Exam Questions

2019-11-12
KTH Kista - ID1206 Operating Systems

Structure of the Exam

e Questions from the book, lectures, seminars and assignments

e Two Parts -
o Part 1
m 5 Questions, 10 points. Fx - 7 points, E - 8 points
m thestudent should be able to:
e explain how multi-threaded processes are structured
e explain how an operating system can handle several processes at the same time
o Part 2
m For higher grades. 5 Pass/Fail questions. where 2 Correct=D,3=C,4=B,5=A
m thestudent should be able to:
e explain how virtualisation of memory is implemented
explain how memory management is implemented
explain properties for different scheduling algorithms
explain properties for different types of process communication
explain implementation of more advanced file system.

How to Study for the Exam?

e Readthe book
e Gothroughthe lectures

e Do the assignments
o Processes
o Virtual memory
o Concurrency
o File Systems

e You are allowed to have a self handwritten A4 paper with you

Part 1. Question 1

1 stack or heap [2 points]

What is done in the procedure below and where should gurka be allocated?
Why? Complete the code so that gurka is allocated space.

int *tomat(int *a, int *b) {
// allocate room for gurka

kgurka = *a + *b;
return gurka;

}

Part 1. Question 1

1 stack or heap [2 points]

What is done in the procedure below and where should gurka be allocated?
Why? Complete the code so that gurka is allocated space.

int *tomat(int *a, int *b) {
// allocate room for gurka

Answer: The function will return a pointer to a int that then must be
xgurka = *a + *b; allocated on the heap. The variable gurka should point to a heap allocate
return gurka; are large enough to store an int. This is achieved by:

} int *gurka = (int*)malloc(sizeof(int));

2 fork() [2 points]

What is printed when we run the program below, what alternatives exist
and why do we get this result?

Part 1. Question 2

int global = 17;

int main () {
int pid = fork ();
if (pid == 0) {
global++4;
} else {
global+4
wait (NULL) ;
printf("global = %d ‘n", global);
}

return 0;

2 fork() [2 points]

What is printed when we run the program below, what alternatives exist
and why do we get this result?

Part 1. Question 2

int global = 17;

int main () {
int pid = fork ();
if (pid == 0) {
global++4;
} else {
global+4
wait (NULL) ;
printf("global = %d ‘n", global);
}

return 0:
Answer: The output will be global = 18 once. The two processes will have
their own copy of the data segment and hence global. Since the updates are
independent of each other the final result in both cases is 18. Only the mother
process will output the result.

3 __sync_val_compare_and_swap() [2 points]

We can implement a spin lock in GCC as shown below. The lock is imple-
= mented using a machine instruction that atomically will read the content
Pa rt 1. Questlon 3 of a memory location and, if it is equal to our requirement, replace it with
a new value. In the implementation below we represent an open lock with
the value 0Q; if the lock is open we write a 1 in the location and return 0,
otherwise we return the value found (that then should be 1).

Assume that we use the lock to synchronize two threads on a machine with
only one core; what is then the disadvantage that we will have? How could
we mitigate the problem?

int try(volatile int *mutex) {
return __sync_val_compare_and_swap (mutex, 0, 1);

void lock(volatile int s=mutex) {
while(try (mutex) != 0) { }
}

void release(volatile int #mutex) {
smutex = 0;

}

3 __sync_val_compare_and_swap() [2 points]

We can implement a spin lock in GCC as shown below. The lock is imple-
u mented using a machine instruction that atomically will read the content
Pa rt 1. Questlon 3 of a memory location and, if it is equal to our requirement, replace it with
a new value. In the implementation below we represent an open lock with
the value 0Q; if the lock is open we write a 1 in the location and return 0,
otherwise we return the value found (that then should be 1).

Assume that we use the lock to synchronize two threads on a machine with
only one core; what is then the disadvantage that we will have? How could
we mitigate the problem?

int try(volatile int *mutex) {

Answer: If a thread takes the lock and is then suspended by the scheduler, Satikn sync_val compare and swap (mutex, 0, 1);
. __sync_val ¢ . : | x, 0, :

the scheduled thread could in the worst case spend its whole allotted time }
slot spinning. We could yield the CPU, pthread_yield(), to allow the

suspended thread to continue its execution. void lock (volatile int smutex) {

while(try (mutex) != 0) { }
}

void release(volatile int #mutex) {
smutex = 0;

}

Part 1. Question 4

This is the print out. Explain what is found at the locations indicated by

arrows.

