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Notations

δ(t) = Dirac’s delta and Kronecker’s delta
1A(x) = the indicator function for the set A, equals 1 for x ∈ A and 0

otherwise.
AT = transpose of the matrix A
A∗ = complex conjugate transpose of the matrix A
z = complex conjugate of z
det A = determinant of the matrix A
⌊ f , g⌋ = the Gram matrix consisting of the inner-products between

the elements of f = [ f1 . . . fn]
T

and g = [g1 . . . gm]
T

⌊ f , g⌋ =

⎡⎢⎢⎢⎢⎢⎢⎣

⟨ f1, g1⟩ . . . ⟨ f1, gm⟩
⋮ . . . ⋮

⟨ fn, g1⟩ . . . ⟨ fn, gm

⎤⎥⎥⎥⎥⎥⎥⎦





1
Signals and Systems

The intention with these lecture notes is to provide the reader with
a thorough understanding of the many different facets of the prob-
lem of estimating models of dynamical systems using data. This
topic is generally known as system identification and shares many
aspects with other types of learning problems in, e.g., statistical and
machine learning. In fact, the underlying principles are the same.
To emphasize the kinship with these areas we have chosen the ti-
tle to be dynamic model learning. While the notes heavily leans on
general learning theory, the particular aspects of dynamical systems
is emphasized and the purpose of this chapter is to introduce some
general tools for signals and systems.

1.1 Signals

By a signal we mean a function of time or some other variables, or
combinations thereof. For example, in a paper machine the thickness
of the paper at one of the rolls in the machine can be viewed as a
signal being a function both of time and the cross-directional position
of the sheet.

1.1.1 Continuous time signals

It is useful to work with different classes of signals.

Definition 1.1.1. The space Lp(C), 0 < p < ∞ consists of all measurable
functions F ∶ C → Cn×m on C for which

∥F∥p ∶= (∫
C
∥F(t)∥p

Fdt)
1/p

<∞

The class L∞(C) consists of all measurable functions F ∶ C → Cn×m on
C for which

∥F∥∞ ∶= ess sup
t∈C

σ(F(t)) <∞

where σ(A) denotes the largest singular value of the matrix A.

The essential supremum for a real-valued function f is defined as

ess sup
t∈C

f (t) = inf{a ∶ f (t) ≤ a almost everywhere in C
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where almost everywhere means except on a set that has Lesbegue
measure zero in C. The Lp spaces are complete metric spaces (Banach
spaces). The intersection L1(R) ∩ L∞(R) is a subset of all Lp(R),
1 ≤ p ≤ ∞ but otherwise there is no particular relation between the
elements in these spaces. Another domain is the unit circle in the
complex plane T = {z ∶ ∣z∣ = 1} and here ∞ ≥ p ≥ q ≥ 1 ⇒ Lp(T) ⊂
Lq(T).

The Fourier transform of a signal s(t) is defined as

S(iω) = ∫
∞

−∞
s(t)e−iωtdt (1.1)

and the inverse Fouriertransform as

s̄(t) = 1
2π ∫

∞

−∞
S(iω)eiωtdω (1.2)

For certain signal classes S is well defined and s̄(t) = s(t) which
gives (1.2) the interpretation as a decomposition of the signal s into
sinusoidal components where S(iω)/(2π) represents the contribu-
tion of different frequency components to s. We then say that s has
a Fourier representation. All signals in L1 do not have a Fourier rep-
resentation as shown by Kolmogorov in a famous counterexample 1. 1 A. N. Kolmogorov. Une série de

Fourier-Lebesque divergente presque
partout. Fund. Math., 4, 1923

The following is known.

Theorem 1.1.1. i) Suppose that s ∈ L1(R), then its Fourier transform S
is uniformly continuous and vanishes at infinity.

ii) Suppose that s ∈ L1(R) and that its Fourier transform S ∈ L1(R). Then

s̄(t) = ∫
∞

−∞
S(iω)eiωtdω

is continuous, vanishes at infinity and s̄(t) = s(t) almost everywhere2. 2 This means that the statement holds
for all t ∈ R except for a set B which
has Lesbegue measure zero, the latter
loosely meaning that ∫B dx = 0.

iii) Suppose that s ∈ Lp(R), 1 < p <∞, with Fourier transform S. Then

lim
R→∞∫∣ω∣≤R

S(iω)eiωtdω = s(t) almost everywhere

Proof. For Part i) see Appendix B.1.1 in 3. Part ii) is Theorem 9.11 in 3 C.A. Desoer and M. Vidyasagar. Feed-
back Systems: Input-Output Properties.
Academic Press, New York, 1975

4. Part iii) was proven by Carleson for p = 2 5 and Hunt 6.
4 W. Rudin. Real and Complex Analysis.
McGraw-Hill, London, 1986

5 L. Carleson. On convergence and
growth of partial sums of Fourier series.
Acta Math, 116, 1966

6 R.A. Hunt. On the convergence
of Fourier series, orthogonal expan-
sions and their continuous analogues.
In Proc. Conf., Edwardsville, Ill., 1967,
Southern Illinois Univ. Press, pages
235–255, Carbondale, Ill., 1968

1.1.2 Discrete time signals

Often data is available as sequences of discrete time signals {s(n)}N
n=1.

These are often continuous time signals s(t) sampled with a certain
sampling interval T resulting in {s(nT)}N

n=1 but may also be actual
discrete time signals, e.g. the number of transactions per day on the
stock exchange. Discrete time signals are represented by sequences
{s(t)}∞t=−∞, s(t) ∈ Cn.

Definition 1.1.2. The class `p, 0 < p <∞, consists of all sequences {s(t)}
for which

∥s∥p ∶=
⎛
⎝∑k

∣s(t)∣p
⎞
⎠

1/p

<∞
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The class `∞ consists of all sequences {s(t)} for which

∥s∥∞ ∶= sup
t

∣s(t)∣ <∞

It holds that `p ⊂ `q for 1 ≤ p < q ≤ ∞. For a signal s ∈ `1, the
discrete time Fourier transform is defined as the Fourier series

S(eiω) =
∞
∑

t=−∞
s(t)e−iωt (1.3)

which is a 2π-periodic function. When S ∈ L1(T), the Fourier series
coefficients

s̄(t) = 1
2π ∫

π

−π
S(eiω)eiωt

are well-defined and equal s(t)7 7 Section 9.4 .
W. Rudin. Real and Complex Analysis.

McGraw-Hill, London, 1986

All `p spaces are complete and we can make `2 into a Hilbert space
by introducing the inner product

⟨s, v⟩ =∑
t

Trace{v∗(t)s(t)}

Likewise L2(T) becomes a Hilbert space when equipped with the
inner product

⟨S, V⟩ = 1
2π ∫

π

−π
Trace{V∗(eiω)S(eiω)} dω

For L2(T) the trigonometric functions bk(ω) = eiωk, k = 0,±1,±, . . .
form a complete set of orthonormal functions and a direct conse-
quence of this is the following theorem.

Theorem 1.1.2. Any S ∈ L2(T) can be represented as the Fourier series
(1.3) where

s(t) = 1
2π ∫

π

−π
S(eiω)eiωt

We recall from the theory of Hilbert spaces that ∥S∥2 = 0 does
not imply that S is identically zero so convergence in norm does not
mean point-wise convergence. Thus elements in L2(T) are grouped
into equivalence classes where all pairwise differences between ele-
ments in one group have norm 0. Thus elements in a Hilbert space
are distinguishable only up to these equivalence classes8. The repre- 8

4.26 in
W. Rudin. Real and Complex Analysis.

McGraw-Hill, London, 1986

sentation in the previous theorem should therefore be interpreted in
this sense.

The two spaces `2 and L2(T) are isomporphic meaning that there
is a one-to-one relationship between the elements where the geomet-
ric properties represented by the inner product are preserved, i.e. it
holds that

⟨S, V⟩ = ⟨s, v⟩

for all S, V ∈ L2(T), where s ∈ `2 and v ∈ `2 denote the Fourier co-
efficients of S and V, respectively. This is Parseval’s theorem9 In 9 Section 4.26 in .

W. Rudin. Real and Complex Analysis.
McGraw-Hill, London, 1986

particular

1
2π ∫

π

−π
∣S(eiω)∣2dω = ∥S∥2

2 = ∥s∥2
2 =

∞
∑

t=−∞
∣s(t)∣2

Similar to Theorem 1.1.1 we have the following result.
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Theorem 1.1.3. i) Suppose that s ∈ `1, then

S(eiω) = lim
N→∞

N
∑

t=−N
s(t)e−iωt (1.4)

exists and is continuous (since the convergence is uniform).

ii) Suppose that s ∈ `1 and that S ∈ L1(T), where S is defined by (1.3).
Then {s(t)} are the Fourier series coefficients of S.

iii) Suppose that S ∈ Lp(T), 1 < p < ∞ with Fourier series coefficients
{s(t)}. Then

lim
R→∞

∑
∣t∣≤R

s(t)eiωτ = S(eiω) almost everywhere

Proof. For Part i) and ii) see Section 9.4 in 10. Part iii) was proven by 10 W. Rudin. Real and Complex Analysis.
McGraw-Hill, London, 1986Carleson for p = 2 11 and Hunt 12.
11 L. Carleson. On convergence and
growth of partial sums of Fourier series.
Acta Math, 116, 1966

12 R.A. Hunt. On the convergence
of Fourier series, orthogonal expan-
sions and their continuous analogues.
In Proc. Conf., Edwardsville, Ill., 1967,
Southern Illinois Univ. Press, pages
235–255, Carbondale, Ill., 1968

A generalization of the Fourier transform is the two-sided z-transform

S̃(z) =
∞
∑

t=−∞
s(t)z−t (1.5)

When s(t) = 0 for t > 0, this is a power series around z = 0, which
defines a holomorphic (analytic) function in a disc of some radius
R13, called region of convergence (ROC). Recovering the sequence s 13 which may be 0

from its z-transform requires the ROC to be known.

Example 1.1. Let S̃(z) = 1/(z − 0.5). This function has a singularity at
z = 0.5 and we can expand it as

S̃(z) = z
z − 0.5

= 1
1− 0.5/z

=
∞
∑
t=0

0.5tz−t

which, comparing with (1.5), suggests that s(t) = 0.5t for t ≥ 0 and s(t) = 0
for t < 0. However, we can also write

S̃(z) = z
z − 0.5

= −2z
1− 2z

= −2z
∞
∑
t=0

2tzt =
0
∑

t=−∞
−2−t−1z−t−1 =

−1
∑

t=−∞
−2−tz−t

meaning that s(t) = −2−t for t ≤ 0 and s(t) = 0 for t > 0.
The reason for the ambiguity is that the two expansions have different

ROC. The first expansion is valid for ∣z∣ > 0.5, while the second is valid for
∣z∣ < 0.5.

When s(t) is non-zero both for negative and positive t, (1.5) be-
comes a Laurent-series with the ROC being an annulus {z ∶ ∣r∣ <
∣z∣ < R}. When the ROC includes the unit circle, we have that
S̃(eiω) = S(eiω), i.e. the z-transform of s evaluated on the unit circle
equals its Fourier transform. However, such signals have to decay ex-
ponentially fast as ∣t∣ → ∞ and constitutes a limited class of signals,
e.g. sinusoids are excluded14 Thus the class of signals for which S̃(z) 14 Assume the ROC is r < ∣z∣ < R. Take

δ > 0 such that R − δ > 0. Then the
power series

−1
∑

t=−∞
s(t)z−t

converges for z = R − δ/2 as this series
belongs to the ROC. But then the series
is absolutely convergent for every ∣z∣ ≤
R − δ, see Section 47 in , requiring

−1
∑

t=−∞
∣s(t)∣ ∣R − δ∣−t <∞

meaning that ∣s(t)∣ has to decay expo-
nentially fast as t → −∞ since ∣R− δ∣ > 1.
The same argument gives that if we
take a δ > 0 such that r + δ/2 is inside
ROC, then the series

∞
∑
t=0

s(t)z−t

is absolutely convergent for z = r + δ/2,
requiring ∣s(t)∣ has to decay exponen-
tially fast as t →∞.

R.V. Churchill and J.W. Brown. Com-
plex Variables and Applications. McGraw-
Hill

is holomorphic in an annulus r < ∣z∣ < R including the unit circle is
quite restricted. What we can provide are larger classes of signals
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which are holomorphic inside or outside the unit circle and well de-
fined on the unit circle. For s ∈ `1 for which s(t) = 0 for t < 0, S̃(z)
is holomorphic in ∣z∣ > 1 as the Laurent expansion converges in this
set. S̃(z) is also well defined on the unit circle, although we cannot
claim that it is holomorphic there as the assumption s ∈ `1 does not
guarantee that S̃(z) exists at any point outside the unit circle, and
differentiation requires the function to be defined in an open neigh-
borhood of the point where the derivative is computed. We also have
that S̃(eiω) = S(eiω), i.e. the z-transform of s evaluated on the unit
circle equals its Fourier transform. Hp spaces are spaces of functions
holomorphic inside the unit circle for which the radial limits

S̆(eiω) ∶= lim
r→1+

S(reiω)

exists. Above, 1+ indicates that the limit is taken from above.

Definition 1.1.3. Hp(T), 0 < p < ∞ is the class of functions F ∶ T →
Cn×m for which all elements are holomorphic in15 ∣z∣ > 1 and for which 15 We consider functions holomorphic

outside the unit circle rather than in-
side as in Appendix B to conform with
the standard used in signal processing
and control theory. This only amounts
to making the transformation z → 1/z.

there is an M <∞ such that

∫
π

−π
∥F(reω)∥p

Fdω ≤ M, 1 < r <∞

The class Hp(T) is closely related to Lp(T).

Theorem 1.1.4. Let 1 < p <∞. Then Hp(T) is the class of functions that
can be written as

S(z) =
∞
∑
t=0

s̄(t)z−t

where {s̄(t)}∞t=1 are the Fourier coefficiencts of some function in Lp(T).

Proof. Exercise 25.d, Chapter 17 in 16. Theorem 17.12 in 17 for H2(T), 16 W. Rudin. Real and Complex Analysis.
McGraw-Hill, London, 1986

17 W. Rudin. Real and Complex Analysis.
McGraw-Hill, London, 1986

see Theorem B.2.1.

For S ∈ Hp(T), p > 0, its radial limit S̆ exists and S̆ ∈ L2(T)18.
18 Theorem B.2.2.

For the Fourier coefficients of the radial limit it follows that s̄(t) = 0
for t < 0. This together with the previous theorem shows that for
1 < p <∞, Hp(T) can be thought of as a subset of functions in L2(T)
extended to ∣z∣ ≥ 1.

For H2(T) this notion is exact as from the previous theorem we
have that H2(T) is exactly characterized by functions holomorphic
in ∣z∣ > 1 with series expansions

F(z) =
∞
∑
t=0

f (t)z−t, for which { f (t)} ∈ `2 (1.6)

and such functions are elements of L2(T) when seen as functions on
T due to the isomorphism between `2 and L2(T).

1.2 Continuous time dynamic systems

Abstractly, a system is an entity that describes a set of relations be-
tween some signals. We will here use the somewhat simplistic notion
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that a system maps trajectories of input signals to trajectories of out-
put signals, i.e. a system is a map from a function space to another
function space. In a dynamic system the output at a given time t
depends not only of the values of the input at that point in time but
also at other time points. If only the past influences the current out-
put we say that the system is causal, conversely a system is anti-causal
if only the future of the inputs affects the output. When both past
and future play a role the system is said to be non-causal. We shall
mainly deal with causal systems in this treatise.

Example 1.2. Modeling a Shock Absorber (contributed by Brett Nin-
ness)

A simplified representation of a car shock-absorber as a parallel spring
and damper is shown diagrammatically in Figure 1.2. Its purpose is to
smooth the car height y(t) compared to the road height u(t). There are
three forces acting on the car. 19 The first one is due to gravity 19 The direction of the force acting on

the car is as shown by the arrows in fig-
ure 1.2)
Figure 1.1: Diagrammatic representa-
tion of shock absorber

F1(t) = mg (1.7)

where m is the mass of the car and g is acceleration due to gravity; 9.8
ms−2. The second force is due to the action of the spring

F2(t) = ks[(y(t)− u(t))− x○] (1.8)

where x○ is the natural length of the spring with no force acting on it.
The final force is due to the damper

F3(t) = kd
d
dt

[y(t)− u(t)]. (1.9)

Newton’s 2nd law states that the vector sum of forces F1(T), F2(t),⋯
acting on a body must equal its mass m times its acceleration vector
a(t)

(Newton’s 2nd Law) ∑
k

Fk(t) = a(t). (1.10)
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Substituting the forces (1.7), (1.8) and (1.9) together into this law then
gives a differential equation relationship 20 between the road height u(t) 20 Note that the right hand side of (1.11)

involves a minus sign, since the vector
sum on the left hand side is directed
downwards, and hence the orientation
of the dispacement vector differentiated
on the right hand side of (1.11) must be
consistent with this.

and the car height y(t):

mg+ ks[(y(t)− u(t))− x○]+ kd
d
dt

[y(t)− u(t)] = −m
d2

dt2 y(t). (1.11)

This expression can be re-arranged into the slightly cleaner form

d2

dt2 y(t)+ kd
m

d
dt

y(t)+ ks

m
y(t) = kd

m
d
dt

u(t)+ ks

m
u(t)+ (ks

m
x○ − g) .

(1.12)
Note that at rest, when all first and higher order derivatives are zero, the
model (1.12) reduces to 21 21 That is, the resting height of the car

above the road is the natural extension
x○ of the spring, minus the amount
mg/ks that the spring is compressed by
the weight force due to the mass of the
car.

y(t)− u(t) = x○ −
mg
ks

. (1.13)

Typically, we would want to model y(t) with respect to this resting
height being set at zero, in which case the model becomes

d2

dt2 y(t)+ kd
m

d
dt

y(t)+ ks

m
y(t) = kd

m
d
dt

u(t)+ ks

m
u(t) (1.14)

∎

As in Example 1.2, many models of dynamic systems are ex-
pressed in terms of ordinary differential equations (ODE) involving
the output y and the input u

p(y(t), ẏ(t), . . . , y(n)(t), u(t), u̇(t), . . . , un(t)) = 0

1.2.1 Linear time-invariant systems

Finite dimensional systems. Finite dimensional Linear Time Invari-
ant (LTI) systems is an important class of systems which can be de-
scribed by linear time-invariant ODEs. In the case of scalar signals
this means that

n
∑
k=0

aky(k)(t) =
n
∑
k=0

bku(k)(t), a0 = 1, (1.15)

where y(k) is the k’th derivative of y. Taking the one-sided Laplace
transform of this expression and re-arranging terms gives

Y(s) = G(s)U(s)+Q(s) (1.16)

where Y(s) and U(s) are the Laplace transforms of the output and
input, respectively, where

G(s) = B(s)
A(s)

∶= ∑
n
k=0 bksn−k

∑n
k=0 aksn−k (1.17)

represents the system input-output behavior, and is known as the
transfer function, and where22 22

BQ(s) =
n−1
∑
τ=1

bQ
τ sn−τ

bQ
τ =

τ

∑
l=1

(aτ−ly
(l−1)(0+)− bτ−lu

(l−1)(0+))

Q(s) =
BQ(s)
A(s)
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represents the transient behavior due to non-zero initial conditions.
Using (1.16) and properties of the Laplace transform, the input-

output relationship in the time-domain can be written as

y(t) = ∫
t

0
g(τ)u(t − τ)dτ + q(t) (1.18)

where g is the inverse Laplace transform of G(s), and known as the
impulse response of the system, while q(t) = L−1{Q(s)} is the transient.
The name impulse response derives from that if u(t) = δ(t) (a Dirac
impulse), then u(t) = g(t).

