit to get the
address of the “Buddy”, which is a VERY quick operation.
A limitation of this algorithm however is that we can’t merge two blocks unless
they’re buddies, even though they’re side by side.
Also we can only allocate these fixed sizes leading to internal fragmentation

19

20

21

22

