
Threads - Roll your own

How do we actually switch between
execution contexts in UNIX?

Credits to
Hannes Rabo
Katariina Martikainen
Charlotta Spik

KTH Kista, Sweden 26.11.2019

Thread or process?

- processes run in separate memory spaces
- threads share a memory space
- a thread is an entity within a process → process can have multiple threads
- a thread contains set of structures the system will use to save the thread context until

it is rescheduled

What is context?

- The information necessary for keeping track of where we are executing

- Thread context
- thread's set of machine registers
- the kernel stack (system calls etc here)
- a thread environment block (holds info of the thread’s state)
- a user stack in the address space of the thread's process (executable user code here)

ucontext_t - What do we find in it?

ucontext_t is a struct containing all the information about a context

Most importantly (for this assignment) contains

- uc_link - The link to the context to resume after termination
- uc_stack - Setting the stack connected to this context

Other things such as registers are also saved here

ucontext_t - How do we find it?

- getcontext(&context_struct)
- Get a current context the program is running in and store it in the struct context_struct

- makecontext(&context, func, param)
- Make a new context. Starts executing from the function specified in func with

parameters specified in param

Making the switch

A call to swapcontext(&context_one, &context_two) will:

- Write current state (including stack, registers, instruction pointer etc.) to context_one
- Previously saved context_two becomes the current context

As the instruction pointer is overwritten, the execution will probably start at a new location!

To Yield or not to Yield

Two primary ways we could handle switching

- Threads yield to release the resources (explicit function call)
- Timeout that interrupts at any moment

You will explore this topic later!

Why would we use this?

1. Do not write your own thread libraries if you do not know what you are doing
2. The primary performance gain is from avoiding kernel mode
3. We are avoiding real parallelism with all connected problems

Conclusion: Combined with hardware threads, this is similar to how libraries are implemented

Exam
Questions

Exam question 1

Exam question 1

Exam Question 2

Exam Question 2