0x7ffca03d1748
0x7£f£fca03d1750
0x7f£fca03d1758
0x7f£ca03d1760
0x7f£fca03d1768
0x7£f£fca03d1770
0x7£ffca03d1778
0x7£f£fca03d1780
0x7ffca03d1788
0x7£f£fca03d1790
0x7f£fca03d1798
0x7ffca03d17a0
0x7ffca03d17a8
0x7£f£fca03d17b0

p: O0x7£ffca03d17b0

0x3
0x7£f£fca03d1750
0xb93d7906926a7d00
0x7£f£fca03d1790
0x55cdac31d78c
0x7ffca03d17d8
0x7£f£fca03d17b0
Ox1

0x2
0x7£ffca03d17c0
0x55cdac31d7c2
0x55cdac31d810
Ox12acac31d5f0
Ox1

back: 0xb55cdac31d7c2

4 a stack, a bottle and.. [2 points]

You have written the program below to examine what is on the stack.

void zot (unsigned long *stop) {

void foo(unsigned

¥

unsigned long r

= 0x3;

unsigned long *ij;

for(i = &r; i <= stop; i++){ printf("¥p

unsigned long q

zot (stop);

int main() {

}

unsigned long p
foo(&p);

back:

printf(" p: %p
printf(" back:
return O;

long *stop) {
= 0x2;

= 0x1;

\n", &p);

%p \n", &&back);

Ox%lx\n", i, *i);

}

Part 1. Question 4

This is the print out. Explain what is found at the locations indicated by

arrows.

0x7ffca03d1748
0x7£f£fca03d1750
0x7f£fca03d1758
0x7f£ca03d1760
0x7f£fca03d1768
0x7£f£fca03d1770
0x7£ffca03d1778
0x7£f£fca03d1780
0x7ffca03d1788
0x7£f£fca03d1790
0x7f£fca03d1798
0x7ffca03d17a0
0x7ffca03d17a8
0x7£f£fca03d17b0

p: O0x7£ffca03d17b0

0x3
0x7££fca03d1750

4 a stack, a bottle and.. [2 points]

You have written the program below to examine what is on the stack.

void zot (unsigned long *stop) {

void foo(unsigned

¥

unsigned long r

= 0x3;

unsigned long *ij;

for(i = &r; i <= stop; i++){ printf("¥p

unsigned long q

zot (stop);

0xb93d7906926a7d00 Previous stack base pointer (EBP)t main() {

0x7£f£fca03d1790
0x55cdac31d78c
0x7ffca03d17d8
0x7£f£fca03d17b0
Ox1

0x2

0x7£ffca03d17c0
0x55cdac31d7c2
0x55cdac31d810
Ox12acac31d5f0
Ox1

back: 0xb55cdac31d7c2

return address from zot.

}

unsigned long p
foo(&p);

back:

printf(" p: %p
printf(" back:
return O;

long *stop) {
= 0x2;

= 0x1;

\n", &p);

%p \n", &&back);

Ox%lx\n", i, *i);

}

Part 1. Question 5

5 library call vs system call [2 points]

An operating system that implements POSIX should provide specified func-
tionality to a user process. Is this provided by system calls, library procedures
or a combination of both? Explain the difference between system calls and
procedure calls and which parts belong to the operating system.

Part 1. Question 5

5 library call vs system call [2 points]

An operating system that implements POSIX should provide specified func-
tionality to a user process. Is this provided by system calls, library procedures
or a combination of both? Explain the difference between system calls and
procedure calls and which parts belong to the operating system.

Answer: POSIX is partly provided by system calls and partly be library
procedures, they both belong to the operating system. Library procedures
are executed in user mode and can thus work without a costly context switch.
Since library procedures are more efficient, as much as possible should be
implemented using them. Library procedures are however limited in that
they do not have access to the global data structures of the operating system
and can thus not provide all functionality. Even if not all can be done 1 user
space it is, as in malloc/free, an advantage to do most of the work there.

/* add2.c x/

Part 2. Question 6 #include <stdlib.h>

#include <stdio.h>

6 from one to the ...[P/F] int main() {

Assume that we have two programs, ones and add2, implemented as bellow.