Finite dimensional LTI systems can equivalently be described by
linear time-invariant state-space models

ẋ(t) = Ax(t)+ Bu(t), x(0) = xo (1.19)

y(t) = Cx(t)+Du(t) (1.20)

where x(t) ∈ Rn is called the state at time t and represents the influ-
ence the past input has had on the system. For example, when the
system is started at say time t = 0, the initial state (or condition) x(0)
needs to be specified. Often states can be given physical meaning
such as velocity and acceleration.

Using the properties of the Laplace transform for (1.19) gives

G(s) = C(sI − A)−1B +D

Q(s) = C(sI − A)−1xo

We will use the operator p to denote differentiation p = d
dt so that

we, e.g., can write

y(t) = G(p)u(t)

to represent (1.15).

General LTI systems. Below we consider LTI systems with the input
u(t) ∈ Rnu and the output y(t) ∈ Rny . Even though it from a practi-
cal point is most natural to use the description above that a system
is started at some initial time with some initial conditions, for the-
oretical considerations it is of interest to study the behaviour when
the input has been active over an infinite time interval. In general,
the input-output relation for any LTI system is determined by its
impulse response

y(t) = ∫
∞

−∞
g(τ)u(t − τ)dτ (1.21)

A LTI system is causal if and only if g(τ) = 0, τ < 0, which was the
case for the systems we considered earlier.

The input-output behaviour depends obviously critically on the
behaviour of the impulse response. For transfer functions that can
be expressed as in (1.17), i.e. as rational functions, a partial fraction
expansion gives

G(s) =
n
∑
k=1

αk
s − pk
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where {pk} are the zeros of A(s), called the poles of the system. As
1/(s − p) corresponds to ept

g(t) =
n
∑
k=1

αkepkt

We see that the impulse response grows exponentially if there is at
least one pole in the right-half plane. Such a system is said to be
unstable. For such systems the output (1.18) can be made to diverge
with a bounded input as t →∞.

Definition 1.2.1. A system G

y = G(u)

is said to be bounded-input-bounded-output (BIBO) stable if every
bounded input results in a bounded output

∀u ∶ ∣u(t)∣ ≤ Mu ∀t, for some Mu <∞ ⇒ ∣y(t)∣ ≤ My ∀t, for some My <∞

Lemma 1.2.1. A continuous time LTI system is BIBO-stable if and only if
its impulse response g ∈ L1(R).

Proof. Theorem 19, in Section 7.2, Chapter 4 in 23, which includes 23 C.A. Desoer and M. Vidyasagar. Feed-
back Systems: Input-Output Properties.
Academic Press, New York, 1975

the time-varying case as well.

Another notion of stability is strict stability.

Definition 1.2.2. A continuous time LTI system with impulse response g
is strictly stable if

∫
∞

−∞
∣τ∣ ∥g(τ)∥F dτ <∞

BIBO-stability can be given an operator theoretic interpretation.
With G BIBO stable, its impulse response belongs to L1(Rny×nu), but
we can also see G as a map from L∞(Rnu) into L∞(Rny) defined by
(1.21). The norm of an operator is defined as

∥G∥ = sup
u

∥G(u)∥
∥u∥

The if part of Lemma 1.2.1 is stated in operator form in the next
lemma.

Lemma 1.2.2. Suppose that G is defined by (1.21) with g ∈ L1(Rny×nu).
Then G ∶ L∞(Rnu)→ L∞(Rny) with ∥G∥ = ∥g∥1.

Proof. Theorem 3 in Section 6.2, Chapter 2 in 24. 24 C.A. Desoer and M. Vidyasagar. Feed-
back Systems: Input-Output Properties.
Academic Press, New York, 1975One type of bounded-input signal is a sinusoid. Consider for sim-

plicity a scalar system and let u(t) = cos(ωt) = Re{eiωt}. Then BIBO
stability implies that

y(t) = ∫ g(τ)Re{eiω(t−τ)} dτ = Re{∫ g(τ)e−iωτdτ eiωt}

= ∣G(iω)∣ cos(ωt + arg G(iω))
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where G(iω) is the Fourier transform (1.1) of the impulse response.
The reason why the Fourier transform is well defined is due to to the
BIBO-stability, or, equivalently, that g ∈ L1(R).

Thus a BIBO-stable LTI system has the property that a sinusoidal
input gives a sinusoidal output. The result carries over to multivari-
able LTI systems as well, with appropriate modifications.

It turns out that a BIBO-stable G also maps functions in L2(Rnu)
into L2(Rny) but the operator norm is different from the one in
Lemma 1.2.2.

Theorem 1.2.1. Suppose that G is defined by (1.21) with g ∈ L1(Rny×nu).
Then G ∶ L2(Rnu)→ L2(Rny) with ∥G∥ = supω ∥G(eiω)∥2.

Proof. Theorem 7 in Section 6.2, Chapter 2 in 25. 25 C.A. Desoer and M. Vidyasagar. Feed-
back Systems: Input-Output Properties.
Academic Press, New York, 1975

1.2.2 Non-linear state-space systems.

Also non-linear ODEs can be represented on state-space from L2(Rm)
into L2(Rm)

ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t))

1.3 Discrete time systems

For discrete time signals, difference equations form the equivalent of
ODEs

g(y(t), y(t − 1), . . . , y(t − n), u(t), u(t − 1), . . . , u(t − n)) = 0

with linear time-invariant difference equations

n
∑
k=0

an−ky(t + k) =
n
∑
k=0

bn−ku(t + k) (1.22)

corresponding to linear ODEs (1.15).

1.3.1 LTI systems

The developments for causal LTI discrete time systems parallels that
of continuous time systems. For the difference equation (1.22), we
can write the relation between the one-sided z-transforms of the in-
put and output as

Y(z) = G(z)U(z)+Q(z)

where

G(z) = B(z)
A(z)

= ∑
n
k=0 bkzn−k

∑n
k=0 akzn−k

represents the system input-output behavior, and is known as the
transfer function, and where26 26 BQ(z) = ∑n−1

τ=1 bQ
τ zn−τ where bQ

τ =
∑τ

l=1(aτ−ly(1− l)− bτ−lu(1− l))
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Q(z) =
BQ(z)
A(z)

represents the transient behavior due to non-zero initial conditions.
The time-domain relationship is obtained from the inverse z-transform

as

y(t) =
t−1
∑
k=0

g(k)u(t − k)+ q(t)

where the impulse pulse response g is the inverse z-transform of
G(z), while the transient q(t) is the inverse z-transform of Q(z).
Stacking y(1), . . . , y(N) into a vector, we can write

y ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

y(1)
⋮

y(N)

⎤⎥⎥⎥⎥⎥⎥⎦

= T(u)g+, g =

⎡⎢⎢⎢⎢⎢⎢⎣

g(0)
⋮

g(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

, =

⎡⎢⎢⎢⎢⎢⎢⎣

q(1)
⋮

q(N)

⎤⎥⎥⎥⎥⎥⎥⎦

(1.23)

where T(u) is a N×N lower Toeplitz matrix with u ∶= [u(1) . . . u(N)]
T

as its first column. Due to the symmetry between g and u we can also
write

y = T(g)Φ+ (1.24)

A state-space description for an LTI discrete time system is given
by

x(t + 1) = Ax(t)+ Bu(t), x(0) = xo

y(t) = Cx(t)+Du(t)

corresponding to

G(z) = C(zI − A)−1B +D

Q(z) = C(zI − A)−1xo

In continuous time we introduced the differentiation operator p.
In discrete time the forward time shift operator q defined by qy(t) =
y(t + 1) is convenient as we can express difference equations com-
pactly, e.g. (1.22) can be written

A(q)y(t) = B(q)u(t), A(q) =
n
∑
k=0

akqn−k, B(q) =
n
∑
k=0

bkqn−k (1.25)

Expressions like

y(t) = G(q)u(t)

where G(q) = B(q)/A(q) should be interpreted as (1.25). Notice that
G(q) ∶= G(z)∣z=q, where G(z) is the transfer function. We will there-
fore also call G(q) the transfer function. A final notice on the use of
the shift operator. One can equivalently express time shifts with the
backward time shift operator q−1 defined by q−1y(t) = y(t − 1). We
will follow the convention in 27 and write difference equations such 27 L. Ljung. System identification, Theory

for the user. System sciences series. Pren-
tice Hall, Upper Saddle River, NJ, USA,
second edition, 1999
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as (1.22) on the form
n
∑
k=0

aky(t − k) =
n
∑
k=0

bku(t − k)

so that
n
∑
k=0

akq−ky(t) =
n
∑
k=0

bkq−ku(t)

which we write as A(q)y(t) = B(q)u(t) with

A(q) =
n
∑
k=0

akq−k, B(q) =
n
∑
k=0

bkq−k

General LTI systems The equivalent description to the convolution
formula (1.21) for a discrete time system G is that

y(t) =
∞
∑

τ=−∞
g(τ)u(t − τ) (1.26)

Definition 1.3.1. A discrete time LTI system with impulse response g is
strictly stable if

∞
∑

τ=−∞
∣τ∣ ∥g(τ)∥F <∞

A BIBO-stable discrete time LTI system (1.26) responds to a sinu-
soid in a similar manner as a continuous time system

u(t) = cos(ωt) ⇒ y(t) = ∣G(iω)∣ cos(ωt + arg G(iω))

where G(iω) is the discrete time Fourier transform (1.3) of the im-
pulse response g.

Lemma 1.3.1. i) A discrete time LTI system is BIBO-stable if and only if
its impulse response g ∈ `1.

ii) G defined by (1.26) with g ∈ `1, is an operator G ∶ `∞ → `∞ with
∥G∥ ≤ ∥g∥1, with equality for the scalar case.

iii) G as in ii) is also an operator G ∶ L2(Rnu) → L2(Rny) with ∥G∥ =
supω ∥G(eiω)∥2.

Proof. i) is Theorem 14 in Section 7.1, Chapter 4 in 28, which covers 28 C.A. Desoer and M. Vidyasagar. Feed-
back Systems: Input-Output Properties.
Academic Press, New York, 1975

the time-varying case as well. ii) can be found in Table 4.2 in 29.
29 K. Zhou, J. C. Doyle, and K. Glover.
Robust and Optimal Control. Prentice-
Hall, 1996

We can split up the impulse response into a causal part gc and an
anti-causal part ga according to

gc(t) = { g(t) t = 0, 1, . . .
0 otherwise

, and ga(t) = { 0 t = 0, 1, . . .
g(t) otherwise

For a BIBO stable systems, i.e. when g ∈ `1, which in turn implies
that G(eiω) ∈ L1(T),

Gc(z) =
∞
∑

t=−∞
gc(t)z−t =

∞
∑
t=0

g(t)z−t

Ga(z) =
∞
∑

t=−∞
gn(t)z−t =

−1
∑

t=−∞
g(t)z−t
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both belong to L1(T), and hence Gc ∈ H1(T), whereas Ga in H⊥1 (T),
defined as the space of functions in L1(T) that are analytic in ∣z∣ < 1.
Furthermore, G(eiω) = Gc(eiω)+Ga(eiω). We interpret G(z) = Gc(z)+
Ga(z) as the transfer function, notice that formally this function may
only be defined on ∣z∣ = 1.

For a rational transfer function, the ROC is an annulus as already
pointed out, and this annulus must include the unit circle for the
system to be BIBO stable, cf. the discussion after Example 1.1. As for
signals, the ROC for a transfer function must be known in order to
compute the impulse response.

1.4 Exercises

1.1. Consider a system y(t) = G(q)u(t) with transfer function

G(q) =
q

q − 0.5

a) Determine the possible impulse responses for G

b) Express the system as difference equation forward in time, i.e.
on the form

y(t) = −
n
∑
k=1

aky(t − k)+
n
∑
k=0

bku(t − k)

c) Express the system as difference equation backward in time,
i.e. on the form

y(t) = −
n
∑
k=1

aky(t + k)+
n
∑
k=0

bku(t + k)

d) Which of the two recursions in b) and c) are stable? Relate this
to the ROC of G(z) and the possible impulse responses of the
system. What conclusions can you draw in regards to which
direction one should simulate a given difference equation?

e) Suppose that

G(q) =
q2

(q − 0.5)(q − 3)

is BIBO stable. Suppose that y(0) = y(N + 1) = u(0) = u(N + 1) =
and propose two different ways to simulate the system for a
given input trajectory over the interval t = 1, . . . , N.





2
Principles of Learning

2.1 Introduction

The Cambridge Dictionary defines inference as
a guess that you make or an opinion that you form based on the informa-

tion that you have.
This concept is formalized in decision theory which is the theory

for making (optimal) decisions under uncertainty. In statistical infer-
ence observations of the object of interest, data, constitute the avail-
able information upon which decisions are to be made. Forming a
model based on data is often an intermediate step in the decision
making. With the object of interest being a dynamical system, this is
precisely the problem we are interested in.

2.2 The approximative nature of modeling

It is important to keep in mind that models are just approximations
of the real world phenomena that one is trying to model. In Ex-
ample 1.2 for example, the spring and damper components used in
that model are aggregated idealizations of the corresponding phys-
ical devices. Better, but still not perfect models, would be based
on non-linear partial differential equations embodying the internal
interactions in each component. Such models turn out to have an
infinite number of states and are thus much more complex than the
model in Example 1.2. A further, and extreme, refinement would be
to use a quantum dynamical model. How detailed the model should
be depends on the intended use of the model. If the shock absorber is
to be modelled during normal driving conditions the simple model
in Example 1.2 may be sufficient, but as the driving conditions be-
come more demanding, e.g. a high speed pursuit on a very bumpy
road, the non-linear behaviour of the device will become prominent.
In general one tries to make the model no more detailed than neces-
sary as overly complex models tend to obscure physical insights and
renders the use of the model more difficult. As an example, suppose
that the damping can be controlled by an electronic actuator and that
the model is to be used to design a controller for the lateral motion of
the vehicle1. For a linear model with a finite number of states there 1 Such controllers are used on high

performance cars and motorbikes, see,
e.g.,

is a wide range of control design methods available whereas the de-
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sign becomes much more complicated when the model is non-linear
and/or has an infinite number of states.

Figure 2.1: Extended model of shock
absorber.

The fact that regardless of which model structure one uses, the
true system cannot be captured perfectly is of fundamental impor-
tance in system identification. Without taking this into consideration,
one may easily end up with a model that does not reflect the aspects
of the system that one is interested in. To illustrate this let us again
return to Example 1.2. As we already mentioned, the model in Figure
1.2 is an idealization. One of the simplifications that have been used
is the lumping of the car chassis into a point mass. A more elaborate
model is to consider the chassis as a flexible mechanical structure. In
order to keep things (relatively) simple, let us consider the model in
Figure 2.1 where the chassis is considered to consist of two masses
(each having half of the total mass). To represent that the chassis is
flexible, the two masses are interconnected by a spring and a damper.
To model that the chassis is well described by a point mass at slow
lateral motions, the spring should be very stiff and the damper offer
some resistance to movements, i.e. the chassis parameter ks,i should
be large2. 2 Using Newton’s 2nd law as in Exam-

ple 1.2 gives

−ks,i(x2 − x1)− kd,i(ẋ2 − ẋ1) =
m
2

ẍ2

ks,i(x2 − x1)+ kd,i(ẋ2 − ẋ1)

−ks(x1 − u)− kd(ẋ1 − u̇) =
m
2

ẍ1

(2.1)

Straightforward manipulations of the
Laplace transform of the first equation
in (2.1) give that the relationship be-
tween x1 and x2 is given by

X2(s) =
2ξωo,is +ω2

o,i

s2 + 2ξiωo,is +ω2
o,i

X1(s)

where the natural frequency is ωo,i =√
2ks,i/m and the damping factor ξi =√
k2

d,i/(2ks,im). This relationship has
bandwidth approximately given by
ωo,i . Thus if the variations of x1 have a
bandwidth well below ωo,i , x2 will fol-
low x1 well. This means that we can re-
place ẍ2 in the first equation of (2.1) by
ẍ1 and by substituting this in the sec-
ond equation we obtain

−ks(x1 − u)− kd(ẋ1 − u̇) = mẍ1

which is exactly the approximative
model (1.14). To conclude if u has
its energy content well below the fre-
quency ωo,i (rad/s), x2 will follow x1
and the system will behave as the sim-
plified model (1.14) in Example 1.2.

Calculations based on the Laplace transform of (2.1) give that the
transfer function from the input u to the position of the upper part
of the chassis, i.e. x2, is given by

G(s) = 4
( kd

m s + ks
m ) ( kd,i

m s + ks,i
m )

s4 + 4kd,i+2kd
m s3 + 4ks,i+2ks

m s2 + 4 kskd,i+ks,ikd
m2 s + 4 ksks,i

m2

The Bode diagram of this transfer function is shown in Figure 2.2
for a m = 1000 kg heavy chassis with natural frequency ωo,i = 11.2
rad/s (1.8 Hz) and damping factor ξi = 0.0045. The shock absorber
has natural frequency ωo = 2.51 rad/s and damping factor ξ = 0.2.
The Bode diagram of the simplified model (1.14) is also shown.

Let us now make the gedanken experiment that the refined model
in Figure 2.1 indeed represents the real system very accurately but
that we a priori do not know this. Suppose now that we would like to
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identify a model for the absorber. To this end we carry out a test drive
collecting measurements of the road height u(t) and the car height
y(t). Suppose that the road profile is a sinusoid and that the driver,
being very cautious, drives at low constant speed to avoid high speed
lateral motions of the vehicle. The road height thus corresponds to a
slowly varying sinusoid

u(t) = sin(ωt)

which for the assumed driving speed has frequency ω = ω1 ∶= 2
rad/s.
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Figure 2.2: Bode diagrams of transfer
function from road position (u) to posi-
tion of upper part of the chassis (x2).
Included is also the simplified model
(1.14) which for the given parameters
capture the low frequency behavior in-
cluding the main resonance peak.

This means that during the experiment the chassis can be very
accurately approximated by a point mass and the model in Figure
1.2, with the same shock absorber parameters as those in the true
system in Figure 2.1, can very accurately model the experimental
data that were collected. Figure 2.3 shows the output of the model
compared with the true system output.
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Figure 2.3: Comparison of the output of
the model (1.14) and the true output.

The flexibility of the chassis will thus remain undetected, compare
with the discrepancy between the Bode diagrams in Figure 2.2. While
this is not necessarily a bad thing – the obtained model is indeed
valid under cautious driving conditions – it points to a first tenet in
system identification:

T1) Identified models can only capture information available in the mea-
surements

This may seem a trivial observation but is nevertheless important to
keep in mind when designing how experiments are to be carried out.
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As a mental picture think in terms of the system’s state trajectory, i.e.
how the system state moves around in the state-space. There may be
certain regions which the state never visits during the experiment.
One can thus never learn about the system behaviour in these regions
from the experiment. Compare with the states for the two masses of
the chassis that moves in an almost identical fashion. One will only
learn from data about the behavior in this direction.

Suppose now that a new experiment is conducted but now with
a more aggressive driver behind the wheel who uses a much higher
speed,3 corresponding to the frequency ω2 = 16.2 rad/s of u(t). With 3 This is common practice in, e.g., the

South African countryside to reduce
the impact of pot-holes frequent at the
roads.

lateral motions being more rapid the flexibility of the chassis starts to
become noticeable. However, it is still possible to find model param-
eters such that the point mass model in Figure 1.2 provides exactly
the same car height as the real car for this experiment, see Figure 2.4.
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Figure 2.4: Comparison of the output
of the model (1.14) and the true output
for the more agressive driving condi-
tion corresponding to an input with fre-
quency ω = ω2 ∶= 16.2 rad/s. With the
original parameter settings (m1 in the
figure) the model is very poor but m2
corresponds to another parameter set-
ting which gives perfect fit.

