
SF2812 Applied linear optimization, final exam
Monday March 9 2020 8.00–13.00

Brief solutions

1. (a) Let x and (y, s) be feasible solutions in (P) respectively (D). Duality gap while
taking into account feasibility of (P) and (D) gives

cTx− bT y = (c−AT y)Tx = sTx ≥ 0,

from which it follows that cTx ≥ bT y.

Alternatively:

Let x be a feasible solution to the primal problem and y be a feasible solution
to the dual problem. Let Aj be the j-th column of A and ai the i-th row of A.
Then, we define

ui = yi(aix− bi),
vj = (cj − y′Aj)xj .

The definition of the dual problem requires the sign of yi to be the same as the
sign of a′ix−bi, and the sign of cj−y′Aj to be the same as the sign of xj . Thus,
primal and dual feasibility imply that

ui ≥ 0, ∀i,

and
vj ≥ 0,∀j.

Notice that ∑
i

ui = y′Ax− y′b,

and ∑
j

vj = c′x− y′Ax.

We add these two equilities and use nonnegativity of ui, vj , to obtain

0 ≤
∑
i

ui +
∑
j

vj = c′x− y′b,

finishing the proof.

(b) Let x and (y, s) be feasible solutions in (P) respectively (D). Duality gap while
taking into account feasibility of (P) and (D) gives

cTx− bT y = (c−AT y)Tx = sTx = 0,

where the last equality follows from complementary slackness theorem. Thus
cTx = bT y.

Alternatively:

Let B the optimal basis, then xB = B−1b be the corresponding vector of basic
variables. Then the simplex method terminates, the reduced costs must be
nonnegative and we obtain

c′ − c′BB−1A ≥ 0′,
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where c′B is the vector of costs of the basic variables and 0′ the vector of 0’s with
the corresponding dimension. Let us define a vector y by letting y′ = c′BB

−1.
We then have y′A ≤ c′, which shows that y is a feasible solution to (D). In
addition

y′b = c′BB
−1b = c′BxB = c′x.

it follows that y is an optimal solution to the dual (corollary of the weak duality
theorem proven in a), and the optimal dual cost is equal to the optimal primal
cost.

2. (a) As we constrain the problem using bounds for the non integer variables, we are
making fractional extreme points infeasible, thus we expect the optimal value
of the problem to become equal or worse (defined whether we are minimizing
of maximizing). In the image, as we move deeper into the tree the objective
solution diminishes, then we conclude this is a maximization problem.

(b) Node 6, as is the only integer solution node in the tree.

(c) Node 7, being the deepest node with the highest objective value, and higher
than the current incumbent.

(d) As the objective value of the current incumbent, i.e. the lower bound, is 1,000
and the upper bound is 1,015, then the optimality gap is higher than 0%. We
conclude the problem should continue branching from the upper bound node,
i.e. node 7 branching variable x1. Then, we have not found the optimal solution.

3. Please refer to lesson 12.

4. (a) The primal-dual system obtained is

x1 + x2 = 1,
y1 + s1 = 1,
y1 + s2 = 1,
x1s1 = µ,
x2s2 = µ.

From the system we conclude that x1(µ) = x2(µ) = 1/2, y1(µ) = 1−2µ, s1(µ) =
s2(µ) = 2µ.

(b) If µ→ 0 then limµ→0 x1(µ) = limµ→0 x2(µ) = 1/2, limµ→0 y1(µ) = 1, limµ→0 s1(µ) =
limµ→0 s2(µ) = 0.

5. (a) We can easily check that xB ≥ 0 then it is feasible. Since B = [A2, A3], then
c̄ = cN − C ′BB−1N = [5/2, 15/2, 10] ≥ 0] then it is optimal.

(b) Using the optimal basis, let y = c′BB
−1 = [−15/2,−10] be the optimal dual

solution of our problem. Then, since y2 = −10 we conclude that for an extra
unit of supplies for vanilla cookies our objective value decreases in -10 units,
but we need to pay 10 units back to the supplier. Thus, as the total gain is
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−10 +10 = 0, we are economically indifferent in the offer. However, this is true
only within the limits set by the feasibility of the current basis. In other words,
we need to check that xB = B−1b̃ ≥ 0 where b̃ = b+ εe2 for some ε ∈ R. Then,
by solving B−1b̃ ≥ 0 we obtain the following inequations

25− 4− 2ε ≥ 0, 2 + ε ≥ 0.

Then, we get ε ∈ [−2, 21/2].

(c) First, we need to check if the new cost would change the current basis. For
that, we check the reduced costs c̄ = c̃N − c′BB−1N ≥ 0 where c̃N = cN + εe1
for some ε ∈ R. Therefore, we get the following inequation ε ≥ −5/2. Since
−20 × 50% = −10 < −5/2, we could conclude the optimal condition would
change and x1 would enter the basis for the next iteration. However, we would
have to continue the simplex algorithm to know the final basis and conclude if
that production plan would be optimal.

(d) A Dantzig-Wolfe (DW) decomposition would be the best fit, as the problem
has the proper structure: one row that binds all variables together and a set of
constraints that only relate to a variable for each row. We would need to select
a few extreme points, and since we bound every variable to be 0 ≤ xi ≤ di we
know that the feasible set is described as a polytope, so there are no extreme
rays simplifying the execution of the algorithm further.

(e) In this case, DW would not help as we lose convexity. Therefore, in this case
we do have more room to choose. First, the easiest would be to use lagrangian
relaxation as it shares the structure we could use. We would need to select which
set of constraints to relax: either the complicating constraint, the set of bounds
for each variable, or a combination of these. Another technique would be to use
the subgradient method, as it shares similarities with the lagrangian relaxation:
we would probably choose to relax the bounds, using the first row as a knapsack
constraint and then solve the problem of maximizing u by enumerating the
possible values of xi. Both techniques are valid and could potentially solve the
problem faster than using branch-and-bound.