The call to scanf ("\%d", \&in) will read from stdin and parse a number int in;

that is then stored in \&in. The procedure either returns 1, if it manages to int result = sc anf("%d" . &in) :
read number, or EOF. The call to printf () will write the number to stdout.

while(result != EOF) {

/% omnes.c x/

#include <stdlib . h> printf("%d\n", in+2);
#include <stdio.h> result = Scanf("%d", &in);
int main() {
. t 0;
for(int n = 5; n > 0; n—) { RETIEER
printf("%d\n", n); }
; You have a Linux computer and all possible programs. How would you in

return 0: the simplest possible way make the output from the first program, ones, be
} read by the the other program add2.

/* add2.c x/

Part 2. Question 6 #include <stdlib.h>

#include <stdio.h>

6 from one to the ...[P/F] int main() {

Assume that we have two programs, ones and add2, implemented as bellow.

The call to scanf ("\%d", \&in) will read from stdin and parse a number int in;

that is then stored in \&in. The procedure either returns 1, if it manages to int result = sc anf("%d" . &in) :
read number, or EOF. The call to printf () will write the number to stdout.

/% ones.c */ $> ./ones | ./add2 while(result != EOF) {
#include <stdlib.h> ; printf("%d\n", in+2);
#include <stdio .h> 6 rcsult — Scanf("%d"’ &ln)’
int main() { 5
4 :
for(int n = 5; n > 0; n—) { retmen: U
printf("%d\n", n); 3 }
; You have a Linux computer and all possible programs. How would you in

return 0: the simplest possible way make the output from the first program, ones, be
} read by the the other program add2.

Part 2. Question 7

7 Scheduling [P /F]

Assume that we have a scheduler that implements shortest job first. We have
four jobs described below as (arrive at, ezecution time) in ms. Draw a time
diagram and specify the turnaround time for each of the jobs.

e J1:(0,40)

e J2:(0,30) Sz

e J3:(10,10)

o J4 : (20,30) J2:
J3:
J4:

0 10 20 30 40 50 60 70 8 90 100 110 120 ms

turnaround = finish time - arrival time

0 e J1=110-0=110ms
Part 2. Question 7 S a0 0t lo
: e J3=40-10=30ms
7 Scheduling [P /F] e J4=70-20=50ms

Assume that we have a scheduler that implements shortest job first. We have
four jobs described below as (arrive at, execution time) in ms. Draw a time
diagram and specify the turnaround time for each of the jobs.

Answer:
e J1:(0,40) 110 ms
Ah R e e R e i e s R ot T
e J2:(0,30) 30 ms
e J3:(10,10) 30 ms J2:
e J4:(20,30) 50 ms
j3 b--mmeee-

0 10 20 30 40 50 60 70 80 90 100 110 120 ms

Part 2. Question 8

8 you win some,you loose some [P /F]

Assume that we have a paged virtual memory with a page size of 4Ki byte.
Assume that each process has four segments (for example: code, data, stack,
extra) and that these can be of arbitrary but given size. How much will the
operating system loose in internal fragmentation?

Part 2. Question 8

8 you win some,you loose some [P /F]

Assume that we have a paged virtual memory with a page size of 4Ki byte.
Assume that each process has four segments (for example: code, data, stack,
extra) and that these can be of arbitrary but given size. How much will the
operating system loose in internal fragmentation?

Answer: Each segment will in average give rise to 2Ki byte of fragmentation.
This will in average mean 8 Ki byte per process.

It we for example have 100 processes this is a total loss of 800 Ki byte.

Part 2. Question 9

9 paged memory with 64 byte pages [P /F]

You have been asked to propose an architecture for a processor that should
have a paged virtual memory with the page size as small as 64 byte. The
processor is a 16 bit processor and the virtual address space should be 216
by tes.

Propose a scheme that uses a hierarchical page table based on pages of 64
Ki byte and explain how the address translation is done.

Part 2. Question 9

9 paged memory with 64 byte pages [P /F]

You have been asked to propose an architecture for a processor that should
have a paged virtual memory with the page size as small as 64 byte. The
processor is a 16 bit processor and the virtual address space should be 216
by tes.