This is again a manifestation of tenet T1. However, from an iden-
tification point, another very important phenomenon has occured.
The new model parameters no longer correspond to the true values
(i.e. those used in Figure 2.2). Thus, while the new simplified model
describes the chassis movements under the more aggressive driving
conditions, the model parameters have lost their physical interpreta-
tion as parameters of the shock absorber as now they are adopted to
compensate for the effect of the flexibility of the chassis. Figure 2.5
shows that the new model has a Bode diagram that matches the true
response at the frequency at which the system is excited but shows
little resemblance to the true dynamics otherwise.
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We arrive at a second tenet in system identification:

T2) The best model approximation depends on the experimental conditions.

Generally speaking, this means that the experimental conditions should
reflect those under which the model will be used.

However, there is yet one more lesson to be learned from this ex-
ample. Suppose that yet another test drive is conducted but now the
driver, while still driving fast, no longer drives at constant speed.
It then turns out that there are no model parameters for which the
simplified model can give a chassis height that exactly correspond
to the true height. The behaviour of the system during this experi-
ment is just too complex to be captured by the simplified model. The
simplified model can thus be considered invalidated from this exper-
iment4. This is illustrated in Figures 2.6 and Figures 2.7 which shows 4 Notice that an invalidated model may

still be of use, cf. with the first model
that gave a correct description at low
speeds. This model would also be in-
validated by the last experiment we dis-
cussed, however it is still valid under
low speed conditions.

the results when the two sinusoids used above are used together to
excite the system.
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Figure 2.7: Bode diagram of the best
model when the input is the sum of two
sinusoids with frequencies ω1 = 2 and
ω2 = 16.2.

We summarize this in a third tenet:

T3) The capability of an experiment to invalidate a model depends on the
“richness” of the input signal.

While we will not at this point formally define what we mean by
richness, we hope that the intuitive meaning is clear: Returning to
our mental picture in the state-space, the input excitation must be
such that parts of the state-space that are going to be used of the
system in the application are visited during the experiment.
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To summarize, we have seen that from a system identification per-
spective it is important to recognize that models are approximations
of reality. This has important implications for how identification ex-
periments should be designed. When we have developed suitable
analysis tools we will return to a more formal treatment of this in
Chapter ??.

2.3 Modeling disturbances and noise

2.3.1 Introduction

In the previous section we saw that shortcomings of the dynamic
model will lead to model errors. However, in practice it turns out
that even if there exist a model that can recover the input/output be-
haviour of the true system, this model will never be recovered exactly
using experimental data. One source of this problem is measuring
errors. All signals from the device under test have to be captured by
a measuring device - a sensor. These devices induce two sources of
errors. Firstly, they typically have dynamics. For example a tempera-
ture sensor has a certain mass (even though small) that takes time to
heat up or cool down to the ambient temperature. Thus the readings
from this sensor will not be the instantaneous ambient temperature
as desired. Secondly, sensors lack repeatability. This means that if
exactly the same experiment is performed several times, the sensors
will provide different readings.

In this book we will neglect the dynamics of the sensors. This can
be done if their dynamics are known so that they can be compen-
sated for in the final model. In practice this means that the sensors
have to be calibrated before the experiment. This means that models
for them have to be determined based on experimental data! Dis-
regarding sensor dynamics is also motivated if the experiments are
carried out such that these dynamics do not significantly perturb the
measurements. To ensure this one needs to adapt the experiment to
the technical specifications of the sensors.

A final source of error in an experiment is due to what is com-
monly called (unmeasurable) disturbances. These are external exci-
tations that cannot be measured during the experiment, and there-
fore cannot be used as inputs. For the shock absorber in Example 1.2
one disturbance source is wind-gusts during the test-drive.

2.3.2 Experimental set-ups

A general experimental set-up of is shown in Figure 2.8. Using the
sensor S , measurements {z(kT)}N

k=1, corresponding to the time-series
in the diagrams, are collected from the system. From this data some
decisions regarding the unknown system are to be deduced. Such
decisions could simply be to deduce some properties of the system
but could also be more involved, e.g. to deduce a feedback control
policy where certain design objectives are satisfied. Aggravating the
problem is that the sensor S may distort the system signals x ∈ Rnx ,
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possibly in an (partially) unknown way, as well as be subject to mea-
surement errors e, further corrupting the data. As nowadays all data
are digitized, there is a sampling mechanism involved where, ex-
cept for extracting signal samples, additional signal manipulations
as well as noise corruption (v in the figure) occurs. In particular
the measurements are quantized. The samples are usually collected
with a fix sampling interval T but in industry it is not uncommon
that this interval fluctuates over time. Different sampling intervals
may also be used for different signals. A further complication is that
the system may be subject to some disturbances w.

Figure 2.8: Learning consist of estimat-
ing the underlying mechanisms of a
system from measurements {z(kT)}N

k=1.

The causality of the system is sometimes known, i.e. it is known
which signals "cause" the other signals. In this case the measurement
z(kT) can be split in two parts, the input u(kT) representing samples
of the cause, and the output y(kT) representing the effect, see Figure
2.9.

Figure 2.9: A causal system.

A common simplified setting is shown in Figure 2.10 where it
is assumed that the input is known exactly whereas the output is
subject to additive noise.

For a linear time-invariant system, using the linearity principle,
the impact on the system of disturbances and measurement noise
can be lumped to one point in the system, see the example in Figure



34 learning dynamic systems - system identification 20/20

M

u

ỹ
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Figure 2.10: A simplified set-up for a
causal system assuming that the input
can be measured exactly.

2.11. We will therefore give a common treatment to these sources of
errors, which we for simplicity will denote as noise.

Figure 2.11: Disturbances and (mea-
surement) noise can be merged in LTI
models.

2.3.3 First observations

Adopting Figure 2.11 we have that the model provides a relation
between measured inputs u(t), the (unmeasured) noise v(t) and the
output y(t):

y(t) = Mθ[u] (t)+ v(t) (2.2)

Here θ indicates that the model depends on some unknown parame-
ters θ ∈ Rnθ . Now, the noise v(t) should be seen as part of the model,
just as the model dynamics Mθ[u]. This means that for a given
model structure, the modeling problem consists in determining both
the model parameters θ and the noise v(t). However, now a rather
serious problem arises. Consider a given data set5 Z = {z(t)}N

t=1, 5 For simplicty we assume that uniform
sampling, with sampling period 1.

with z(t) = [y(tT) u(tT)]
T

. Then for whatever model structure and
model parameters θ our model can perfectly reproduce the observed
data by taking6 6 The particular noise signal v(t; θ) will

be called the residuals, and represent
the “left-overs” in the data that our
model dynamics Mθ[u] are not able to
explain.

v(t) = v(t; θ) ∶= y(t)−Mθ[u] (t) , t = 1, . . . , N (2.3)

So how can we discriminate between different models? In order to
get a hint about this, let us return to the shock absorber in Exam-
ple 1.2. Suppose that the error specifications of the lateral position
sensor providing y(t) is in the order of magnitude of mm, but that
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a particular model for this system gives noise terms v(t; θ) of the or-
der of magnitude of meters. Clearly then either the sensor is faulty
or that particular model has dynamics that is way off compared to
the real system. This model can thus be discarded. In principle
we can for each model assess whether the noise seems plausible or
not, given what we know about the sensor characteristics and dis-
turbances that act on the system. By this type of assessment, we
can in principle sift all our candidate models and are left with those
that appear plausible. Notice that when we are doing this we ac-
tually use our knowledge about the sensor characteristics and what
is physically realistic. This points to a dilemma in system identifica-
tion: Unless some a priori information is available, either about noise
or the system dynamics, or both, no conclusions can be drawn from
experimental data, no matter how long the data record. We arrive at
another tenet.

T4) A priori assumptions regarding noise and dynamics are necessary in
order to discriminate among models.

This puts noise and dynamics on an equal footing. Just as we restrict
the class of models of the input-output dynamics by specifying a
dynamic model7, we need to restrict the behaviour of the noise. We 7 Where some model parameters repre-

sent the degrees of freedom that are left.will call these restrictions (or constraints) the noise model. As we
will see it will be useful to also include dynamics in the noise model.

We now move on to provide the flavor of a few different types of
noise models.

2.3.4 Noise models

We start with the following very simple example.

Example 2.1. Suppose that the system is given by

y(t) = θ + v(t) (2.4)

An experiment is conducted where two measurements y(1) = 4, y(2) = −4
are collected. The question is now: what can we say about the value of θ

based on these observations?
As we have observed before we cannot say anything until we have speci-

fied a noise model. Assume therefore that it is known that ∣v(t)∣ ≤ 6, t = 1, 2.
The two measurements then imply

4 = θ + v(1), ∣v(1)∣ ≤ 6, ⇔ −2 ≤ θ ≤ 10

−4 = θ + v(2), ∣v(2)∣ ≤ 6, ⇔ −10 ≤ θ ≤ 2

Taking two observations together we can conclude that

−2 ≤ θ ≤ 2

Thus after the experiment we know for sure (provided our assumptions are
correct) that θ belongs to the interval [−2, 2]. That is all we can say about
θ.

In Figure 2.12 we illustrate geometrically what happens. The red striped
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Figure 2.12: Red striped square indi-
cates a priori set of possible noise terms.
Solid black line the information the two
measurements provide. The green seg-
ment is the set of noise terms consistent
with both the prior and measurements
in Example 2.1. Violet region indicates
a priori set of possible noise terms in
Example 2.3

square represents all possible disturbances, i.e. it is the region ∣v(t)∣ ≤ 6,
t = 1, 2. Eliminating θ from (2.4), the set of noise pairs that are consistent
with the observations y(1), y(2) consists of the line

v(2) = y(2)− y(1)+ v(1)

This is the solid black line in the figure. The joint information of our prior
knowledge about the noise and the measurements is the intersection of the
red striped square with this line (the green segment in the figure). Thus
after the experiment we know that the noise must be in the set

{(v(1), v(2)) ∶ 2 ≤ v(1) ≤ 6, v(2) = −8+ v(1)} (2.5)

Since θ = y(1) − v(1) = 4 − v(1) the set of θ consistent with these noise
terms is the interval [−2, 2].

One may suspect that the more prior information we have about
the noise, the better we should be able to pin down the value of the
unknown parameter θ after having taken our measurements. Let us
illustrate this by returning to Example 2.1.

Example 2.2 (Example 2.1 continued). Suppose that in addition to ∣v(t)∣ ≤
6, we know that v(2) = −v(1). The only point on the green segment in Fig-
ure 2.12 that satisfies this condition is v(1) = 4, v(2) = −4 corresponding
to θ = 0, i.e. now we get a perfect estimate of the parameter from the two
observations.

From the previous two examples we see that when constructing
the noise model one should (as with the dynamical model) try to
incorporate as much physical knowledge as possible. One ingredient
that we will use is to incorporate dynamics in the noise models. Let
us see how this could work.

Example 2.3 (Example 2.1 continued). Let us assume that the noise v(t),
t = 1, 2, is generated by an underlying sequence e(0), e(1), e(2) according
to the dynamics

v(t) = e(t)+ 0.5e(t − 1), t = 1, 2; ∣e(s)∣ ≤ 4, s = 0, 1, 2 (2.6)
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Notice that then ∣v(t)∣ ≤ ∣e(t)∣+ 0.5∣e(t − 1)∣ ≤ 4+ 0.5 ⋅ 4 = 6, with equality
when e(t) = e(t − 1) = ±4, in accordance with our assumption in Exam-
ple 2.1. However, the mechanism (2.6) is not able to generate all possible
v(1), v(2) in the red striped square in Figure 2.12. Some simple algebra
gives that only those in the violet striped region in Figure 2.12 can be gen-
erated. Since this set is smaller than the red striped square in Figure 2.12,
we thus have more prior knowledge about the noise than in Example 2.1.

Let us now see if this information is useful to us. As in Example 2.1, the
noise pairs v(1), v(2) consistent with the measurements y(1) = 4, y(2) =
−4 (the same as in Example 2.1) is the solid line in Figure 2.12. Thus, the
only noise pair consistent with the model (2.4), the noise model (2.6) and
the observations is the single point v(1) = 6, v(2) = −2 which gives θ =
y(1)− v(1) = 4− 6 = −2 as the only possible value of θ. The dynamic noise
model has thus allowed us to reduce our uncertainty about θ from [−2, 2]
to complete certainty. All this, of course, predicated on the assumption that
the dynamic noise model (2.6) correctly describes the noise.

The noise model may take on many different formats depending
on the context. From our examples above we arrive at another tenet:

T5) An accurate noise model improves the estimate of the dynamic model.

There are a number of generic noise models that have been devel-
oped and for which efficient estimation algorithms have been tai-
lored. In this presentation we will stick to these, but the reader is
advised to be careful if it is known that the noise has some very
particular characteristics. Much can be gained by tailoring the noise
model to these characteristics and the basics presented in this treatise
are intended to guide you how to do this.

2.3.5 Interaction between the dynamic model and the noise model

The approach we will take in this book is, just as in Example 2.4, to
model how the measured signals are built up by a dynamic model
and disturbance and noise components, leading to an under-determined
set of equations as in that example. This means that the dynamic
model may try to capture disturbance/noise effects and vice-versa.
There are two situations where this problem is accentuated. The first
is when the dynamic model is unable to capture the true dynam-
ics. In Section 2.2, the simplified model from Example 1.2 could not
model the system in Figure 2.1 when the input was rich enough. This
means that the estimated noise will contain dynamics from the true
system. We will return to how to detect when this happens.

The second situation is when the model has more degrees of free-
dom than required to capture the true dynamics. Then there is a risk
that the extra degrees of freedom will be used to model the distur-
bances and noise acting on the true system with the dynamic model.
This is known as over-fitting and we will come back to how to avoid
this from happening.
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2.4 Basic concepts

2.4.1 Models, model structures and the set of unfalsified models

The learning problems we have seen examples of above all amount
to solving an under-determined set of equations

z = M(ξ) (2.7)

where z ∈ RN are the measurements, where ξ ∈ Ξ ⊆ Rnξ are the model
parameters comprising noise, disturbance and input sequences as
well as parameters in the dynamic model, and where M(⋅) is a pre-
specified function from its domain of definition Ξ to the image of
Ξ in RN . With some abuse of language we will call ξ a model, Ξ a
model set, and the function M(⋅) a model structure.

An important feature is that the set of equations is under-determined,
with more unknowns nξ than data N. We call the set of models ξ

consistent with the observed data z the set of unfalsified models

U(z) ∶= {ξ ∈ Ξ ∶ M(ξ) = z} (2.8)

Given that the model structure M(⋅) is correct, U(z) is exactly the
information contained in the data regarding the models ξ. We will
next turn to how select models from this set in a rational way.

2.4.2 Identifiability and informative experiments

Lack of observations may not be the only reason for why the model
equation (2.7) is under-determined. The parametrization of M may
also be inherently non-unique so that even if the number of free pa-
rameters are reduced below the number of observations M unique-
ness does not hold. To formalize this let S ∈ Ξ, be a subspace to Rnξ .
We then say that the model structure is identifiable at the point ξ∗ ∈ S
in S if there is a ξ̃ = ξ̃(ξ∗) in the orthogonal complement to S such
that ξ∗ + ξ̃ ∈ Ξ and

M(ξ∗ + ξ̃) = M(ξ + ξ̃), ξ ∈ S, ξ + ξ̃ ∈ Ξ ⇒ ξ = ξ∗

The experiment generating z = M(ξ∗ + ξ̃) is called informative with
respect to ξ∗ ∈ S.

The interpretation of identifiability at a point in S is that if we are
given ξ̃ together with the observation z = M(ξ∗ + ξ̃) then ξ∗ ∈ S can
be uniquely determined.

If all ξ ∈ S are identifiable we say that the model structure is iden-
tifiable in S . Notice that different experiments may be required for
different ξ ∈ S . If the observation z can be used for all ξS , we say
that z is informative with respect to S .

Example 2.4. Consider the model

z = θu + v
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with ξ = [θ u v]
T

. Let S be the subspace spanned by [1 0 0]
T

. Then

taking ξ̃ = [0 ũ ṽ]
T

, with ũ ≠ 0, gives informative data with respect to
S since

θ∗ũ + ṽ = θũ + ṽ

implies that θ = θ∗. Notice that ũ ≠ 0 is required as otherwise the model is
not identifiable.

The model structure

z = θ2u + v

is not identifiable in S since z can only provide information about θ2, the
only point for which it is identifiable is θ = 0.

Identifiability is often important when the model parameters have
physical interpretations and are used for decision making.

2.4.3 Model selection

Let us now look at how to pick a single model ξ from the set of
unfalsified models. This means constructing a map from every set of
unfalsified models U(z) to one model ξ: ξ(U(z)) ∈ Rnξ . Now, U(z),
which is a set-valued function from RN to sets in Ξ, is injective since
two different observations cannot have the same parameters. We can
thus simplify the indexation of the map by using z: ξ(z). For the
time being we call such a function a model selection function. Next we
provide an example of such a function.

The Chebyshev center. If we without further information are asked to
select a model in the set of unfalsified models it may seem "safe" to
pick one in the midst of the set. There is a rich literature based on
the Chebyshev center, defined as

ξc(z) ∶= arg min
ξ̃

max
ξ∈U(z)

∣ξ̃ − ξ∣ (2.9)

However, we can of course come up with other "alibis" for construct-
ing model selection functions. Let us see how we could take the
intended model use into account.

Decision making under uncertainty. As we have point out above, of-
ten the model does not have any interest per se. Instead it is used
in some application involving the true system. In process industry, a
process model could be used to design a feedback controller for the
system, and in telecommunications, a model of the fading could be
used to design an equalizer to reduce the intersymbol interference.
To formalize notions, let ρ denote the policy that is to be designed
8 which when applied to the true system, which we assume corre- 8 We do not want to enter into too much

mathematical formalism at this point so
the policy can be thought of as the de-
vice that is to be constructed, mathe-
matically it could be a function ρ = ρ(⋅).

sponds to the model ξo, results in a "reward"9 R(ρ, ξo). Denoting the

9 The reward is a mathematical quantifi-
cation of the achieved performance.

set of allowed policies by F , the optimal policy is

ρ∗(ξo) ∶= arg max
ρ∈F

R(ρ, ξo)
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To align with the machine learning literature we introduce the regret
for the policy ρ for the model ξo

L(ρ, ξo) = R(ρ∗(ξo), ξo)− R(ρ, ξo) ≥ 0 (2.10)

In principle, we could find the optimal policy by applying differ-
ent policies to the true system and observing the resulting rewards
through observations, finally selecting the best one. Practical imple-
mentations of this approach are often called direct adaptive algorithms.
The term direct alluding to that the policy is designed directly from
the data z without any use of an intermediate model. Such methods
require that the system is available for experimentation which may
not be possible due to economic-, time- or other constraints. When
given an observation z ∈ RN from the system and a model structure,
one may instead use a worst-case approach over the set of unfalsified
models. The worst-case regret for a policy ρ when the true system is
known to be in the set of unfalsified models is defined as

L(ρ,U(z)) ∶= max
ξo∈U(z)

L(ρ, ξo)

The worst-case optimal policy is then given by

ρ∗(L,U(z)) ∶= arg min
ρ∈F

L(ρ,U(z))

It may be very challenging to solve this (robust) functional minimiza-
tion problem. In model based design, the policy is a function of a
model, i.e. we can index ρ as ρ(ξ). One could, e.g., choose the policy
ρ(ξ) = ρ∗(ξ) such that zero regret is obtained if ξo = ξ, cf. optimal
control. This policy is called the certainty equivalence principle. The
worst-case optimal model is then defined as10,11 10 Note that it may happen that the

worst-case optimal model is not in
U(z).
11 A more elaborate scheme is obtained
by also optimizing over ρξ , i.e. we pick
the best policy in a set Fξ depending on
the model ξ, according to

ρ∗(ξ,U(z)) = arg min
ρ∈Fξ

L(ρ,U(z))

The optimal model to use from a worst-
case perspective would then be

ξ(L,U(z))
∶= arg min

ξ∈Ξ

L(ρ∗(ξ,U(z)),U(z))

ξ∗(L,U(z)) ∶= arg min
ξ∈Ξ

L(ρ∗(ξ),U(z))

This model thus results in a policy ρ(ξ∗(L,U(z))) that has smallest
worst-case regret among the set of considered policies {Fξ ∶ ξ ∈ Ξ}.
Thus, by accounting for the intended use of the model, we have been
able to select one12 model from the set of unfalsified models in a

12 Of course there may be several global
minima of J(ρξ ,U(z)) but we are con-
cerned with principles rather than de-
tails here.

rational way, i.e. we have constructed a meaningful model selection
function.

