KTH Machine Design
Mechatronics
Björn Möller, Researcher/Track responsible
Engineering Design master

- Engineering Design at MMK offers:
 - System and component design
 - Combustion engine
 - Mechatronics
What is Mechatronics?

- Mechanics
- Control
- Embedded control system
- Software
- Actuators
- Sensors
- Communication
- Design
- Function, flexibility
- Reliability and safety
- "Intelligent" product
- User-inter

"Intelligent" product
Educational idea

• Production are outsourced outside Sweden - development tend to follow?

• Sweden has great opportunities for development of complex, knowledge-intensive products
 – Requires non-hierarchical structures, high technical competence, creativity, innovation

• We train leaders for the development of advanced products
 – Who understands the technology, the development and the trends
 – Who can actually create new products
Mechatronics research

• Autonomous vehicles
 – On and off terrain vehicles
• Hydraulic control
• Energy optimization
• Prosthetics (3D printing + sensors)
• 3D printing – wood as the sole material
• 4D printing
• Embedded control
 – Architecture
 – Model based design of CPS
 – Design and optimization
 – Safety
• And much more
Autonomous off terrain vehicles

Object detection Local topology estimation Map data

Safety zone (Stop activity if occupied by pedestrian)

Tracking control (Computes wheel torques and steering angle to track local plan)

Local plan: \([X(t) \ Y(t) \ v(t)]\)

Global plan: \([X \ Y]\)

(From harvester trace or drawn in map by operator)
Topology estimation
Mechatronic master program

Year 1

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF2030 AK 6hp</td>
<td>MF2007 DoR 9hp</td>
<td>MF2058 HK 6hp</td>
<td>MF2058 HK 3hp</td>
</tr>
<tr>
<td>MF2043 Robust 6hp</td>
<td>Electives 6hp</td>
<td>MF2103 ES 9hp</td>
<td>Electives 12hp</td>
</tr>
<tr>
<td>MF2095 C-prog 3hp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF2059 HK 7,5hp</td>
<td>MF2059 HK 7,5hp</td>
<td>Master thesis 30hp</td>
<td></td>
</tr>
<tr>
<td>Electives 7,5hp</td>
<td>MF2071 Research methodology 4,5hp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives 3hp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2020-04-01 KTH Mechatronics 10
Capstone Course

- **Course Aim** - Through a close cooperation with an industrial or research partner, the student is expected to work on a complex product development project, while learning to get organized within a large development team.

- Develop a solution to a problem from an industrial or researcher partner – in a development team

- **Format**
 - 5-8 development projects (depending on amount of students)
 - 7-10 team members per project
 - Develop prototype(s), research state-of-the-art, …
 - Report!
Capstone Course – course structure

Spring

Autonomous Recovery Project
Seminar Series
Project management
System engineering
Start of the project
SOTA
Concept design

Fall

HK Project
Building the prototype
Demonstration Report
Capstone courses – project example

- https://www.youtube.com/watch?v=O3kJOswfwMs&list=PLRCuupWU9KjmhcH2SFvOrtC4UhDJobC8&index=3
KTH Prototype center

- Full access to our equipment during your master
Contact

• Björn Möller
 – bjornmm@kth.se
 – 08-7908072