Propose a scheme that uses a hierarchical page table based on pages of 64

Ki byte and explain how the address translation is done.
Answer: One proposal is to use an offset of 6 bits and then have two levels
in the tree with an index of 5 bits on each level. We need 6 bits as offset to
address 64 bytes. The 5 bit used as index would mean that we could have
32 elements in a page table. If we encode each entry as two bytes we can
encode a table in a page of 64 bytes. Using two bytes as an entry should be
sufficient given that we only need 5 bits for an index, we have 11 bits for
flags etc.

Part 2. Question 10

10 log-based fs [P/F]

In a log-based file system we write all changes in a continuous log without
changing the existing data blocks that has been allocated to a file. We will
sooner or later run out of blocks and need to reclaim blocks that are no

longer used.

How do we keep track of which blocks that can be reused and what do we
do to reclaim the blocks?

Part 2. Question 10

10 log-based fs [P/F]

In a log-based file system we write all changes in a continuous log without
changing the existing data blocks that has been allocated to a file. We will
sooner or later run out of blocks and need to reclaim blocks that are no
longer used.

How do we keep track of which blocks that can be reused and what do we
do to reclaim the blocks?

Answer: We need to identify the used block in the very back of the log. If
we can move this block to the front of the log we can reused all consecutive
blocks up to the next used block that is now the last used block in the log.

We maintain an inverse mapping that for a given block will tell us the inode
of that the block belongs to. This means that we can determine if a block is
used an if so, to which inode it belongs. If we copy the last block in the log
to the front we also make a new copy of its inode with an updated sequence
of blocks.

Unix Commands

Is — list files and directories

mkdir — create directory

rmdir — remove directory

cd — change directory

pwd — path to current directory
touch - create a file

rm — remove files or directories
mv — move a file

cp — copy files or directories

In — create a link to a file

chmod — change permissions of a file

cat — print file to standard output

echo —display a line of text

head - output the first part of file

tail — output the last part of file

diff — compare files line by line

sort — sort lines of text files

wc - newline, word and byte count for file
sed — stream editor

grep — find a pattern in a file

tr — translate or delete characters

man — manual

Question 11

5.1 parking lots [2 points]

When they arranged for parking space along Sveavigen (central Stockholm)
there were two alternatives: 1/ have painted parking lots of 6m in length or
2/ let cars park with 25 cm distance without the limitation of painted lots.
If we, for simplicity, assume that cars are between 4.0 and 5.5 meters and
that everyone can park a car in a slot with half a meter of extra space, then
what is the problem with each of the solutions?

Question 11

5.1 parking lots [2 points]

When they arranged for parking space along Sveavigen (central Stockholm)
there were two alternatives: 1/ have painted parking lots of 6m in length or
2/ let cars park with 25 cm distance without the limitation of painted lots.
If we, for simplicity, assume that cars are between 4.0 and 5.5 meters and
that everyone can park a car in a slot with half a meter of extra space, then
what is the problem with each of the solutions?

Answer: In the first alternative we will have internal fragmentation since
we loose in average 75 cm in each lot. The second alternative will risk having
external fragmentation since empty spaces can be two small for most cars.

Question 12

1.2 memory map [2 points]

Below is a, somewhat shortened, printout of a memory mapping of a running

process. Briefly describe the role of each segment marked with 777,

> cat /proc/13896/maps

00400000-00401000 r-xp 00000000 08:01 1723260
00600000-00601000 r--p 00000000 08:01 1723260
00601000-00602000 rw-p 00001000 08:01 1723260
022£a000-0231b000 rw-p 00000000 00:00 O

7£6683423000-7£66835e2000 r-xp 00000000 08:01

7££d60600000-7££d60621000 rw-p 00000000 00:00
7££d60648000-7££d6064a000 r--p 00000000 00:00
7££d6064a000-7££d6064c000 r-xp 00000000 00:00

fEEf££££££600000-£E££££££££601000 r-xp 00000000 00:00 O

3149003

0
0
0

.../gurka 777
.../gurka 777
.../gurka 777

[777]
.../1ibc-2.23.s0 777

[?77]
[vvar]
[vdso]
[vsyscalll

Question 12

1.2 memory map [2 points]

Below is a, somewhat shortened, printout of a memory mapping of a running
process. Briefly describe the role of each segment marked with 777,