Above, we can see −L(ρ(ξ),U(z)) as a function ranking the differ-
ent models such that a larger value means a more preferrable model.
Ranking has turned out to be a very useful concept so next we turn
to some general considerations for how to rank models.

2.5 Ranking models

2.5.1 Top ranked models

At first glance, it may seem like a roundabout way to select a model
by first ranking the different models ξ ∈ Ξ and then pick the one in-
side the set of unfalsified models with the largest ranking. However,
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we have already seen that the worst-case approach in the previous
section can be interpreted this way and in Section 2.5.6 we will come
back to the rationales. With13 13 There is no restriction to assume that

the rankings are non-negative.
p(ξ) (≥ 0) (2.11)

denoting the ranking of model ξ, the top ranked model would then
be

ξ̂(z) = arg max
ξ∈U(z)

p(ξ) (2.12)

For practical reasons we can turn this into an unconstrained prob-
lem. As preparation we introduce a generalization of Dirac’s delta
function δ(x). Recall that loosely speaking this function is defined

∫ f (t)δ(t)dt = f (0). Now, for a vector x = [x(1) . . . x(n)]
T
∈ Rn,

we define

δ(x) ∶=
n
∏
k=1

δ(x(k))

The joint ranking of model parameters ξ and observations z is now
defined as

p(ξ, z) ∶= p(ξ)δ(z −M(ξ)), (2.13)

and we can write

ξ̂(z) = arg max
ξ

p(ξ, z)

where we use the convention that aδ(0) < bδ(0)⇔ a < b.
Let us see how this could work in the simple setting of Example

2.1.

Example 2.5. Consider the model (2.4). Let us to begin with assume that
we have only one measurement14 z ∈ R in which case we can write 14 We use the symbol z for the observa-

tions to be consistent with the notation
in this section.M(ξ) = θ+ v, ξ ∶= [θ v]

T

The set of unfalsified models is given by

U(z) = {[θ v]
T
∶ θ ∈ R, v = z − θ)}

One possible ranking is

p(θ, v) = N (v; 0, λ), λ = 0.1

i.e. we prefer models with small noise v but put no preference over different
θ’s is given. Let us stress that we use the probability density function (pdf)
of the normal distribution only because it is a convenient positive function
with well known properties - what we are engaged in does not have anything
to do with probability theory.

The function to maximize is

p(θ, v, z) = N (v; 0, λ)δ(z − θ− v)

which clearly is minimized by taking v = v̂(z) ∶= 0 and θ = θ̂(z) ∶= z. The
top ranked model is thus (θ̂(z), v̂(z)) = (z, 0).
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Building on the previous example, we consider a case with multi-
ple measurements.

Example 2.6. Suppose now that we have N measurements z ∈ RN and
that we use the model

M(ξ) = Tθ+ v, ξ ∶= [θT vT]
T

where θ ∈ Rnθ , nθ ≤ N, and where T ∈ RN×nθ , leading to the set of unfalsi-
fied models

U(y) = {[θT vT]
T
∶ θ ∈ Rnθ , v = z −Tθ)}

An extension of the ranking function used in the previous example could be

p(θ, v) = N (v; 0, λI), λ = 0.1

so that we should maximize

p(θ, v, z) = N (v; 0, λI)δ(z −Tθ− v) (2.14)

Eliminating v, which has to be v = z −Tθ, gives

θ̂(z) = arg max
θ

N (z −Tθ; 0, λI) = arg min
θ

1
λ
∣z −Tθ∣2 + N log λ

= arg min
θ

∣z −Tθ∣2 (2.15)

Thus θ̂(z) is obtained as the solution to the above least-squares problem.
When T has full (column) rank the solution is

θ̂(z) = (TTT)−1TTz, (2.16)

and v̂(z) = z − θ̂(z). These choices of θ and v correspond to the top ranked
model.

2.5.2 Sets of top ranked models

Obviously it may be difficult to come up with a suitable ranking
function so it may appear risky to just pick the model that has the
highest ranking in the set of unfalsified models. Instead, one may
opt to select a subset U0.95(z) ⊂ U(z) corresponding to the, say 95%,
highest ranked models, i.e. U0.95(z) is such that

∫U0.95(z) p(ξ, z)dξ

∫Ξ p(ξ, z)dξ
= 0.95

where all models in U(z) that do not belong to U0.95(z) have lower
ranking than those in U0.95(z).

A slightly simpler expression can be obtained if we introduce the
total rankings for z

p(z) ∶= ∫
Ξ

p(ξ, z)dξ (2.17)
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and the normalized ranking of ξ given z

p(ξ∣z) ∶=
p(ξ, z)
p(z)

(2.18)

which satisfies

∫ p(ξ∣z)dξ = 1 (2.19)

Then U0.95(z) should satisfy

∫U0.95(z)
p(ξ∣z)dξ = 0.95

ξ̄ ∈ U(z)∖U0.95(z), ξ ∈ U0.95(z) ⇒ p(ξ̄) ≤ p(ξ)

Let us see how this could work in the previous example.

Example 2.7 (Example 2.6 continued.). The ranking function is given
by (2.14)

p(θ, v, z) = N (v; 0, λI)δ(z −Tθ− v), λ = 0.1

and all models in U(z) can be parametrized as

ξ = [ θ

z −Tθ
]

Any subset in U(z) can thus be written as

UΘ(z) ∶= {[ θ

z −Tθ
] ∶ θ ∈ Θ ⊆ Rn}

The problem is thus to determine Θ. In order to have 95% of the rankings
we should select Θ such that

0.95 =
∫UΘ(z) p(θ, v, z)dvdθ

p(z)
= ∫Θ

N (z −Tθ; 0, λI)dθ

∫ N (z −Tθ; 0, λI)dθ
(2.20)

Now, a model in UΘ(z) has weighting

N (z −Tθ; 0, λI) = 1
(2π)N/2λN/2

e−
1

2λ ∣z−Tθ∣2

In order to obtain the highest ranked models we should thus select Θ as
those θ for which Tθ is closest to z. From (A.2) in Lemma A.5.1 we obtain
that

∣z −Tθ∣2

λ
= (θ− θ̂(z))T TTT

λ
(θ− θ̂(z))+ ∣z −Tθ̂(z)∣2

λ
(2.21)

where θ̂(z) is the solution to (2.15) which is given by (2.16). The second
term on the right is independent of θ whereas the first term has level curves
that are ellipsoids. All models on such a level curve have the same ranking.
We should thus take

Θ = Θ(z) ∶= {θ ∶ (θ− θ̂(z))T TTT
λ

(θ− θ̂(z)) ≤ c} (2.22)
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for some constant c which should be adjusted such that (2.20) is satisfied.
This condition can be expressed as15

15 We have that

p(z) =∫
e
− 1

2 (θ−θ̂(z))T TT T
λ

(θ−θ̂(z))+ ∣z−Tθ̂∣2
λ

(2π)N/2λN/2
dθ

=
e
− 1

2
∣z−Tθ̂(z)∣2

λ

(2π)N/2λN/2 ∫ e
− 1

2 (θ−θ̂(z))T TT T
λ

(θ−θ̂(z))
dθ

=
e
− 1

2
∣z−Tθ∣2

λ

(2π)(N−nθ)/2λ(N−nθ)/2
√

det TT T

× ∫
e
− 1

2 (θ−θ̂(z))T TT T
λ

(θ−θ̂(z))

(2π)nθ/2
√

det λ(TT T)−1
dθ

=
e
− 1

2
∣z−Tθ̂(z)∣2

λ

(2π)(N−nθ)/2λ(N−nθ)/2
√

det TT T
(2.23)

∫UΘ(z)
p(θ, v, z)dθ

=
e
− 1

2
∣z−Tθ̂(z)∣2

λ

(2π)(N−nθ)/2λ(N−nθ)/2
√

det TT T

×∫UΘ(z)
e
− 1

2 (θ−θ̂(z))T TT T
λ

(θ−θ̂(z))

(2π)nθ/2
√

det λ(TT T)−1
dθ (2.24)

∫
Θ

e−
1
2 (θ−θ̂(z))T TT T

λ (θ−θ̂(z))

(2π)n/2
√

det λ(TTT)−1
dθ = 0.95 (2.25)

We recognize that this is the probability that θ ∈ Θ assuming that θ ∼
N (θ̂(z), λ(TTT)−1). For the set (2.22), this is the same probability as
that a χ2(nθ) distributed variable is less than c . We thus arrive at the
conclusion that the set of 95% top-ranked models is given by

U0.95(z) = {[ θ

z −Tθ
] ∶ (θ− θ̂(z))T TTT

λ
(θ− θ̂(z)) ≤ F−1

χ2(nθ)(0.95)}

(2.26)

where F−1
D denotes the inverse of the distribution function of the distribution

D.
It is also worth pointing out that, with the notation v(θ) = z − Tθ and

using Tθ− Tθ̂ = z− Tθ̂− (z− Tθ) = v(θ̂)− v(θ), we can express the set of
top-ranked models in terms of v(θ) as

U0.95(z) =
⎧⎪⎪⎨⎪⎪⎩
[ θ

z −Tθ
] ∶

1
N ∣v(θ)− v(θ̂)∣2

λ
≤

F−1
χ2(nθ)

(0.95)

N

⎫⎪⎪⎬⎪⎪⎭
We see that 1

N ∣v(θ) − v(θ̂)∣2 should not deviate too much from λ which
represents the width of the ranking function.

Another characterization of the set of top ranked models is obtained by
using (A.3) in (2.26)

U0.95(z) = {[ θ

z −Tθ
] ∶ ∣z −Tθ∣2 ≤ ∣z −Tθ̂∣2 + λF−1

χ2(nθ)(0.95)} (2.27)

Thus the top ranked models are characterized by that they fit Tθ to the
observation z to within a margin of the least-squares estimate Tθ̂ given by
the second term on the right-hand side of the inequality in (2.27).

Now, the sample correlations between the columns of T and v(θ) are
obtained by projecting v(θ) onto the columns of T and then normalizing
with the norm of v(θ)

T(TTT)−1TTv(θ)
∣v(θ)∣

We can re-write the cross-correlations as

N
T(TTT)−1CT,v(θ)

∣v(θ)∣
by introducing the corresponding vector of sample cross-covariances

CT,v(θ) ∶=
1
N

TTv(θ)

The cross-correlations are in the interval [−1, 1] with large absolute values
when there are strong correlations. Thus taking the sum of the squares of
the correlations will be a number between 0 and nθ

0 ≤ N2
CT

T,v(θ)(TTT)−1CT,v(θ)

∣v(θ)∣2
=

CT
T,v(θ) (

TTT
N )

−1
CT,v(θ)

∣v(θ)∣2/N
≤ nθ
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Now we notice that16 16 Why?

NCT,v(θ) = TT(z −Tθ) = TT(z −Tθ̂(z)+Tθ̂(z)−Tθ) = TTT(θ̂(z)− θ)

so that

(θ− θ̂(z))TTTT(θ− θ̂(z)) = N2CT
T,v(θ) (TTT)

−1
CT,v(θ)

and, hence, (2.26) can be written

U0.95(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ θ

z −Tθ
] ∶

CT
T,v(θ) (

TTT
N )

−1
CT,v(θ)

∣v(θ)∣2/N
≤ 1

N
λ

∣v(θ)∣2/N
F−1

χ2(nθ)(0.95)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.28)

Thus the set of top ranked consists of models for which the cross-correlations
between the noise and the columns of T are sufficiently small. We notice that

the condition becomes more severe for models for which the ratio ∣v(θ)∣2/N
λ

is large, i.e. if the norm of the noise is larger than what we expect for a high
ranked model17, there has to be compelling evidence in terms of that little of 17 λ specifies the width of the ranking

function. Recall that we have specified
that λ = 0.1.

the noise can be modelled by Tθ.

2.5.3 Tuning the ranking function

The ranking function should encode our prior beliefs about how the
system behaves. Doing this is a non-trivial task and in Section 2.5.6
we shall see how we can map our ranking philosophy to a construc-
tive approach.

However for now an important observation is that given a spe-
cific observation z we only need to provide a ranking for the mod-
els in U(z), there is no need to waste effort on ranking other mod-
els. This can greatly simplify our task. One way to go about doing
this is to start with a parametrized ranking function p(ξ; η). These
parameters, here denoted η, will be called hyperparameters as they
do not directly contribute to the model M(ξ), instead they control
which model is selected in the set of unfalsified models, e.g. we will
have that the top ranked model depends on the hyperparameters:
ξ̂ = ξ̂(η).

So how should we select these new parameters? Well, an idea
that quickly comes to mind is that one should pick the hyperparam-
eters such that the models in the set of unfalsified models are highly
ranked. After all, these are the models that are consistent with the
data. There are, of course, different ways to measure if these models
are highly ranked. We could for example maximize the ranking of
the top ranked model ξ̂(η)

η̂(z) ∶= arg max
η

p(ξ̂(η), z; η) (2.29)

which is the same as solving

(ξ̂(z), η̂(z)) ∶= arg max
ξ∈Ξ, η

p(ξ, z; η) (2.30)
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An alternative could be to maximize the total rankings18 18 Recall (2.23) , i.e. that p(z; η) is the
total of the rankings in the set of unfal-
sified models.η̂(z) ∶= arg max

η
p(z; η) (2.31)

which, if we view p(z; η) as a ranking of the hyperparameters, we
also can interpret as picking the top ranked hyperparameter.

Let us see what these two approaches give in Example 2.6.

Example 2.8 (Example 2.6 continued). A parameter that does not influ-
ence z(θ, v) = Tθ+ v is λ that appears in the ranking function p(θ, v) =
N (v; 0, λI). Thus λ is a hyperparameter. We first observe that the top
ranked model (2.16) does not depend on this hyperparameter. In this ex-
ample, (2.29) corresponds to maximizing (2.15) first with respect to θ and
then to λ, or as the problem is well-behaved to simultaneously maximize the
function on the right in (2.15) with respect to both θ and λ. Now, the min-
imum with respect to θ is independent of λ and given by the least-squares
solution (2.16). This means that (2.29) becomes

λ̂(z) = arg min
λ

∣z −Tθ̂(z)∣2

λ
+ N log λ

Setting the derivative of the objective function gives

− ∣z −Tθ̂(z)∣2

λ2 + N
λ

= 0

which gives the solution

λ̂(z) = 1
N

∣z −Tθ̂(z)∣2

i.e the average of the minimum possible squared errors.
For (2.31) we can take the logarithm of (2.23) and eliminate λ-independent

terms, giving

λ̂(z) = arg min
λ

∣z −Tθ̂(z)∣2

λ
+ (N − nθ) log λ

which has solution

λ̂(z) = 1
N − nθ

∣z −Tθ̂(z)∣2

We see that there is a slight difference compared to the previous estimate in
that the normalization is 1/(N − nθ) rather than 1/N.

We can also determine the hyperparameters as their conditional
average given the observation z

η̄(z) = ∫ ηp(η∣z)dη (2.32)

where, similar to (2.19), p(η∣z) = p(η; z)/p(z) with

p(z) = ∫ p(z; η)dη, (2.33)

see Exercise 2.5.
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By the above it should be clear that selecting hyperparameters us-
ing data can be done using the same principles as for model parame-
ters. We can also parametrize p as p(ξ; η)p(η), i.e. the ranking of the
model parameters is parametrized as before but a separate ranking
is provided to the hyperparameters. We may then parametrize the
ranking function for the hyperparameters by new parameters, which
in turn may be given a separate ranking. This procedure may be
continued in as many steps as desired leading to the hierarchically
structured ranking function

p(ξ; η0)
m
∏
i=1

p(ηi−1; ηi)

Before moving on, we remark that through the use of hyperparame-
ters the same ranking function can be achieved in different ways. We
illustrate this in an example.

Example 2.9 (Example 2.5 continued). In Example 2.5 we used the
ranking function p(θ, v) = N (v; 0, 0.1), i.e. we did not include θ in the
ranking function. The same can be achieved with the ranking function
p(θ, v, η) = N (v; 0, 0.1)δ(θ− η), where here η is a hyperparameter to be
determined from data. This ranking function forces θ = η and thus the
set of unfalsified models is defined by z = θ+ v = η + v, and on this set
p(θ, v, z, η) = N (z − η; 0, 0.1), i.e. η plays the same role as θ in Example
2.5, and whatever procedure we have come up with to select θ, the same can
be used for η.

Notice that when we parametrize the ranking function as in Exam-
ple 2.9, we in a sense violate the notion that hyperparameters should
not directly enter in the model M in that we can view η, which is a
hyperparameter, as being part of M. However, formally this is not
formally the case since θ is used as a proxy for η.

To further accentuate that there is little difference between model
parameters and hyperparameters we return to Example 2.8.

Example 2.10 (Example 2.8 continued). The model

z(θ, v) = Tθ+
√

λv

with ranking p(θ, v) = N (v; 0, I) give rise to exactly the same ranking as
the set-up in Example 2.8. However, here λ is considered a model parameter
rather than a hyperparameter.

2.5.4 Alternative model selection functions

As it is typically difficult for a user to justify the choice of ranking
function there may seem to be no particular reason for why the top-
ranked model should be selected. There are of course many alter-
native strategies to pick a model from the set of unfalsified models.
Each one having its own justification. Here we will give a few exam-
ples.



48 learning dynamic systems - system identification 20/20

The conditional average ranking model and the median model Consider
the situation depicted in Figure 2.13 where the ranking function has
two peaks far apart close in height. Instead of picking the top ranked
model one could argue that it would be more robust to pick a point
more in the center of U(z), e.g. the center point ξc or the point ξ̄

which is the average of the rankings in U(z)

ξ̄(z) = ∫U(z)
ξp(ξ∣z)dξ, (2.34)

We call this model the conditional average ranking model.

Figure 2.13: The center point ξc of the
set of unfalsified models and the condi-
tional average ranking model ξ̄.

These choices seem motivated also for the situation in Figure 2.14.
However, here one may be more inclined to pick the point ξ̃ which
has half the "mass" of the rankings on either side, we call this the
median model.

Figure 2.14: The median model and the
conditional average ranking model.

Let us compute the conditional average ranking model for Exam-
ple 2.6.

