Ping Pong

KTH Kista
Stockholm
02.12.2019

Pipes & Flow Control

e Pipes are one-directional streams of data that operates within a single machine.

e When the pipe is full, the sender will be suspended until the receiver has cleared space for
new data

e Can be accessed either through a Shared memory (Fork) or a named File

-
Sender = - 100101011101010101001001001 =» Receiver

Sockets - Higher level abstraction

e One limitation of pipes is that they are one way

e Sockets provide abstraction for a two way connections and location transparency
(you can send things to you friends!)

e Supports communication both locally and over a network

e Both stream (TCP) and datagrams (UDP) are options

]
C l:lrentt Smashicon from www.flaticon.com

http://www.flaticon.com/

Datagrams

e UDP
e Every messages includes the length of that actual message.
e Not reliable

.,

Sender Receiver

Sending data - Marshalling

e Encode data structure or other data as pure binary data for sending over network
e The way we encode and decode datatypes is known as marshalling

e (Can be a problem when we are on different systems and compilers sender and receiver

5 10101010 5 5 10101010 5
@ 01010... 01010... @

) \
Y Y

Sender Receiver

Sending data - Endianness

Network byte order! (Big endian)

Address
Little-endian

Big-endian

Memory content

Low address

High address

0 1 2 3

4 5 6 7

Byte O | Byte 1 | Byte 2 | Byte 3

Byte 4 | Byte 5 | Byte 6 |Byte 7

Byte 7 | Byte 6 | Byte 5 | Byte 4

Byte 3 | Byte 2 | Byte 1 [Byte 0

0x11 | 0x22 | Ox33 | Ox44

0x55 | 0x66 | Ox77 | Ox88

64 bit value on Little-endian

64 bit value on Big-endian

0x8877665544332211

0x1122334455667788

Sending data - Where is the server?

e Two primary ways of identifying a socket in linux
e AF_INET vs AF_UNIX

e AF_INET is a socket “file” (same interface) but not in the namespace of the file system

Sockets and the file system

e Local sockets and named pipes are stored as special file types

e Otherfile types in linux: -, c, b, d, |

~rW-rw-r--
SrWXIrwxr -X
- FWXIWXI - X
-rW-rw-r--
Prw-r--r--

hannesr
hannesr
hannesr
hannesr
hannesr

hannesr
hannesr
hannesr
hannesr
hannesr

908 Oct
0 Dec
13K Dec

680 Oct
0 Dec

26 20
1 17
1517

26 20
1 17

:49 ping.c

i

:47 pong
:49 pong.c

41

sesame

Exam
Questions

Exam Question 1

We can easily do a fork() and then set up stdin and stdout for the two processes to
communicate through a so called pipe.

How can we achieve the same for two processes although they’re not created using a fork()?
Meaning we still want one process create a pipe that another process can read from.

Exam Question 1

We can easily do a fork() and then set up stdin and stdout for the two processes to
communicate through a so called pipe.

How can we achieve the same for two processes although they’re not created using a fork()?
Meaning we still want one process create a pipe that another process can read from.

Answer

One of the processes can register a pipe with a agreed upon file name, using the mkfifo
command. Now the other pipe can open that pipe as a file, using the specified name.

Exam Question 2

A so called pipe is a simple way to send data from one process to another. It does have its

limitations and a better way is to use so called sockets. If we use a stream socket between
two processes we will have several advantages.

Describe two advantages that a steam socket gives us that we will not have if we use a pipe.

Exam Question 2

A so called pipe is a simple way to send data from one process to another. It does have its limitations and a better
way is to use so called sockets. If we use a stream socket between two processes we will have several
advantages.

Describe two advantages that a steam socket gives us that we will not have if we use a pipe.

Answer

When using a stream socket we have a two-way communication, unlike the one-directional pipes.

Pipes are also limited to applications running on the same machine, unlike sockets that can be utilized to pass
data over a network. They provide so called location transparency.

Exam Question 3

Below is code were we open a socket and use the name space AF_INIT. We
will then be able to address a server using a port number and IP-address.
There are other name spaces that we can use when working with sockets.
Name one and decribe its advantages and disadvantages it might have.

struct
server
server
server

sockaddr 1n server;

.sin_family = AF INET;
.sin__port = htons (SERVER PORT);
.sin_addr.s addr = inet addr(SERVER IP);

Exam Question 3

Below is code were we open a socket and use the name space AF_INIT. We
will then be able to address a server using a port number and IP-address.
There are other name spaces that we can use when working with sockets.
Name one and decribe its advantages and disadvantages it might have.

struct sockaddr in server;
server .sin_ family = AF INET;
server .sin_ port = htons (SERVER PORT);

server .sin_ addr.s addr = inet addr (SERVER IP);

Answer:

For example we have the AF_UNIX domain socket, that’s constrained to working with passing data between

applications on the same machine. It works by binding a specific file on file system that can opened from other
applications

This communication is faster, since we can skip the overhead of for example a TCP protocol. But as stated is
constrained to only working on communication within the machine.

Exam Question 4

int main() {
int mode = S_IRUSR | S_IWUSR | S _IRGRP | S_IROTH;
mkfifo (" sesame" | mode);
- add flow control

2.2 pipes [2 points]

The program below opens a pipe and
iterates a number of times (ITERATIONS)
where each iteration sends a number
(BURST) of messages ('0123456789").
We need to handle the situation where the
receiving process will not keep up with the
sender; how do we implement ow-control
to avoid buffer overflow?

int flag = O _WRONLY;

int pipe = open("sesame", flag);

/% produce quickly x/
for(int i = 0; i < ITERATIONS; i++4) {
for(int j = 0; j < BURST; j++) {
write (pipe, "0123456789", 10);

" add flow control

}

printf (" producer burst %d done\n" K i);

}

printf (" producer done\n");

}

Exam Question 4

int main() {
int mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;

mkfifo(" sesame", mode);
add flow control

2.2 pipes [2 points]

The program below opens a pipe and ; "
iterates a number of times (ITERATIONS) Lot Elag = GV
where each iteration sends a number
(BURST) of messages ('0123456789").
We need to handle the situation where the
receiving process will not keep up with the
sender; how do we implement ow-control
to avoid buffer overflow?

int pipe = open("sesame", flag);

/* produce quickly x/
for(int i = 0; i < ITERATIONS; i++) {
for(int j = 0; j < BURST; j++4) {
write (pipe, "0123456789", 10);

" add flow control
Answer: Pipes have built in flow control so
we do not have to do anything.)

printf (" producer burst %d done\n", i);

}

printf (" producer done'\n");

Exam question 5

J

2.3 SOCK WHAT |2 points*]

When you create a socket you can choose to create a SOCK_STREAM or
SOCK_DGRAM. Which properties differ and when is it an advantage to
choose one over the other.

Exam question 5

2.3 SOCK WHAT |2 points*|

When you create a socket you can choose to create a SOCK_STREAM or
SOCK DGRAM. Which properties differ and when is it an advantage to

choose one over the other.

Exam question 5

Answer: The big difference is that SOCK_STREAM 1s a double direction
connection providing a sequence of bytes while SOCK DGRAM is a one
directional channel for messages of limited size.

The advantage SOCK _DGRAM is that the receiver will receive one message
at a time and need not think about how to divide a sequence of bytes into
messages. If the messages are of limited size it 1s almost always better to use

SOCK_DGRAM. The order is however not guaranteed nor that messages
actually arrive. If this is important one has to implement a protocol to keep
the order and request resending.