> cat /proc/13896/maps

00400000-00401000 r-xp 00000000 08:01 1723260 .../gurka 777
00600000-00601000 r--p 00000000 08:01 1723260 .../gurka 777
00601000-00602000 rw-p 00001000 08:01 1723260 .../gurka 777
022£a000-0231b000 rw-p 00000000 00:00 O [777]
7£6683423000-7£66835e2000 r-xp 00000000 08:01 3149003 .../libc-2.23.s0 777
7££d60600000-7££d60621000 rw-p 00000000 00:00 0 [777]
7££d60648000-7££d6064a000 r--p 00000000 00:00 O [vvar]
7££d6064a000-7££d6064c000 r-xp 00000000 00:00 O [vdso]

£EE£EEFEFE600000- FEFEEEEE£E601000 T-xp 00000000 00:00 0 [vsyscalll
Answer: The first three segments are: code, read-only data and global data
for the running process gurka. Then there is a segment for the heap. The seg-
ment marked with 1ib-2.23.s0 is a shard library. In the uppermost region
we find the segment of the stack.

Question 13

2.1 count [2 points]

What will be printed if we execute the procedure hello() below concurrently
in two threads? Motivate your answer.

int loop = 10;

void xhello () {
int count = 0

]

for(int i = 0; 1 < loop; i++) {
count—++;
}

printf("the count is %d\n", count);

}

Question 13

2.1 count [2 points]

What will be printed if we execute the procedure hello() below concurrently
in two threads? Motivate your answer.

int 1 = 10;
Bk 08P ! Each thread has its own version of count and the two

threads will not disturb each other. Therefore, each

void *hello () ({) thread will print “the count is 10”

int count =

for(int i = 0; i < loop; i++) {
count+-+;
}

printf("the count is %d\n", count);

}

Question 14

5.1 what could happen [2 points]

Assume that we have simple file system without a journal where we write
directly to bitmaps, inodes and data data blocks. Assume that we shall write
to a file and that an additional data block is needed. When we perform the
operations on disc, we only succeed in updating the inode but not the bit
maps nor the selected data block before we crash.

If we do not detect the error when we restart, which problems will we have
and what could happen?

Question 14

5.1 what could happen [2 points]

Assume that we have simple file system without a journal where we write
directly to bitmaps, inodes and data data blocks. Assume that we shall write
to a file and that an additional data block is needed. When we perform the
operations on disc, we only succeed in updating the inode but not the bit
maps nor the selected data block before we crash.

If we do not detect the error when we restart, which problems will we have

; - ?
and what could happen! Answer: We will have a data block that is allocated to an inode but the

data block contains garbage and it is marked as free in the bit-maps. If we
read from the file we will read garbage but worse if we use the data block
for another file. This new file will then write its data to the block that can
then be over written when we write to the first file. If the data block is used
to represent a directory, this could of course result in total chaos.

Question 15

1.1 stack or heap [2 points]

What is done in the procedure below and where should gurka be allocated?
Why? Complete the code so that gurka is allocated space.

void tomat(int *a, int *Db) {
// allocate room for gurka

gurka = *a;

xa = xb;

*b = gurka;
i

Question 15

1.1 stack or heap [2 points]

What is done in the procedure below and where should gurka be allocated?
Why? Complete the code so that gurka is allocated space.

void tomat(int *a, int *Db) {
// allocate room for gurka

int gurka;

gurka = *a;
xa = xb;

*b = gurka; . : . g
} after the call to tomat(). This is done by adding a local declaration int

Answer: The procedure switches value of the two arguments. The variable
should be allocated on the stack since it has a known size and is not needed

gurka;.

Question 16

4.1 aproximate what? [2 points]

The clock algorithm, that is used to swap pages from memory, is described
as an approximation. What is it that it tries to approximate? Describe a
scenario when it does not do the right choice because of the approximation.

Question 16

4.1 aproximate what? [2 points]|

The clock algorithm, that is used to swap pages from memory, is described
as an approximation. What is it that it tries to approximate? Describe a
scenario when it does not do the right choice because of the approximation.

Answer: It approximates LRU (least recently used). It only notes that a page
has been used since the last turn, not how often or when it was accessed. If it
is time to swap a page and all pages are marked as being used, the algorithm
will clear the markers one by one and then swap the first page. It could be
that this page was the page that was access most recently and thus should

not be swapped.