Example 2.11 (Example 2.6 continued). The conditional average ranking
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model of θ can be written as

θ̄(z) = ∫ θp(θ, v∣z)dvdθ = ∫
θp(θ, v, z)dvdθ

p(z)

Comparing with (2.20) and (2.25) gives that this is the integral over all
θ with the same integrand as in (2.25) multiplied with θ. But since the
integrand in (2.25) is N (θ; θ̂(z), λ(TTT)−1), θ̄(z) is the mean of this dis-
tribution

θ̄(z) = θ̂(z)

Thus in this simple case the conditional average ranking model and the top
ranked model are the same.

The conditional average ranking model has an interesting opti-
mality property. For a random vector x ∈ Rn and any constant vector
in m ∈ Rn we have19

19

E [(x −m)(x −m)T]

=E [(x −E [x]+E [x]−m)(x −E [x]+E [x]−m)T]

=E [(x −E [x])(x −E [x])T]+ 2E [(x −E [x])(E [x]−m)T]

+ (x −m)(x −m)T

=E [(x −E [x])(x −E [x])T]+ (x −m)(x −m)T

E [(x −m)(x −m)T] = E [(x −E [x])(x −E [x])T]+ (x −m)(x −m)T

≥ E [(x −E [x])(x −E [x])T]

with equality if and only if m = E [x]. Taking the trace gives

E [∣x −m∣2] ≥ E [∣x −E [x] ∣2]

Now, recall that p(ξ∣z) is normalized (2.19) and therefore can be re-
garded as a pdf with domain U(z). Thus the result above implies
that for any model selection function ξ∗(z) that only depends on z,

∫U(z)
∣ξ∗(z)− ξ∣2 p(ξ∣z)dξ ≥ ∫U(z)

∣ξ̄(z)− ξ∣2 p(ξ∣z)dξ (2.35)

where ξ̄(z) is the conditional average ranking model (3.2). We can
interpret this inequality in decision theoretic terms. Suppose that we
have a family of possible data generating mechanisms, represented
by U(z), of which one has generated our data. Our task is to de-
cide on one of the possible mechanisms, i.e. choosing ξ∗(z). The
penalty for choosing ξ∗(z) when the true mechanism is ξ is taken as
the squared distance in Ξ, weighted by the ranking function p(ξ)20. 20 Recall that p(ξ∣z) = p(ξ)/p(z), so

weighting with p(ξ∣z) or p(ξ) only dif-
fer by a constant.

As all ξ ∈ U(z) are possible what we would like to minimize is then
the total penalty as ξ ranges over all possibilites dictated by the ob-
servation z. This penalty is represented by the integral

∫U(z)
∣ξ∗(z)− ξ∣2 p(ξ∣z)dξ

According to (2.35), the conditional average ranking model solves
this decision problem.

Now, we can multiply the above inequality with p(z). Since p(z) ≥
0, the inequality is maintained and further, since per definition p(ξ∣z)p(z) =
p(ξ, z), we obtain after integrating over z

∫ ∫U(z)
∣ξ∗(z)− ξ∣2 p(ξ, z)dξdz ≥ ∫ ∫U(z)

∣ξ̄(z)− ξ∣2 p(ξ, z)dξdz
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Since for fix z, p(ξ, z) vanishes outside U(z) we can extend the do-
main of integration for ξ to Ξ

∫ ∫
Ξ
∣ξ∗(z)− ξ∣2 p(ξ, z)dξdz ≥ ∫ ∫

Ξ
∣ξ̄(z)− ξ∣2 p(ξ, z)dξdz

Further, using that p(ξ, z) = p(ξ)δ(z(ξ) − z) in the above inequality
and reversing the order of integration gives

∫
Ξ
∣ξ∗(z(ξ))− ξ∣2 p(ξ)dξ ≥ ∫

Ξ
∣ξ̄(z(ξ))− ξ∣2 p(ξ)dξ (2.36)

Again we can make a decision theoretic interpretation. Using the
same penalty as above, the conclusion is that the conditional average
ranking model minimizes the total penalty as θ ranges over all pos-
sible data generating mechanisms that we are considering. Formally,
ξ̄(⋅) solves the function minimization problem21 21 Replacing ∣ ⋅ ∣2 with some other

penalty will result in other conditional
ranking models, see, e.g., Corollary 1.2
in Chapter 4 of

E. L. Lehmann and G. Casella. Theory
of Point Estimation. John Wiley & Sons,
New York, second edition edition, 1998

arg min
f ∶RN→Ξ

∫
Ξ
∣ f (z(ξ))− ξ∣2 p(ξ)dξ (2.37)

which at first sight looks highly non-trivial. If we review what we
have done, the key to solving the problem above is to split up the
integral and solve the sub-problem where z(ξ) is fix; this is (2.35).

Using the total ranking for subsets of model parameters One may also
use the total ranking in the set of unfalsified models for a subset of

the model parameters to select a model. Let ξ = [ξT
1 ξT

2 ]
T

, we may
then form the total rankings for ξ1

p(ξ1; z) = ∫
Ξ

p(ξ; z)dξ2

and then use this in place of p(ξ; z) to construct a model selection
function for ξ1, e.g. any one of those we have discussed above. One
may do the same for ξ2, or one may split up the elements of ξ in
more subsets. In particular, each element may be treated separately.

Low dimensional models. Often there may be reasons to favor a model
which resides in a lower dimensional subspace of Rn (to which ξ be-
longs). A straightforward way of achieving this is to consider the
corresponding model structure and use some model selection func-
tion to select a model. However, it frequently happens that the user
is fairly confident that the present model structure is relevant and
also that the ranking function makes sense. One would thus like to
use this knowledge to see if the model structure can be simplified.
One way to approach this problem would be to try to find a lower
dimensional model in the set of (95%) top ranked models. Let us use
Example 2.6 to see how this could look like.

Example 2.12 (Example continued). In Example 2.7 we saw that the set
of top ranked models is characterized by models where Tθ fits the observa-
tion z well, cf. (2.27). Suppose now that we are interested in simplifying
the model so that only a subset of the elements of θ are non-zero. Let T̃θ̃

be the reduced model, i.e. T̃θ̃ = Tθ when θ has the desired zeros. Then the
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model of this type with best chance to belong to the set of top ranked models
is the model corresponding to the least squares estimate ˆ̃θ ∶= (T̃TT̃)−1T̃Tz.
One can thus test all possible selections of columns of T in T̃ and take the
model structure with smallest number of columns satisfying

∣z − T̃ ˆ̃θ∣2 ≤ ∣z −Tθ̂∣2 + λF−1
χ2(n)(0.95)

This criterion can be given several interesting interpretations.

2.5.5 Functions of model parameters

A very common situation is that we are not directly interested in the
model but some derived quantity. For example, the intended use of
the model may be to design a controller. With γ(⋅) ∶ Ξ → Rm denot-
ing the specific control design algorithm, mapping a model to the
parameters of the controller, our interest is γ(ξ). For this we may
apply γ(⋅) to whatever model from the set of unfalsified models we
have judged appropriate, e.g. the top ranked model or the condi-
tional average ranked model, giving γ(ξ̂) and γ(ξ̄), respectively.

An alternative is to reparametrize the ranking function in terms of
γ = γ(ξ). Notice that typically the dimension of γ is lower than the
dimension of ξ which means that the dimension of the model set Ξ

is reduced. Formally, we can achieve this by introducing γ ∈ Rm as
a fictitious observation together with its "model" γ = γ(ξ) so that the
complete model is described by

[γ

z
] = [γ(ξ)

z(ξ)
]

We can then define the ranking function for all our parameters and
observations (including the fictitious γ)

p(ξ, γ, z) ∶= p(ξ, z)δ(γ −γ(ξ)) = p(ξ)δ(z − z(ξ))δ(γ −γ(ξ))

and define the total rankings corresponding to z and γ by integrating
over ξ

p(γ, z) ∶= ∫
Ξ

p(ξ, γ, z)dξ

Recall that we can view p(ξ, z) as the ranking of ξ taking into ac-
count the set of feasible models, similarly p(ξ, γ) can now be seen as
the ranking of γ taking into account the set of feasible models. We
can therefore use this ranking for selecting a γ consistent with the
observation z in exactly the same way as we have done when select-
ing a model ξ using the ranking p(ξ, z). We can thus compute, e.g.,
the top ranked γ

γ̂(z) = arg max
γ

p(γ, z)

or the conditional average rank model

γ̄(z) = ∫ γp(γ, z)dγ

Notice that, in general, neither γ̂(z) = γ(ξ̂(z)) (see Exercise 3.1.a),
nor γ̄(z) = γ(ξ̄(z)).
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2.5.6 Choosing the ranking function

We have now come to the core problem: How should we choose the
ranking function? Well, a first observation is that the true data gen-
erating mechanism should be given high rank; ideally it should be
ranked infinitely high so that no matter what reasonable selection
mechanism ξ(z) we use, this model is selected. Now this is perhaps
a silly observation since we wouldn’t be in the need of learning if
this information was available to us. However it provides us with an
important guideline for how to encode prior knowledge into rank-
ings:

Models that are consistent with our prior knowledge should be given high
rankings.

The better we are able to do this, the more precise we will be able
to model the observation. It’s as simple as that. Yet, it may seem
like a formidable task to assign rankings to all possible models, even
if we, as we have seen, can restrict attention to the set of unfalsified
models. To deal with this we will now embark on a path that we
will pursue throughout the lecture notes. We will use a constructive
approach which has proven to be very successful, able to incorporate
a rich variety of qualitative prior information.

The basic idea is to introduce some additional assumptions on the
model parameters ξ and then construct a ranking function which
favors models for which these assumptions are satisfied.

Example 2.13. Let us consider the model

y(t) =
n
∑
k=1

θku(t − k)+ v(t)

where {u(t)} is the input and {v(t)} is the noise.
A natural assumption may be that u(t) should not depend on the present

and the future of the noise sequence v(t + k), k = 0, 1, . . .. Now for finite
data, the model above can be written as in Example 2.7

z = Tθ+ v

where T is a Toeplitz matrix22 22 A Toeplitz matrix has the same ele-
ments along all its subdiagonals.

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0) u(−1) . . . u(1− n)
u(1) u(0) . . . u(2− n)
⋮ ⋮ ⋱ ⋮

u(N − 1) u(N − 2) . . . u(N − n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A (partial) way to capture that the input and the disturbance are indepen-
dent is to introduce the assumption that the covariance between the two
quantities is close to zero. Assuming the sample mean of the input is zero,
this means

∣ 1
N

uTv∣ "small", u = [u(1) . . . u(N)]
T

To incorporate this in the ranking approach, we could for example choose
the ranking function to measure how small the magnitude of the covariance
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is, e.g. by using p(θ, v) = −∣uTv∣. Maximizing this ranking function on
the set of unfalsified models gives

min
θ

∣ 1
N

uT(z −Tθ)∣

However, setting uT(z − Tθ) to zero gives a linear equation so unless θ

is a scalar, typically zero covariance can be achieved by multiple solutions.
To remove the ambiguity, additional covariances may be used. For this we
notice that the Toeplitz structure of T gives that 1

N TTv contains sample
covariances for lags τ = 1, . . . , nθ . This gives the ranking function

p(θ, z −Tθ) = ∣TT(z −Tθ)∣

Here the number of equations and unknowns are equal giving the unique
solution

θ = (TTT)−1TTz

when T has full column rank, i.e. we arrive at the least-squares estimate
which also appeared in Example 2.6.

The more elaborate assumptions that are introduced, the more
information we will be able to squeeze out of the observations, if the
assumptions are correct that is. Care thus has to be exercised when
introducing prejudices.

2.6 Essential Aspects

2.6.1 A water-bed effect and overfitting

As we now have repeatedly have seen, the fundamental problem in
learning is that the data-model relationship (2.7) is under-determined,
i.e. the number of model parameters nξ exceeds the number of ob-
servations N. We will call the number of excess parameters, nξ − N
the model degrees of freedom (mdf)23. As a consequence of this ambigu- 23 Later we will define the degrees of

freedom in a statistically meaningful
way.

ity, measurement noise and disturbances in data may be attributed to
model parameters describing the dynamics and it may seem intuitive
that this effect is exacerbated with increasing degrees of freedom.

Now, the constraint

z = M(ξ)

give rise to a water-bed effect. Incorrectly attributing a part of the
observations to certain model parameters means that the same pa-
rameters can be used to describe less of what they actually should
explain in the observations.

We once more return to Example 2.6 to illustrate this phenomenon.

Example 2.14 (Example 2.6 continued). Recall the model

M(ξ) = Tθ+ v, ξ ∶= [θT vT]
T
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where θ ∈ Rnθ , nθ ≤ N, and where T ∈ RN×nθ is full (column) rank, which
with the ranking p(θ, v) = N (v; 0, λ) gives the top ranked model

θ̂ = (TTT)−1TTz

Assuming that the true system is z = Tθo + vo, we can write this as

θ̂ = θo + (TTT)−1TTvo

Thus, we have

Tθ̂ = Tθo +∆v, ∆v ∶= T(TTT)−1TTvo

Here we recognize T(TTT)−1TT as the orthogonal projection onto the sub-
space of RN spanned by the columns of T. Now the number of parameters
in our model is dim θ+dim v = nθ +N while the number of observations is
dim z = N and hence the model degrees of freedom equals nθ + N − N = nθ .
But this is exactly the dimension of this subspace (since T is assumed full
rank). Thus, the error consist of the true noise projected onto a subspace
whose dimension equals the model degrees of freedom. The corresponding
model of the noise is

v̂ ∶ = z −Tθ̂ = Tθo + vo −Tθo −∆v

= vo −T(TTT)−1TTvo = (I −T(TTT)−1TT)vo

and here we recognize I − T(TTT)−1TT as the orthogonal projection on
the subspace orthogonal to the span of the columns of T. This space has
dimension N − nθ . Notice that since ∆v and v̂ are orthogonal projections of
the vector vo on complementary subspaces, it holds that

∣vo ∣2 = ∣v̂∣2 + ∣∆v∣2 (2.38)

As a consequence, ∣v̂∣ < ∣vo ∣ which means that the model underestimates
the amount of noise in the data. This effect can be significant when the ratio
nθ/N is non-negligible. This is the water-bed effect in force: the part ∆v

of vo has been used to explain a part of the contribution from the term Tθo

and hence cannot be used to explain vo since the constraint z = Tθ+ v has
to be satisfied. Notice also that ∣v̂∣2 is the minimum of the cost function on
the right in (2.15).

Consider now that we augment our model with an additional regressor
t, giving the model

z = Tθ+ tα + v

where α is another unknown parameter. Assuming that the observations
are still given by z = Tθo + vo this means that we have a surplus model
parameter α to determine. However, the derivations above apply also for this
model which gives that the error between Tθo and our top ranked augmented
model is given by the orthogonal projection of vo on the subspace spanned by
the columns of T and the vector t, i.e. a larger subspace than we had before.
Thus the augmented model has a larger norm of the error than the original
model and consequently a smaller norm of v̂ (since it is the projection on
the orthogonal complement of that subspace, which instead has shrunk in
dimension).
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An alternative view of what happens when we augment a model
with more parameters than necessary is that the added degrees of
freedom (α in the example) allows the minimum of (2.15) to be de-
creased, implying that a smaller fraction of the noise vo is part of the
noise model v̂. However, in view of (2.38) the noise on the model of
Tθo must then have increased since the sum of the two noise terms
is constant. For this reason, the increase in the model error is said to
be due to overfitting. Overfitting in a much more general setting than
Example 2.14 is discussed in Exercise 3.7.

Overfitting has a serious impact on the overall learning problem.
Typically it is beforehand not known exactly which model structure
M to use. A simple remedy to this would be to use a very flexi-
ble model structure, i.e. one that has many model parameters; the
reader may think of a universal model structure able to accomodate
any system behavior. However, overfitting effectively prevents the
use of such model structures as then most of the disturbances and
noise in the data will be attributed to the system model. Thus model
structure selection and how to constrain flexible model structures so
that overfitting does not occur are two of the most challenging prob-
lems in learning. The latter problem is known as regularization.

2.6.2 The role of the excitation

For a given model structure M(⋅), it is the observations z that de-
fine the set of unfalsified models (2.8) but since the model equation
(2.7) is under-determined the set of unfalsified models will always
be unbounded. However, the information in the observations in re-
gards to the different model parameters will influence how the set of
unfalsified models is shaped. In particular the information contents
will influence how the highest ranked models in the set of unfalsified
models cluster. Notice that we are here talking about information in
the observations as specified by the used model structure and not the ac-
tual information that is present in the observations. Only when the
true system is described within the model structure do these notions
coincide.

In Example 2.7 the set of unfalsified θ does not shrink as more
measurements are collected; all possible values of θ are feasible since
all possible v are allowed. However, the 95% top ranked models
belong to an ellipsoid. Let us analyse this ellipsoid for a specific
case.

Example 2.15 (Example 2.7 continued). Suppose that the model struc-
ture is

z(t) = θu(t)+ v(t), t = 1, . . . , N

where u(t) is the input to the system. We can write this in vector form as

z = T(u)θ+ v, T(u) =

⎡⎢⎢⎢⎢⎢⎢⎣

u(1)
⋮

u(N)

⎤⎥⎥⎥⎥⎥⎥⎦
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This model structure thus corresponds to the model structure used in Ex-
amples 2.6-2.7 with a specific regressor matrix T = T(u).

Suppose now that the input is constant u(1) = . . . = u(N) = A. This
means that we make repeated observations of the scalar Aθ in noise. Since
TT(u)T(u) = A N, (2.26) corresponds to θ satisfying

(θ− θ̂)2 ≤
λF−1

χ2(1)(0.95)

NA2

i.e. the width of the set consisting of the top 95% ranked model parameters
θ is of the order O(1/

√
NA2). Thus the width can be reduced arbitrarily by

taking the product NA2 large enough. Interpreting the squared amplitude
A2 as the power of the input, the product NA2 can be seen as the energy
in the input signal. Thus when the input energy grows to infinity, the set
of top-ranked models shrinks to a single point - the top ranked model. As
we will see this is no coincidence. Notice that this do not imply that the top
ranked model corresponds to how the data has been generated.

The behavior of the size of the top-ranked models seen in the pre-
vious example is quite typical, but, of course, the specifics depend
on the way we have chosen to rank our models. However, it also
depends critically on the information contents in the observations as
specified by the model structure. In Example 2.15 the model struc-
ture specified that each observation contained the same information
about θ. Le us now see what happens if we change this specification.

Example 2.16 (Example 2.15). continued] Suppose that instead u(t) =
e−(t−1). Then

TT(u)T(u) =
N−1
∑
t=0

e−2t = 1− e−2N

1− e−2

and hence (2.26) corresponds to θ satisfying the constraint

(θ − θ̂)2 ≤ λF−1
χ2(1)(0.95) 1− e−2N

1− e−2

i.e. regardless of how many measurements N we use, the width of the set of
the 95% top ranked θ:s never shrinks below

√
λF−1

χ2(1)(0.95)/(1− e−2).

The feature in the previous example is that θ becomes (exponen-
tially) less visible in z(t) for increasing time index t. This makes the
distribution of the rankings in the set of unfalsified models much
less peaked than in Example 2.15. The information contents in the
observations as specified by the model structure is thus instrumental
for the size of the set of top ranked models. At the same time, the
two preceding examples illustrate that the information contents can
(often) be controlled with the external excitation if there are inputs
that can be manipulated by the user and, typically, the energy of the
excitation determines the size of the set of top ranked models.

