
Ping Pong

KTH Kista
Stockholm
02.12.2019



Pipes & Flow Control

● Pipes are one-directional streams of data that operates within a single machine.

● When the pipe is full, the sender will be suspended until the receiver has cleared space for 
new data

● Can be accessed either through a Shared memory (Fork) or a named File

Sender Receiver



Sockets - Higher level abstraction 

● One limitation of pipes is that they are one way
● Sockets provide abstraction for a two way connections and location transparency

(you can send things to you friends!)
● Supports communication both locally and over a network 
● Both stream (TCP) and datagrams (UDP) are options

Icon made by Smashicon from www.flaticon.comServer

{

Client

{

http://www.flaticon.com/


Datagrams

● UDP
● Every messages includes the length of that actual message.
● Not reliable

Sender Receiver



Sending data - Marshalling

● Encode data structure or other data as pure binary data for sending over network

● The way we encode and decode datatypes is known as marshalling

● Can be a problem when we are on different systems and compilers sender and receiver

10101010
01010...

10101010
01010...

Sender Receiver



Sending data - Endianness

● Network byte order! (Big endian)



Sending data - Where is the server?

● Two primary ways of identifying a socket in linux

● AF_INET vs AF_UNIX

● AF_INET is a socket “file” (same interface) but not in the namespace of the file system



Sockets and the file system

● Local sockets and named pipes are stored as special file types

● Other file types in linux: -, c, b, d, l



Exam
Questions



Exam Question 1

We can easily do a fork() and then set up stdin and stdout for the two processes to 
communicate through a so called pipe. 
How can we achieve the same for two processes although they’re not created using a fork()? 
Meaning we still want one process create a pipe that another process can read from.



Exam Question 1

We can easily do a fork() and then set up stdin and stdout for the two processes to 
communicate through a so called pipe. 
How can we achieve the same for two processes although they’re not created using a fork()? 
Meaning we still want one process create a pipe that another process can read from.

Answer: 

One of the processes can register a pipe with a agreed upon file name, using the mkfifo 
command. Now the other pipe can open that pipe as a file, using the specified name.



Exam Question 2

A so called pipe is a simple way to send data from one process to another. It does have its 
limitations and a better way is to use so called sockets. If we use a stream socket between 
two processes we will have several advantages. 
Describe two advantages that a steam socket gives us that we will not have if we use a pipe.



Exam Question 2

A so called pipe is a simple way to send data from one process to another. It does have its limitations and a better 
way is to use so called sockets. If we use a stream socket between two processes we will have several 
advantages. 
Describe two advantages that a steam socket gives us that we will not have if we use a pipe.

Answer:

When using a stream socket we have a two-way communication, unlike the one-directional pipes.

Pipes are also limited to applications running on the same machine, unlike sockets that can be utilized to pass 
data over a network. They provide so called location transparency.



Exam Question 3



Exam Question 3



Exam Question 4

2.2 pipes [2 points]

The program below opens a pipe and 
iterates a number of times (ITERATIONS) 
where each iteration sends a number 
(BURST) of messages ("0123456789"). 
We need to handle the situation where the 
receiving process will not keep up with the 
sender; how do we implement ow-control 
to avoid buffer overflow?



Exam Question 4

2.2 pipes [2 points]

The program below opens a pipe and 
iterates a number of times (ITERATIONS) 
where each iteration sends a number 
(BURST) of messages ("0123456789"). 
We need to handle the situation where the 
receiving process will not keep up with the 
sender; how do we implement ow-control 
to avoid buffer overflow?

Answer: Pipes have built in flow control so 
we do not have to do anything.



Exam question 5



Exam question 5



Exam question 5