Question 17

2.2 pipes [2 points]

The program below opens a pipe and iterates a number of times (ITE-

RATIONS) where each iteration sends a number (BURST) of messages

("0123456789"). We need to handle the situation where the receiving process
will not keep up with the sender; how do we implement flow-control to avoid
buffer overflow?

int main () {
int mode = S_IRUSR I S_IWUSR | S_IRGRP | S_TROTH;
mkfifo("sesame", mode);
" add flow control

Il

int flag = O_WRONLY
int pipe = open ("sesame", flag);

/# produce quickly =/
for(int i = 0; i < ITERATIONS; i++4) {
for(int j = 0; j < BURST; j++) {

write (pipe, "0123456789", 10);
'/ add flow control

}

printf ("producer burst %d done'n", i);

}

printf("producer done'n");

1

2.2 pipes [2 points]|

If we have two processes, one producer and one consumer, that are communi-
cating through a so called pipe. How can we then prevent that the producer
sends more information than the consumer is ready to receive and thereby
crash the system.

Question 17 2.2 pipes [2 points]
The program below opens a pipe and iterates a number of times (ITE-
RATIONS) where each iteration sends a number (BURST) of messages
("0123456789"). We need to handle the situation where the receiving process
will not keep up with the sender; how do we implement flow-control to avoid
buffer overflow?

int main () {
int mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
mkfifo("sesame", mode);
" add flow control
Answer: Pipes have built-in flow controll. If the consumer does not read

from the pipe the producer will be suspended when it tries to write the filled

Il

int flag = O_WRONLY
int pipe = open ("sesame", flag); pipe.

/# produce quickly =/
for(int i = 0; i < ITERATIONS; i++4) {

for(int j = 0; j < BURST; j++) {

write (pipe, "0123456789", 10);

/ add flow control 2.2 pipes |2 points]
) If we have two processes, one producer and one consumer, that are communi-
printf("producer burst %d done'\n", i); cating through a so called pipe. How can we then prevent that the producer
} sends more information than the consumer is ready to receive and thereby

printf("producer done'n");

crash the system.

1

Question 18

1.1 fork() [2p]
When you create a process using fork () the two processes will share some
structures. Which, if any, of the following will the two processes share.

e Stack

e Heap

e Global memmory

e Code area

e Open files

Question 18

1.1 fork() [2p]

When you create a process using fork () the two processes will share some
structures. Which, if any, of the following will the two processes share.

e Stack Answer: no
e Heap Answer: no

e Global memmory Answer: no

Code area Answer: no

Open files Answer: yes

Question 19

4.1 A paging MMU with TLB [2p]

Below is a picture of a MMU that uses a TLB to translate virtual addresses
to physical addresses. Identify the following units and addresses: virtual add-
ress, physical address, page table base register (PTBR), offset in page, page
number (VPN), frmae number (PFN), TLB, page table, page table entry
EEB) s S e e S

Question 19

4.1 A paging MMU with TLB [2p]

Below is a picture of a MMU that uses a TLB to translate virtual addresses
to physical addresses. Identify the following units and addresses: virtual add-
ress, physical address, page table base register (PTBR), offset in page, page
number (VPN), frmae number (PFN), TLB, page table, page table entry

(PTE). O —— ,
I I

I I

i e A e e ot X P R B et i L [/ |

1 | I I

virtual addr. 5 =7l offset E : !
A : : :

'VPN ! ! !

3 PFN | [:

— TLB - L ! I

: physical address , :

VPN : | I

i ! ! 1

PTE ; ® PIBE,] | @ I:I I

1 I I I

1 I] I

Question 20

3.2 reaction time [2 points]

When we want to reduce the reaction time we want to preempt a job even
though the job is not completed. If we choose to do this we have one pa-
rameter to set, by changing this we can improve the reaction time. Which
parameter 1s it? How should it be set and what unwanted consequence might
it have?

Question 20

3.2 reaction time [2 points]

When we want to reduce the reaction time we want to preempt a job even
though the job is not completed. If we choose to do this we have one pa-
rameter to set, by changing this we can improve the reaction time. Which
parameter 1s it? How should it be set and what unwanted consequence might
it have?

Answer: We can decrease the time slot given to a process. Doing so will
decrease the reaction time of processes. Jobs that are ready to run will be
scheduled much quicker. The disadvantage is that we will increase the tur-
naround time and in the worst case spend a large part of the time switching
between processes.

Questions?