Not only the size but also the shape of the set of top-ranked mod-
els can be controlled by the input excitation.
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Example 2.17. Suppose that the model structure is

z(t) = θ1u(t)+ θ2u(t − 1)+ v(t), t = 1, . . . , N

where u(t) is the input to the system. We can write this in vector form as

z = T(u)θ+ v, T(u) =

⎡⎢⎢⎢⎢⎢⎢⎣

u(1) u(0)
⋮ ⋮

u(N) u(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

Then

TT(u)T(u) = [u(1) . . . u(N)
u(0) . . . u(N − 1)

]

⎡⎢⎢⎢⎢⎢⎢⎣

u(1) u(0)
⋮ ⋮

u(N) u(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

=
N
∑
t=1

[ u2(t) u(t − 1)u(t)
u(t − 1)u(t) u2(t − 1)

]

implying that the sample covariances of the input determine the shape of
(2.26) (which in this two-dimensional case is an ellipse).

We can in fact choose any orientation and axis lengths of the ellipse by
appropriate choice of the input sequence. With

R = [r11 r12

0 r22
]

T

[r11 r12

0 r22
] = [r2

11 r11r12

0 r2
12 + r2

22
] > 0

denoting the desired TT(u)T(u), and taking N = 2 with

u(0) =
r11r22 − r2

12 − r2
22

d

u(1) = −r11r12

d

u(2) =
r11r22 − r2

11
d

d =
√

r2
12 + (r11 − r22)2

will give the desired matrix24. The set of top-ranked models enclosed by 24 When d = 0 the left-hand sides should
be seen as limits.the blue curve in Figure 2.15 is a disk, meaning that the rankings are dis-

tributed uniformly with respect to angular direction. The corresponding
matrix satisfies TT(u)T(u) = I, which was obtained using

u(0) = 1, u(1) = 0, u(2) = 1

More generally TT(u)T(u) = A2I, meaning that the circle will have radius
1/A, is obtained by the input sequence

u(0) = A, u(1) = 0, u(2) = A

Thus, as in the preceeding examples, the inverse of the input amplitude
determines the width (in this case the radius) of the set of top-ranked mod-
els. Now, the allowed input amplitude of an input is typically constrained.
Then, as before, one can decrease the width by performing a longer exper-
iment. There is, however, an alternative approach, indicated by the ellipse
with the red border in Figure 2.15.
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The top-ranked set enclosed by the red curve has a direction where the
top-ranked models are more dense and therefore the semi-minor axis is
shorter than the other axis for this set. In this direction the width of the
set is smaller than the set with the blue circle as border and this is achieved
with an input having an amplitude smaller than for the set corresponding
to the blue curve. Thus, we have here traded off an increase in one direction
for a decrease in another direction using less input power.

The ellipse has

R = A [1 ρ

ρ 1
] ,

with ρ = 0.99 used in the figure, which gives the input sequence

u(0) = −A

√
1−

√
1− ρ2

√
2

u(1) = −A
ρ

d(ρ)
u(2) = u(0)

d(ρ) =
√

2
√

1−
√

1− ρ2

and thus ∣u(0)∣ = ∣u(2)∣ ≤ A/
√

2. Furthermore, ρ/d(ρ) is a monotonically
decreasing function on the interval [0, 1], taking the values 1 and 1/

√
2 at

the end-points. This function is less than c when ρ > 2c/(1 + c2). Thus
∣u(1)∣ ≤ A regardless of ρ.

1 1.5 2 2.5 3

2.2
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2.6
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Figure 2.15: Examples of two different
ellipses that can be obtained in Example
2.17.

Tweaking the input to achieve certain properties of the obtained
model is called experiment design. Often, as we did in Example 2.17,
it concerns achieving a certain shape of the set of top ranked models.
Now Example 2.17 was an extremely simple case where we designed
the input samples of an experiment that was only three samples long.
The set of top-ranked models also had a simple characterization as
an ellipsoid centered at the top-ranked model but with a shape that
did not depend on this model. In general this is not the case, the
set can have a complex structure and may also depend on the top
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ranked model which only is available after the experiment. We will
see in Chapter ?? how these issues can be handled.

2.6.3 Linking model selection to a "true" system

So far we have not touched on the subject which model selection
method to choose. Is it better to use the top ranked model or the
conditional average ranked model or maybe some other model selec-
tion method is to be preferred? In order to perform such an analysis
we need to specify how the data actually has been generated. Here
one typically assumes that the true data generating mechanism be-
longs to the model set Ξ, but also analysing the case where this is not
the case can be highly relevant in order to understand how modeling
imperfections can influence the obtained model. Let us for now stay
with the former case.

The analysis typically consists of considering that the true data
generating mechanism belongs to a subset of the model set and
analysing how the models that are selected compare with the ground
truth.

Worst-case analysis. In worst-case analysis all alternatives are consid-
ered and the worst-case is singled out. We illustrate this with a sim-
ple example.

Example 2.18. Let our model for the observation z ∈ RN be

z = θ 1+ v (2.39)

where 1 = [1 . . . 1]
T

. Let the model set be

Ξ = {(θ, v) ∶ ∣v(t)∣ ≤ C, t = 1, . . . , N}

This type of specification is known as unknown-but-bounded noise.
Then the set of unfalsified models is given by

U(z) = {(θ, v) ∶ ∣y(t)− θ∣ ≤ C, t = 1, . . . , N, v = z − θ 1}

Suppose now that we would like to analyze the Chebyshev center (2.9)

θc(z) = arg min
θ

max
θ̃∈U(z)

∣θ − θ̃∣

from a worst-case perspective, assuming that the data actually has been
generated according to (2.39) for some θ.

We are thus only interested in the error in θ. A moments reflection gives
that

θc(z) = min1≤t≤N z(t)+max1≤t≤N z(t)
2

which, if z was generated by a model in the model set, can be written

θc(z) = min1≤t≤N θ + v(t)+max1≤t≤N θ + v(t)
2

= θ + min1≤t≤N v(t)+max1≤t≤N v(t)
2

(2.40)
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The error for a particular model (θ, v) is thus given by

θc(z)− θ = min1≤t≤N v(t)+max1≤t≤N v(t)
2

Maximizing the right-hand side over ξ ∈ U(z) gives the worst-case error
given the observation z as

Jwc(z) ∶= max
(θ,v)∈U(z)

∣θc(z)− θ∣ = max
(θ,v)∈U(z)

∣min1≤t≤N v(t)+max1≤t≤N v(t)
2

∣

We can proceed and also consider the worst-case that could happen for all
possible z consistent with the model set

Jwc(Ξ) = max
(θ,v)∈Ξ

Jwc(z(θ, v))

This problem has the solution

Jwc(Ξ) = max
∣v(t)∣≤C, t=1,...,N

∣min1≤t≤N v(t)+max1≤t≤N v(t)
2

∣ = C

The worst-case occurs when the sequence {v(t)}N
t=1 is constant and equal

to one of its extreme values: v(t) = C, t = 1, . . . , N or v(t) = −C, t =
1, . . . , N. As the solution does not depend on the number of observations,
there is a priori no guarantee that using many observations will give more
information than a single one. This does not mean that a given observation
z will allow us to reduce the error for θ, Jwc(z) may very well be less than
C, and even 0 if we are in the lucky situation that some elements of v attain
the extremes ±C.

Randomized analysis. We observe that the worst-case error does not
depend on the number of observations in the previous example. This
is a common phenomenon and inherent in worst-case studies; after
all we have an under-determined problem of equations. A more
refined analysis can be obtained by considering that the ground truth
belongs to an appropriate subset of Ξ, but what is more common
is that one conducts an analysis where random draws from Ξ are
considered and one then computes the statistics of the errors that
one obtains. Let us now analyze the set-up in Example 2.18 in this
way.

Example 2.19 (Example 2.18 continued). Let θ be a fix number and let us
assume that we perform M experiments, where in each experiment, indexed
by i, we let each element of vi be a draw from a random number generator
which has a binary distribution ±C, each with probability 1/2. For each
experiment we form the observation

zi ∶= θ 1+ vi

for which we compute the Chebyshev center θc,i. We then form the sample
average of the squared errors

JMSE,N,M = 1
M

M
∑
i=1

∣θc,i(zi)− θ∣2
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Since the experiments are independent, or more precisely the {vi} are inde-
pendent, JMSE,N,M will converge to the mean-squared error (MSE)

JMSE,N ∶= E [∣θc(z)− θ∣2]

where z = θ 1+ v, where v is a random vector with the entries independent
each binary distributed ±C.

With some skills in probability theory it is now possible to express the
MSE as25

25 From (2.40) we see that we
should study the distribution of
(min1≤t≤N v(t), max1≤t≤N v(t)) which
has the three outcomes (−C,−C),
−C, C) and (C, C). For the first and
the last all elements of v need to
take on one and the same value. The
probability of this is (1/2)N . We thus
have

P (( min
1≤t≤N

v(t), max
1≤t≤N

v(t)) = (−C,−C))

= P (( min
1≤t≤N

v(t), max
1≤t≤N

v(t)) = (C, C)) =
1

2N

P (( min
1≤t≤N

v(t), max
1≤t≤N

v(t)) = (−C, C)) = 1−
1

2N−1

For the first two outcomes we have ∣θc − θ∣ = C, while for the
middle ∣θc − θ∣ = 0. This thus gives us the MSE as

JMSE,N = C
1

2N
+ 0(1−

1

2N−1
)+ C

1

2N
=

C

2N−1

JMSE,N = C
2N−1

We see that the MSE quickly becomes very small as the number of obser-
vations N grows. The intuitive reason is that for a sequence of identically
binary distributed random variables it is very likely that both possible out-
comes are observed, which gives an exact estimate.

This is in stark contrast to the worst-case analysis we did above; the worst
case error remained C regardless of the number of observations. We must,
however, remember that we are now studying another type of error. The
MSE is the squared error we can expect if v from the true data generating
mechanism is a realization from a binary distribution. This distribution
only occupies the vertices of the model set Ξ.

We may instead consider what happens if the elements of v have a
uniform distribution on [−C, C]. In 26 it is shown that then JMSE,N is 26 H. Cramér. Mathematical Methods of

Statistics. Princeton University Press,
Princeton, 1946

o(1/N2−δ) for every 0 < δ < 2. Considerably slower than for the binary
distribution but still a very fast decay in terms of N. Again the intuition
is that the extreme values of a sequence of independent random variables
having a pdf which is rather large at the end-points cluster closely to the
end-points −C and C, respectively, as the number of observations grows.

A third distribution with support [−C, C] is

p(v) = ce−
tan(π∣v∣

C , ∣v∣ ≤ C

where c normalizes p to have unit integral between [−C, C]. The pdf is
shown in Figure 2.16. Characteristic to this distribution is that it is very
thin at the end-points. This prevents the extreme-values of the elements of
v to accumulate at the end-points; instead they end up somewhere on the
flat part near the end-points. Formally, it can be shown that the MSE is
O(1/(log N)2) which tends to zero much much slower than for the uniform
distribution.

The example above is an example of "mind-games" one can play.
For a given model selection function ξ̂(⋅) one can derive its probabil-
ity distribution assuming that the observations are outcomes of a true
data generation mechanism M(ξ) governed by a certain probability
distribution. This distribution can then be analyzed with respect to
how concentrated it is, typically by computing the mean E [ξ̂(z)],
the covariance matrix

Pξ̂ ∶= E [(ξ̂(z)−E [ξ̂(z)])(ξ̂(z)−E [ξ̂(z)])T] (2.41)



62 learning dynamic systems - system identification 20/20

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Figure 2.16: Pdf of the distribution used
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and the MSE

MSEξ̂ ∶ = E [(ξ̂(z)− ξ)(ξ̂(z)− ξ)T]

= Pξ̂ + (E [ξ̂(z)]−E [ξ]) (E [ξ̂(z)]−E [ξ])T
(2.42)

Especially, making such studies for different distributions can build
up confidence or detect short-comings in a particular model selection
method, knowledge which in turn can be used to select an appropri-
ate model selection method.

Before moving on we remark that the water-bed effect discussed
above manifests itself in that for every model selection function θ̂(⋅),
the moments of the model M(ξ̂(z)) matches the moments of the
observations, e.g.

E [M(ξ̂(z))] = E [z]
E [M(ξ̂(z))M(ξ̂(z))T] = E [zzT]

2.6.4 Generalization

Up to now we have only studied inference of model parameters re-
lated to a specific data set z. Now, as we have touched upon ear-
lier, even if we try to maintain identical experimental conditions we
will get different responses for different experiments. This effect we
typically attribute to noise and disturbances, but can also be due to
changes in the dynamics of the system. We thus need a mechanism
that can model such effects so that

we can make inference from one data set in regards to properties of an-
other data set

It is also of interest to make inference about what will happen
when we extend the length of an experiment.

To this end the use of probability theory has turned out to be
very useful. By modelling model parameters as realizations of random
variables one can use statistical inference to make statements about
what can happen in the future - of course predicated on that the true
data generating mechanism is governed by the assumed probability
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distribution. This is thus in line with the randomized analysis of
model selection functions discussed in the previous section. Now,
this means that we not only need to provide a model structure M(⋅)
and a ranking function but also we need to specify a probability
distribution for the model parameters ξ, adding significantly to the
burden of the user. However, this issue can be mitigated in several
ways.

Firstly, we can connect this distribution to the ranking function.
Recall that the ranking function should specify our preference of
models. Now a distribution specifies how likely different realiza-
tions are supposed to be. Thus it should be possible to relate the
ranking function to a distribution function. In fact, in some of the
examples we have already made use of pdfs when constructing the
ranking functions. In Example 2.5 we used the ranking function
p(θ, v) = N (v; 0, 0.1). This can be interpreted as a pdf for v. In that
example, though, it is important to realize that p(θ, v) is not a pdf
since

∫ ∫ p(θ, v)dvdθ = +∞

The reason for this is that p is not depending on θ at all, i.e. we are
not providing any preference for different values of θ. This means
that when we study generalization properties of our model, θ will
be kept constant. We conclude that through a (partial) probabilistic
description of the model parameters we obtain a ranking function
at the same time. Thus the ranking function becomes a part of the
model structure. We will call this a probabilistic model structure, a con-
cept that will be formalized in the next chapter. We also note that by
specifying the model parameters as random variables, we also im-
pose relations between the observations z in one experiments. We
can use this feature to construct ranking functions by way of mea-
suring how well different models can predict the observed relations.

Secondly, recall that we in Section 2.5.3 discussed how to tune the
ranking function to the data. The way this was accomplished was
to parametrize the ranking function with hyperparameters and then
to determine these using observations. In a probabilistic setting this
means that we parametrize the distribution of the model parameters
and then determine these hyperparameters using the observations.

Thirdly, if we select a model selection function that only use cer-
tain properties of the ranking function, then the exact specification
of the distribution is not so important. An example is the use of
the least-squares method, which can be motivated for many distri-
butions. Formally, this is the problem of robust estimation.

Decision making under uncertainty - Expected regret. Probabilistic mod-
els of our observations allow us to further develop the concept of
decision making under uncertainty. Returning to Section 2.4.3, ρ∗(ξ)
was defined as the optimal policy when the observations are gener-
ated by the model ξ. With ξ unknown and instead using the certainty
equivalence policy of replacing the unknown ξ by the output from
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a model selection function ξ̂(z), the regret L(ρ∗(ξ̂(z), ξ) becomes a
random variable. We can now ask the hypotetical question what
the average regret would be if we indefinitely repeat the process of
performing an experiment where we collect new observations which
are subsequently used to compute the model based policy ρ∗(ξ̂(z)),
which is then applied to the system. This is the expected regret

L̄(ρ∗(ξ̂)) ∶= E [L(ρ∗(ξ̂(z), ξ)]

where the expectation is over the probability distribution of ξ, i.e.

L̄(ρ∗(ξ̂)) = ∫ L(ρ∗(ξ̂(M(ξ)), ξ)p(ξ)dξ

We can thus compare different model structure selection functions
with respect to the expected regret. But we can also define opti-
mality of a model selection function with respect to the expected
regret L̄(ρ∗(ξ̂)). However, there is no particular reason for restrict-
ing the family of policies over which we optimize to optimal policies
ρ∗ when ξ is known. Instead we can consider policies ρ that are
functions directly of data instead

ρ̃(⋅) ∶= arg min
ρ(⋅)

L̄(ρ(⋅))

L̄(ρ(⋅)) ∶= E [L(ρ(z), ξ)]

This is a functional minimization problem which can be difficult to
solve. However, it can be solved pointwise, i.e. ρ̄(z) can be solved for
each z, and for certain certain regrets an analytic solution exists for
this problem. The reader is encouraged to relate (2.37) to the above
problem.

Above we have (implicitly) assumed that all model parameters
are integrated out when L̄ is computed, otherwise we end up with a
policy that we cannot use since it is then a function of unknown pa-
rameters. This means that two scenarios are covered by the approach
above:

i) all model parameters are considered to vary from experiment to
experiment according some probability distribution p(ξ), or

ii) parameters that do not vary from experiment to experiment are
known in advance.

The first scenario is relevant when considering populations of sys-
tems sharing characteristics but having individual variations, e.g. a
fleet of similar vehicles or a population of animals. It can also apply
if the device of interest changes over time. However, often decision
making concerns an individual device which may not change over
time. Scenario ii) is very limiting for decision making for such set-
tings. Thus the analysis needs to be extended so that it can handle
model parameters that are fixed but unknown. The worst-case ap-
proach of Section 2.4.3 can then be used but we can also use the
expected regret. Let L̄(ρ, θ) denote the expected regret for the sys-
tem with θ as fixed model parameters, and with the policy ρ. The
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optimal policy with respect to the expected regret is given by

ρ∗(θ) ∶= arg min
ρ

L̄(ρ, θ)

Now we let θ̂ = θ̂(z) be a model selection function for the fix elements
of ξ. Using the policy ρ̂ ∶= ρ∗(θ(z)) gives the regret L̄(ρ̂, θ) which
depends on the particular observation z we have used.

Example 2.20. Consider a non-linear state space model

x(t + 1) = f (x(t), u(t), w(t), θ)
y(t) = h(x(t), e(t), θ)

where the disturbance {w(t)} and the noise {e(t)} are modeled as indepen-
dent random variables with known pdfs, and where θ ∈ Rnθ is unknown.
The application is to design a feedback controller

u(t) = g(yt, ρ) (2.43)

where g is a given function parametrized by ρ ∈ Rnρ , which is to be chosen.
The signals y and u thus both depend on both ρ and θ: y(t) = y(t; ρ, θ)
and u(t) = u(t; ρ, θ). The reward is

R(ρ, θ) = lim
N→∞

−
N
∑
t=1

(∣y(t; ρ, θ)∣2 + r∣u(t; ρ, θ)∣2) , r > 0

for which we denote the optimal policy ρ(θ).
Under some (stationarity) assumptions on the disturbance and noise, the

reward equals the expected reward

R̄(ρ, θ) = −E [∣y(t; ρ, θ)∣2]− rE [∣u(t; ρ, θ)∣2]

giving the expected regret

L̄(ρ, θ) = R̄(ρ(θ), θ)− R̄(ρ, θ)

Using ρ∗(θ̂(z)), where θ̂ is a model selection function in the controller,
gives the expected regret L̄(ρ∗(θ̂(z)), θ), which is the loss in performance
obtained by collecting data z from one experiment, then computing the con-
troller parameter ρ(θ̂(z)) and applying this controller in a new infinitely
long experiment.

To get some further insight into how using a data dependent pol-
icy affects the regret, let us make the second order expansion

L̄(ρ∗(θ̂), θ) = 1
2
(θ̂− θ)TρT

θ(γ)L̄ρρ(γ, θ)ρθ(γ)(θ̂− θ) (2.44)

for some γ between ρ̂ and ρ∗(θ). Here we have made use of that
L̄(ρ∗(θ), θ) = 0 and that

L̄ρ(ρ(θ), θ) = 0

The sensitivity ρθ can be obtained from the previous expression as it
implies

L̄ρρ(ρ(θ), θ)ρθ(θ)+ L̄ρθ(ρ(θ), θ) = 0
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giving

ρθ(θ) = −L̄−1
ρρ(ρ(θ), θ)L̄ρθ(ρ(θ), θ) (2.45)

which inserted in (2.44) and assuming that the error θ̂− θ is small,
gives that the regret approximately is given by

L̄(ρ∗(θ̂), θ) ≈
1
2
(θ̂− θ)T L̄θρ(ρ∗(θ), θ)L̄−1

ρρ(ρ∗(θ), θ)L̄ρθ(ρ∗(θ), θ)(θ̂− θ) (2.46)

This expression is not very transparent but we can overbound this
expression using Schur complement (see Appendix A.4). Assuming
Jρ,ρ > 0,

0 ≤ [Jρ,ρ Jρ,θ

Jθ,ρ Jθ,θ
] ⇔ Jθ,θ ≥ Jθ,ρ J−1

ρ,ρ Jρ,θ

which then implies that

L̄(ρ∗(θ̂), θ) ≤ 1
2
(θ̂− θ)T L̄θθ(ρ∗(θ), θ)(θ̂− θ) (2.47)

This shows the natural result that the regret will be small if the error
θ̂− θ is small in the directions where the regret is sensitive to θ, and
this irrespective of how the policy ρ depends on θ.

When performing a new experiment on the same system (where
θ remains the same but the other model parameters are generated
from the underlying probability distribution) a new observation z
will be obtained and then a new expected regret L̄(ρ∗(θ̂(z)), θ) will
be obtained as the policy ρ∗(θ̂(z)) is a function of the observation z.
We can then also take the expectation with respect to the observation
z used in the policy in order to quantify the average regret one would
experience by repeating the procedure of experiments that generate
observations z used by the policy ρ∗(θ̂(z)), and using this policy
in the application and measuring the expected regret L̄(ρ∗(θ̂(z)), θ).
The approximations above give that

E [L̄(ρ∗(θ̂(z)), θ)] ≈
1
2

Trace{L̄θρ(ρ∗(θ), θ)L̄−1
ρρ(ρ∗(θ), θ)L̄ρθ(ρ∗(θ), θ)MSEθ̂}

≤ 1
2

Trace{L̄θθ(ρ∗(θ), θ)MSEθ̂} (2.48)

where MSEθ̂ is the MSE of θ̂, see (2.42),

MSEθ = E [(θ̂− θ)(θ̂− θ)T]

2.7 Inspiring Pitfalls

At this point the reader should have a general idea of methods that
can be used for system identification, although apart from simple
examples, we have not given so much details. As often is the case,
to get things to work the devil is in the details so as a motivation for
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continuing studying the theory of system identification, we in this
section illustrate some of the, perhaps unexpected, problems that
one may encounter. Later on we will see how the problems can be
resolved. In all examples the models are estimated by adjusting the
model parameters such that the simulated model output ŷ(t) fits
the output measurements y(t) as well as possible according to the
quadratic error criterion

N
∑
t=1

(y(t)− ŷ(t))2

This is thus known as a prediction error method.

Model simulation. We begin with a discrete time example where it is
known that the true system is of first order.

Example 2.21. Suppose that we have input-output samples u(t) and y(t),
t = 1, . . . , N from a first order discrete time system G(q) = bq−1/(1+ f q−1.
The parameters b and f may then be determined by minimizing

N
∑
t=1

(y(t)−
bq−1

1+ f q−1 u(t))
2

(2.49)

with respect to these. Using this approach for the data in Figure 2.17, gives
a model whose frequency response well matches the true one as shown in
Figure 2.18.
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Figure 2.17: First data set in Example
2.21.
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Figure 2.18: Bode diagram of model
and true system.
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Now, a downside with this approach is that the criterion is a high order
multinomial in b and f and hence highly nonlinear in the decision variables.
This, since the simulated output

ŷ(t; b, f ) ∶=
bq−1

1+ f q−1 u(t)

is obtained by iterating the difference equation

(1+ f q−1)ŷ(t; b, f ) = bq−1u(t),

that is

ŷ(t; b, f ) = − f ŷ(t − 1, b, f )+ bu(t − 1) (2.50)

for t = 1, 2, . . . , N. Assuming y(0) = u(0) = 0 this gives

ŷ(1; b, f ) = 0

ŷ(2; b, f ) = bu(1)
ŷ(3; b, f ) = − f bu(1)+ bu(2)
ŷ(4; b, f ) = f 2bu(1)− f bu(2)+ bu(3)
ŷ(5; b, f ) = − f 3bu(1)+ f 2bu(2)− f bu(3)+ bu(4)

⋮

An alternative would be to write the model

y(t) =
bq−1

1+ f q−1 u(t)

as

(1+ f q−1)y(t) = bq−1u(t)

that is

y(t) = − f y(t − 1)+ bu(t − 1)

Notice that, different from (2.50), here y(t − 1) does not come from the pre-
vious simulation step but is a data sample. Based on this model description
we could then minimize the so-called equation error

N
∑
t=1

(y(t)− f y(t − 1)− bu(t − 1))2

Notice that this is a least-squares problem and thus there is an explicit
expression for the minimizer. Trying this on the data in Figure 2.17 results
in a model whose frequency response is given in Figure 2.19. Clearly, this
approach, albeit much easier numerically, gives a much worse estimate.

Now, another data set generated by the same system with the same input
is shown in Figure 2.20. Comparing with Figure 2.17 we see that the output
has a slightly different characteristic. The reason for this is that there is some
measurement errors on the output measurements and for this second data
set these errors have a little bit different characteristics.

Now, repeating the exercise above of estimating a model both by mini-
mizing the simulation error and the equation error results in models with
frequency responses shown in Figure 2.21 and Figure 2.22. Comparing the
two diagrams we see that for this data-set the equation error based model
seems to give a more accurate model.
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Figure 2.19: Bode diagram of model
and true system.
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Figure 2.20: Second data set in Example
2.21.

10
-3

10
-2

10
-1

10
0

10
1

-10

-5

0

5

10

15

20

25

M
a
g
n
it
u
d
e
 (

d
B

)

From: u1  To: y1

True system

Simulation model

Bode Diagram

Frequency  (rad/s)

Figure 2.21: Bode diagram of model
and true system.
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Figure 2.22: Bode diagram of model
and true system.
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Example 2.21 shows that "implementations" of the same model
seem to give very different results. Is there a systematic approach to
address this?

Closed loop experiments. Next we take a look at an identification
problem where data is generated in closed loop.

Example 2.22. An experiment configured as in Figure 2.23 is used to gen-
erate data which are used to identify the time discrete first order system
Go(q) = 0.1q−1/(1− 0.9q−1), which has static gain 1. The signal v(t) rep-
resents the measurement errors which is generated by white noise filtered
through the low-pass filter Ho.

Go

−K

Ho

e(t)

y(t)
v(t)

u(t)

Figure 2.23: Experimental configura-
tion in Example 2.22.

The data are shown in Figure 2.24.

0 1000 2000 3000 4000 5000
-25

-20

-15

-10

-5

0

5

10

15

20
Closed loop data

Input

Output

Figure 2.24: Input-output data in Exam-
ple 2.22.

The parameters of the first order model G(q) = bq−1/(1 + f q−1) are es-
timated by minimizing (2.49). The Bode diagram of the resulting model is
shown in Figure 2.25, also including the true frequency response. Despite
a lot of data the model is very poor.

In a second attempt the experiment is set-up as in Figure 2.26. This is
thus an open-loop experiment. As input exactly the input that was used in
the previous experiment is used. This results in the data shown in Figure
2.27.

The Bode diagram of the first order model identified using this data set is
shown in Figure 2.28.

Clearly the model obtained from this experiment is much better.
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Figure 2.26: Second experimental set-
up in Example 2.22.
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Figure 2.27: Input-output data in the
open-loop experiment in Example 2.22.
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Example 2.22 illustrates that closed-loop identification can be in-
tricate. A hint for why this is the case can be obtained by studying
the close-up of the input-output signals given in Figure 2.29. At a
first glance the output seems to react in the opposite direction of the
input which suggests that the system has negative gain which is ob-
viously the not the case as Go(q) = 0.1q−1/(1−0.9q−1). However, from
Figure 2.25 we see that also the model believes that the system has
negative gain as the phase is 180

o. However, a closer look at Figure
2.29 reveals that the it is the output that causes the input to react in
the opposite direction. It is thus the effect of the controller that is
seen and apparently the model has the same problem as our eyes (at
least the author’s) to distinguish cause and effect. So the question
arises if there are means to help distinguish the effects caused by the
systems from those caused by the controller.
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Figure 2.29: Close-up of input-output
data in Example 2.22.

Sampling effects. Most systems are operating in continuous time, e.g.
physical systems such as robots or vehicles. However, nowadays it is
very rare to collect continuous measurements, instead digital record-
ing devices equipped with ADCs (analog-to-digital converters) are
used. This means that only sampled data is available. We shall be
mostly concerned with the case where a fix sampling interval T is
used and input-output samples u(nT), y(nT), n = 1, . . . , N are col-
lected. Sampling means loss of information and it is important to
understand the effects of this. Another aspect is that sampling also
means that data is quantized, i.e. only a finite number of amplitudes
can be recorded. We will, however, disregard this aspect.

Example 2.23. The system

G(s) = 1
s + 1

(2.51)

is excited with the input in Figure 2.30, which results in the output given
in Figure 2.31.

The sampled data are used to estimate the parameters b1, . . . , bn and
f1, . . . , fn in models of the type

y(nT) = ∑n
k=1 bkq−k

1+∑n
k=1 fkq−k u(nT)
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Figure 2.30: Example of a signal sam-
pled with sampling interval T = 5 s.
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Figure 2.31: The output of (2.51) with
the input given in Figure 2.30.

by minimizing

N
∑
n=1

(y(nT)− ∑n
k=1 bkq−k

1+∑n
k=1 fkq−k u(nT))

2

with respect to the parameters.
The Bode diagrams of the resulting models for n = 1 and n = 3 are shown

in Figure 2.32.

10
-3

10
-2

10
-1

10
0

10
1

10
2

-40

-30

-20

-10

0

10

20

M
a
g
n
it
u
d
e
 (

d
B

)

From: u1  To: y1

Continuous time system

1st order discrete time model

3rd order discrete time model

Bode Diagram

Frequency  (rad/s)

Figure 2.32: The frequency responses of
the estimated models of order 1 and 3

compared with that of the true system.

Clearly, the discrete time system has a frequency response very different
from the continuous time system despite that the sampling frequency to the
eye looks reasonable.

The simulated output of the model is compared with the sampled output
from the true system in Figure 2.33. As can be seen the identified model
does a fair job of representing the system behaviour at the sampling points.



74 learning dynamic systems - system identification 20/20

100 200 300 400 500 600 700 800 900 1000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
1

Validation data (y1)

moe: 47.23%

Simulated Response Comparison

Time (seconds)

A
m

p
lit

u
d
e

Figure 2.33: A comparison between
the simulated output of the identified
model and the true output.

Another experiment is set-up where the input instead is piecewise con-
stant with identical samples as in the previous experiment. The input-
output data are shown in Figures 2.34–2.35.
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Figure 2.34: Piece-wise constant input.
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Figure 2.35: The output of (2.51) with
the input given in Figure 2.34.

The Bode diagram of the first order model identified with the sampled
data from this experiment is given in Figure 2.36. Clearly it shows more re-
semblance to the continuous time system than the previous model. But even
more interesting is that when the model is simulated the output matches the
sampled output exactly as shown in Figure 2.37.

Example 2.23 prompts a number of questions such as: i) Can the
sampled data behaviour when the input is piece-wise constant al-
ways be represented exactly by a discrete time model, and if so, what
is the relationship between these models. ii) Why is the first model
so poor despite that the sampling frequency seems reasonable? iii)
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Figure 2.36: Identified first order model
when the input is piece-wise constant.
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Figure 2.37: A perfect match between
the simulated output and the sampled
output when the input is piece-wise
constant.

How should the sampling frequency be chosen? iv) How can the
sampled data be used to recover the original continuous time sys-
tem in the two cases that were studied? For example, is there a 1-1
mapping between the continuous time system and the discrete time
model?

Measurement errors.

Example 2.24. Suppose that one would like to identify the first-order LTI
block G2 in Figure 2.24.

G1 G2
u1 u2 x2

e1 e2
y1 y2

Figure 2.38: System configuration in
Example 2.24.

A big data set is available consisting of 100.000 samples of the input
u(t), and the two outputs y1(t). The first 100 samples are plotted in Figure
2.24. The output measurements are corrupted by measurement noise e1 and
e2.

Also the LTI block G1 is unknown and hence the standard approach
would be to identify both G1 and G2 from the data. However, G1 is of high
order which makes this approach somewhat difficult from a computational
point of view since many parameters have to be identified.

Now, if in addition u2 would be available, one could simply use this
signal and y2 to identify a first-order model for G2. The Bode diagram of
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Figure 2.39: Data in Example 2.24.

the resulting model is shown in Figure 2.24. Since the data set is big the
model matches the true system almost perfectly.
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Figure 2.40: Bode diagram of identified
models in Example 2.24.

In the case where u2 is not accessible we observe that y1 is a measurement
of u2 and as seen in the middle plot of Figure 2.24 this signal is quite
representative of u2. Thus it is tempting to replace u2 with y1 as input when
identifying G2. Trying this results in a model with the Bode diagram in
Figure 2.24. We see that despite the big data set there is a rather substantial
error. Doubling the number of samples to 200.000 does not diminish the
error as also shown in the figure.
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Figure 2.41: Bode diagram of identified
models in Example 2.24.

Example 2.24 shows that there seems to be a significant difference
between having measurement errors on the outputs or on the inputs.
When only the output was corrupted a very good model could be
achieved but this was not possible when the input was corrupted,
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despite increasing the sample size even further. A relevant question
is if this is a fundamental problem or if it can be remedied in some
way?

Complex models. In our final example the system is of relatively high
order.

Example 2.25. A system with known order of 25 is to be identified and the
relatively large data set in Figure 2.25 has been collected. Included is also
the noise free output and as can be seen the noise level is low.
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Figure 2.42: Data used in Example 2.25.

Identification of a 25th order model using a state-of-the art algorithm
results in a model with Bode diagram given in Figure 2.25. Comparing
with the true system response we see that the model is very poor despite
apparently data of good quality.
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Figure 2.43: Bode diagram for the iden-
tified model in Example 2.25.

A potential problem in Example 2.25 is the high order of the
model. An order of 25 means that 50 parameters (25 each in the nu-
merator and denominator polynomials) need to be identified. With
the optimization problem being non-convex, cf. Example 2.21, there
is then a large risk that a local search algorithm ends up in a local
minimum. Determining good initial parameters is thus an impor-
tant problem in identification. To examine if this can be the case
in this example, we modify the identification algorithm so that it is
initialized at the true value of the parameters. The Bode diagram of
the resulting model is shown in Figure 2.7. While we see some im-
provement compared to the model in Figure 2.25, there is still some



78 learning dynamic systems - system identification 20/20

problem. Thus the issue in this example is not only that it is difficult
to find good initial values.
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Figure 2.44: Bode diagram for the iden-
tified model in Example 2.25.

2.8 Summary

2.9 Exercises

2.1. Consider the setting in Example 2.6. Suppose that the ranking
function is instead chosen as p(θ, v) = N (θ; 0, P)N (v; 0, λI).

a) Determine a closed form expression for the top ranked model.
Compare with the top ranked estimate obtained in Example 2.6.

b) Determine a closed form expression for the conditional average
ranked model.

2.2. Consider the model

z =ϕ1θ1 +ϕ2θ2 + v, θ1 ∈ R, θ2 ∈ R

where we use the ranking p(θ, v) = N (v; 0, λI), where θ = [θ1 θ2]
T

.
Suppose that our interest is in determining γ(θ) = θ1 + θ2 given
z ∈ RN . Compute γ(θ̂(z)), where θ̂(z) is the top ranked model
of θ, and the top ranked γ given by γ̂(z) = arg maxγ p(z, γ). Are
they equal?

2.3. UBB with input.

2.4. Consider the state-space model

x(t + 1) = θx(t)+w(t), x(0) = 0

y(t) = x(t)+ v(t)

a) Show that z = [y(1) . . . y(N)]
T

can be written as

z = F(θ)w + v, w = [w(0) . . . w(N − 1)]
T

, v = [v(1) . . . v(N)]
T

for a suitably chosen matrix F(θ).
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b) The model parameters are ξ = [θ wT vT]
T

. Consider the
ranking p(ξ) = N (v; 0, )N (w; 0, ). Derive closed form expres-
sions the top-ranked models for ξ and θ, respectively, where
the latter is considered as a function of ξ. Compare the element
in the top-ranked model of ξ corresponding to θ, and compare
it with the expression you have obtained for the top ranked
model for θ. Are they the same?

2.5. Consider the setting in Example 2.6. Consider λ as an hyper-
parameter and estimate this parameter by the conditional average
(2.32).

Hint: Show first that p(λ∣z) is an inverse gamma distribution. The
pdf of an inverse gamma distribution with parameters α and β is
given by

Inv-Gamma(x; α, β)
βα

Γ(α)
1

xα+1 e−
β
x





3
Probabilistic Models for Dynamic Systems

In this chapter we will introduce a formalism for probabilistic models
of dynamic systems. We will use the nomenclature from probability
theory and statistics and thus rename some of the concepts we intro-
duced in the previous chapter1. However, we emphasize that what 1 Sorry about this!

we will be doing is in essence playing a mind-game to obtain alibis
for different ranking functions.

3.1 Models and model structures

As before we will denote by z(t) ∈ Rnz the vector of measurements
that are obtained at time t. A standard set-up is that z(t) consist
of both a vector of output measurements y(t) and a vector of input

measurements u(t): z(t) = [yT(t) uT(t)]
T

. But other settings are
possible as well, e.g. in blind identification only the outputs are
measured and in missing data problems the dimension of z(t) may
vary.

We will need to keep track of time and sample size so we intro-
duce the notation

zt =

⎡⎢⎢⎢⎢⎢⎢⎣

z(1)
⋮

z(t)

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Rnzt

As in the previous section, a model will be associated with a set of
model parameters. However, to account for arbitrary long experi-
ments it will be a sequence rather than a vector. We will also add a
probabilistic description to allow for inference of prolonged and new
experiments.

Definition 3.1.1. A model parameter ξ ∈ Ξ ∶= Ξ(0) × Ξ(1) × . . ., is a
sequence of the form ξ = {ξ(t)}∞t=0, where ξ(t) ∈ Ξ(t) ⊆ R

nξt .
For a model parameter ξ, define2 2 For a model parameter the definition

of ξt thus differ from the convention
in that ξ(0) is included as the first el-
ement.

ξt =

⎡⎢⎢⎢⎢⎢⎢⎣

ξ(0)
⋮

ξ(t)

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Ξt ⊆ R
nξt , nξt ∶=

t
∑
k=0

nξt

where Ξt ⊆ R
nξt is defined in the obvious way that the kth block of element

belongs to Ξ(k − 1).
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A model structureM(M⋅, Ξ) is a sequence of measurable functions de-
fined on Ξt with the same range as the observations: M(M⋅, Ξ) = {Mt ∶
Ξt → Rnz}∞t=1.

For a model structureM(M⋅, Ξ),

z(t) = Mt(ξt), t = 1, 2, . . . (3.1)

is a model of the observations {z(t)}∞t=1 corresponding to the model param-
eter ξ.

The set of sequences

{{Mt(ξt)}∞t=1 ∶ ξ(t) ∈ Ξ(t)}

is called the model set corresponding to the model structureM(M⋅, Ξ).
Let {pt ∶ Ξt → [0,∞)} be a sequence of pdfs determining a probability

distribution for ξt, related by that

∫
Ξ(t)

pt(ξt)dξ(t) = pt−1(ξt−1), t = 1, 2, . . .

When ξ is a realization from the probability distribution defined by {pt}∞t=1,

z(t) = Mt(ξt), t = 1, 2, . . .

is called a realization of the observed signals for the model structureM(M⋅, p⋅).
With {Mt}, {pt} and {Ξt} as above, M = M(M⋅, Ξ⋅, p⋅) is called a

probabilistic model structure.

A number of remarks are warranted at this point:

• The definitions above incorporate that we are dealing with dy-
namic systems, meaning that the present response depends on
the entire past history, and also that the probability distributions
for the past does not change when we advance in time.

• The first element in a model parameter, ξ(0), may be used for
initial conditions, for example. It may also be used for parameters
that are constant over time.

• All pdfs pt, t = 1, 2, . . ., may be parametrized by a common hy-
perparameter η ∈ Rnη : pt = pt(ξt, η). For realizations of ηN we
indicate the dependence on hyperparameters by writing ξ(η).

• Notice that different from what we assumed in the previous chap-
ter, pt is a bona fide pdf. To exclude certain model parameters
from the pdf, the method based on hyperparameters briefly dis-
cussed in Example 2.9 can be used.

• For a probabilistic model, the split between model parameters
and hyperparameters is not unique. The model M(θ, v) = θv
with probability distribution p(θ, v) = N (v; 0, 1)δ(θ − η) is equiv-
alent to the model M(w) = w with the probability distribution
p(w) = N (w; 0, η2).

• We will continue to call ξ a model and Ξ a model set.
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The set of unfalsified models is defined similarly as in the previous
chapter. We use the notation

MN(ξN) = [MT
1 ξ1) . . . MT

N(ξN)]
T

Definition 3.1.2. Given data zN , the set of unfalsified models for the model
structureM(M⋅, p⋅) is defined as

U(zN) = {ξ ∶ MN(ξN) = zN}

We use an example to illustrate how exact measurements can be
modelled.

Example 3.1. Consider the model

y(t) = θu(t)+ v(t)

where z(t) = [y(t) u(t)]
T

are our observations. We can then take ξ(0) =

θ, ξ(t) = [v(t) u(t)]
T

, t = 1, 2, . . . and use the model structure

Mt(ξt) = [θξ(t)+ v(t)
u(t)

]

Then u(t) will be equal to the second element of z(t) for all models in the
set of unfalsified models.

3.2 Probabilistic interpretations of ranking functions

Now we will identify the ranking functions we discussed in the pre-
vious section with their probabilistic interpretations.

When the ranking function (2.11) is normalized so that it inte-
grates to 1, it corresponds to the prior probability pN(ξN) for the
model parameters and the joint ranking function for ξ and the ob-
servation z (2.13) corresponds to the joint pdf for ξN and zN given
by

pN(ξN , zN) ∶= pN(ξN)
N
∏
t=1

δ(z(t)− Mt(ξ(t)))

In Section 2.5.5 we defined the total rankings corresponding to a
function γ of the model parameters ξN by integrating over the model
parameters for which the function is constant3. Here this procedure 3 Integrating out certain variables from

a pdf is called marginalization.results in the joint pdf for γ(ξN) = γ and z:

pN(γ, zN) ∶= ∫
ΞN

pN(ξN , z)δ(γ −γ(ξN))dξN

Typically γ is a subset of ξN . When all variables ξN are marginalized
out we write pN(zN), and this corresponds to the total rankings for
zN as in (2.23).

The normalized ranking of ξ conditioned on z was defined in
(2.18). This corresponds to the posterior pdf for ξN given zN

pN(ξN ∣zN) ∶=
pN(ξN , zN)

pN(zN)
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When the pdfs {pt} are parametrized by hyperparameters η, the
pdfs above become functions of these as well and we indicate this
by indexing the pdfs as pN(ξN ; η), pN(ξN , zN ; η), pN(ξN ∣zN ; η), and
pN(z;η). We can also integrate out the hyperparameters from pN(z;η)
giving

pN(zN) = ∫ pN(zN ; η)dη

and when this quantity is finite we can then define

pN(ξN , η∣zN) ∶=
pN(ξN , zN ; η)

pN(zN)

pN(η∣zN) ∶=
pN(zN ; η)
pN(zN)

Due to the normalization these quantities are bona fide pdfs. Tough,
this does not mean that we interpret η as a random vector. Neverthe-
less, in the spirit of interpreting the ps as ranking functions, we may
use these pdfs to obtain estimates of both model parameters and hy-
perparameters. We may of course also marginalize pN(ξN , η∣zN) and
pN(η∣zN) with respect to some of the parameters.

3.2.1 Non-informative priors

It often happens that the user has very vague prior knowledge of
certain model parameters. It is then tempting to use a flat prior, i.e.
a pdf which is (almost) constant over a large region. However, this
also injects some prejudice into the ranking and there is nothing like
a non-informative ranking. Ignorance can be obtained by assuming
that a parameter is unknown without specifying a pdf.

Example 3.2. Consider the model

z = θ3 + v

where it is generally known that v ∼ N (0, 1) and that θ ∈ [−1, 1].
To reflect the latter, User A assigns a uniform distribution on the interval

[−1, 1] to θ.
However, User B thinks it is simpler to work with the model

z = ρ + v

as there is a one-to-one relationship between ρ and θ. Now as the only in-
formation about ρ is that it belongs to the interval [−1, 1], this user assigns
a uniform distribution on the interval [−1, 1] to ρ.

Clearly, even though the two users try to encode the prior knowledge
in an impartial way, the two users arrive at completely different priors just
because they have chosen different parametrizations. The consequence of this
is that if the two users use the same ranking function for model selection they
will get different results, despite that what they both have done is simply to
try to be impartial.
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3.3 Estimators

We will from now on replace the use of the term model selection
function with the commonly used term estimator.

Definition 3.3.1. Given a model structureM(M⋅, p⋅, Ξ⋅), an estimator is
a sequence of functions {ξ̂

t}∞t=1

ξ̂
t ∶ Rnzt → Ξt ⊆ R

nξt

We will frequently only be interested in certain elements of an
estimator, and will then use the notation θ̂t

All model selection functions that we have discussed in Section
3.3.1 are meaningful estimators. In fact, many of them are of such
interest that they have been baptized in the statistics literature.

3.3.1 Ranking based estimators

The model selection functions presented in Section 3.3.1 are all based
on the ranking function.

Top ranked models. We introduced the top ranked model in (2.12),
which we here can write

ξ̂
N(zN) = arg max

ξN∈ΞN
pN(ξN , zN)

This estimator is called the Maximum A Posteriori (MAP) estimator of
ξN and we denote it by ξ̂

N
MAP(zN). The name derives from that

pN(ξN , zN) = pN(ξN ∣zN)pN(zN)

so that

ξ̂
N
MAP(zN) = arg max

ξN∈ΞN
pN(ξN ∣zN)

i.e. it is the point in ΞN having the highest posterior probability4. 4 In the sense of having the largest value
of the pdf.We can also compute MAP estimators of functions of the model

parameters γ(ξN)5 5 Recall from Section 2.5.5 that
pN(γ, zN) = ∫ΞN pN(ξN , zN)δ(γ −
γ(ξN))dξN .γ̂MAP(zN) = arg max

γ
pN(γ, zN)

which in general differs from γ(ξ̂MAP(zN)), see Exercise 3.1. Notice
that marginalization with respect to some parameters is obtained by
taking γ to be the orthogonal projection onto the the variables that
one would like to keep. For example, marginalization of ξN with
respect to ξ(N) is obtained by taking γ(ξN) = ξN−1. MAP estima-
tors based on marginalized pdfs will be called marginalized MAP
(MMAP) estimators.

When the pdfs {pt} are parametrized by a hyperparameter η we

indicate this in an estimator by indexing it by η, e.g. ξ̂
N
MAP(zN ; η).

We also need to provide estimators for the hyperparameters. It is
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common to first eliminate the model parameters by marginalization
so that an estimator for the hyperparameters η̂(zN) can be obtained
separately. As estimator for the model parameters one can then take

ξ̂
N(zN ; η̂(zN)).

In (2.31) we suggested the use of the hyperparameter that maxi-
mizes the total rankings (corresponding to z). This function, pN(zN ; η),
is called the likelihood function and therefore this estimator is called
the maximum likelihood (ML) estimator

η̂ML(zN) ∶= arg max
η

pN(zN ; η)

as it makes the pdf for the observations have its maximum at the
point z where the observation was obtained. We can also here marginal-
ize over certain of the parameters which results in marginalized ML
(MML) estimators. For numerical reasons it turns out convenient
to work with the negative log likelihood function − log pN(zN ; η), for
which the ML-estimate is defined by the minimization problem6 6 Recall that the logarithm is a mono-

tone function and thus does not change
the location of optima.η̂ML(zN) ∶= arg min

η
− log pN(zN ; η)

For ease of notation, we will frequently rescale and drop constants
in the negative log-likelihood function without commenting on this
as these operations do not change the optimum.

The estimator (2.30)

(ξ̂
N(zN), η̂(zN)) ∶= arg max

ξN∈ΞN , η

pN(ξN , zN ; η)

is called the joint MAP/ML estimator of ξN and η. Also here, of
course, one can first marginalize one or both of the parameters ob-
taining joint MMAP/ML, MAP/MML and MMAP/MML estima-
tors.

The conditional average ranking model In (3.2) we introduced the con-
ditional average ranking model, which we here can write

ξ̂
N
PM(zN) = ∫U(zN)

ξN pN(ξN ∣zN)dξN , (3.2)

This is the conditional mean of ξN given the observation zN , which
we will refer to as the posterior mean (PM) estimator. As was dis-
cussed in Section 2.5.4, this estimator has the optimality property
(2.36). Using that now pt is a pdf, we can write this using expecta-
tions over ξN , obtaining that for any estimator Ñ

E [∣ξ̃N(MN(ξN))− ξN ∣2] ≥ E [∣ξ̂N
PM(MN(ξN))− ξN ∣2]

Realizing that when the model is correct, MN(ξN) is the observation
zN when the model parameters are ξN , we can write this as

E [∣ξ̃N(zN)− ξN ∣2] ≥ E [∣ξ̂N
PM(zN)− ξN ∣2]
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We can interpret this inequality as that the posterior mean is the es-
timator that minimizes the mean-squared error (MSE) when we repeat
the process of drawing a model parameter ξN from the distribution
pN and then estimate ξN from the observation zN = MN(ξN). From
(2.35) we also have that

E [∣ξ̃N(zN)− ξN ∣2∣zN] ≥ E [∣ξ̂N
PM(zN)− ξN ∣2∣zN]

meaning that ξ̄
N
PM(zN) is the constant vector which minimizes the

MSE if we restrict the draws of ξN to those that generate the ob-
servation zN . An important remark is that this interpretation is lost
when estimated hyperparameters are used as p(ξN ∣zN ; η̂(zN)) can-
not be interpreted as a posterior pdf of the model parameters. This

does not prevent ξ̂
N
PM(zN ; η̂(zN)) from potentially being a useful es-

timator.
The posterior mean of a function of the model parameters γ(ξN)

is given by

γ̂PM(zN) = ∫U(zN)
γ(ξN)pN(ξN ∣zN)dξN . (3.3)

See also Exercise 3.1.b.
For an hyperparameter η, the mean of pN(η∣zN) can be taken as

estimator

η̂PM(zN) = E [η∣zN]

However, we stress again that this does not mean that we interpret
η as a random vector, the expectation is just a compact way to write
the integral

η̂PM(zN) = ∫ ηp(η∣zN)dη

3.3.2 Predictive estimators

In Section 3.3.1 we had a brief encounter with estimation theory.
We saw that the mean of a random variable is the estimator of the
random variable that minimizes the MSE when no observations are
available. We also saw that the mean is optimal (with respect to
the MSE) also when (indirect) observations are available, but then
one should use the posterior mean, i.e. the conditional mean with
respect to the observation.

Now, with a probabilistic model we can use this theory to con-
struct estimators of model parameters as well as hyperparameters.
The basic idea is to first choose some functions f (⋅) with the same do-
main as our observed data vector zN lives in and then pick the model
that is best able to predict (estimate) the function value s = f (zN) for
the observation at hand zN . We will work with measurable func-
tions, meaning that s = f (MN(ξN)) becomes a random variable as it
is a (measurable) function of the random variable ξN . The output s
is then called a statistic.
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While this seems may seem attractive, two major questions arise:
Which functions should be chosen, and how should we measure
"best"? But perhaps the first question is, why do we need to use
a function at all? Would it not be better to see which model is best
able to predict the entire data set? Well, this we have already dis-
cussed. It leads to the set of unfalsified models and then one need
to make a decision rule based on user preferences, e.g. by ranking,
leading to methods such as ML and MAP. By using statistics and es-
timation theory we can verify how good the probabilistic description
for a model is. Which functions and criteria to use are issues strongly
linked to the resulting computational complexity, the accuracy that
can be obtained and the robustness of the method7. One can also 7 Typically, better accuracy or robust-

ness cost more in terms of computa-
tions - one of the many facets of the no
free lunch theorem

view the use of statistics to build estimators as a data compression
step and a natural question is if and how this can be done without
information loss. We will return to this in Section 5.5.

Below we will briefly discuss three common families of predictive
estimators.

Moment estimators. Assuming for simplicity z(t) ∈ R, non-central
sample moments such as

mk(zN) = 1
N

N
∑
t=1

zk(t), k = 1, 2, . . .

are common statistics. For a model MN(ξN), the optimal estimator
of mk(zN) is the corresponding non-central moment

mk(η) = 1
N

N
∑
t=1

E [Mk
t (ξt(η))]

These moments will only depend on the hyperparameters and not
the model parameters8 as we take the mean with respect to ξt. When 8 recall, though, that constant model pa-

rameters are included in the hyperpa-
rameters as well (with a Dirac’s delta
function linking such model parame-
ters and the corresponding hyperpa-
rameters in the pdf.

as many moments as the number of hyperparameters nη are used,
setting the optimal estimators equal to the sample moments results
in a set of equations

mk(zN) = mk(η), k = 1, . . . , nη

from which an estimator of η can be obtained. This approach is
known as the Method of Moments.

One can also use a larger number of moments in which case an
η cannot be found so that all moments match the sample moments.
However, given that the moments are optimal in the MSE sense it
may make sense to take the minimizer of

V(η) =

⎡⎢⎢⎢⎢⎢⎢⎣

m1(zN)−m1(η)
⋮

mK(zN)−mK(η)

⎤⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎣

m1(zN)−m1(η)
⋮

mK(zN)−mK(η)

⎤⎥⎥⎥⎥⎥⎥⎦

as estimator of η. It may also make sense to include a weighting ma-
trix W to account for that the error in the different sample moments
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are different in size

V(η) =

⎡⎢⎢⎢⎢⎢⎢⎣

m1(zN)−m1(η)
⋮

mK(zN)−mK(η)

⎤⎥⎥⎥⎥⎥⎥⎦

T

W

⎡⎢⎢⎢⎢⎢⎢⎣

m1(zN)−m1(η)
⋮

mK(zN)−mK(η)

⎤⎥⎥⎥⎥⎥⎥⎦

(3.4)

This approach is known as the Generalized Method of Moments. We
will return to the choice of weighting matrix in Section 5.9.

Indirect inference. The generalized method of moments can also be
derived in the following way. Let us start with the following unstruc-
tured model

z(t) = v(t) (3.5)

where {v(t)} is a sequence of i.i.d. random variables where the first
K non-central moments are hyperparameters η̃k, k = 1, . . . , K. These
hyperparameters are then estimated by the sample moments

ˆ̃ηk(zN) = mk(zN)

It is not hard to come up with alibis for these estimators. The idea
is now that if the model that we actually are interested in is correct
then if we apply the same estimator as above to observations from
the model we should obtain a similar estimate as when observations
from the true system are used. Thus we should have

ˆ̃ηk(zN) ≈ ˆ̃ηk(MN(ξ(β))))

if the hyperparameter η in our model is correct. Now this is the same
as

mk(zN) ≈ mk(MN(ξN(η))), k = 1, . . . , K

We then make the further observation that mk(MN(ξN(η))) contain
random variations that have nothing to do with the real system but
are just caused by our random number generator. These we can
remove by taking the expectation, giving that we should choose η

such that

mk(zN) ≈ E [mk(MN(ξN(η)))] = 1
N

N
∑
t=1

E [Mk
t (ξt(η))] = mk(η)

for k = 1, . . . , K. Choosing (3.4) as measure of "distance" between the
sample moments and the model moments now gives the Generalized
Method of Moments.

The key point of the above procedure is that an intermediate, sim-
plified, model is used (above represented by (3.5)) and that the esti-
mates of the hyperparameters using observations and fictitious ob-
servations from the model are matched. It is thus the estimates of
the hyperparameters of the simplified model that serve as our statis-
tic and we find the model which is able to best match this statistic.
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By using another intermediate model than (3.4) we can obtain other
estimators of the form

η̂(zN) ∶=arg min
η

Vwse(η, zN) (3.6)

where

Vwse(η, zN) ∶=

( ˆ̃η(zN)−E [ ˆ̃η(MN(ξN(η)))])
T

W ( ˆ̃η(zN)−E [ ˆ̃η(MN(ξN(η)))])
(3.7)

This approach is known as indirect inference. Other cost functions
than Vwse(η, zN) can of course be used. If a likelihood function
p(zN ; β̃) has been specified for the intermediate model, one possi-
bility is

Vlh(η, zN) ∶= E [p(MN(ξN(η), ˆ̃ηML(zN))]

i.e. we try to find a model that generates data that matches a given
ML-estimate as measured by the likelihood function used to estimate
this ML-estimate.

When the expectation over ξN(η) is difficult to compute, Monte
Carlo simulations may be used instead. Defining

ÊQ [g(ξN(η))] ∶= 1
M

Q

∑
k=1

g(ξN
k (η))

where {ξN
k (η)}Q

k=1 are Q independent of realizations of ξN(η), one
can use

V̂Q
lh (η, zN) ∶= ÊQ [p(MN(ξN(η), ˆ̃ηML(zN))]

as criterion. The expectation in Vwse may also be replaced by a Monte
Carlo estimate.

Prediction error methods The methods above use the model to pre-
dict certain statistics. We also observed that it does not make sense
to try to predict the entire observation zN as this just leads to the set
of unfalsified models. However, we could use the model to construct
an estimator of subsets of zN given other subsets of zN . Such esti-
mators are called predictors. We could then determine model- and
hyperparameters by minimizing the errors between the observations
we try to predict and the corresponding predictors. These errors are
called prediction errors, and therefore this class of methods is called
Prediction Error Methods (PEM). For dynamic systems, it is natural to
consider k-step ahead predictors of the output. Let us for simplicity

of argument suppose that z(t) = [yT(t) uT(t)]
T

and that the model
is

y(t) = ft(ut, vt; θ), t = 1, 2, . . .
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where the sequence {vt} is characterized by the pdfs {pt}. A k-step
ahead predictor is then a sequence of functions f̂t+k∣t which define
the k-step ahead predictor as

ŷ(t + k∣t; θ) ∶= f̂t+k∣t(ut+k, yt; θ)

Notice that the k-step predictor is only allowed to use the output
history with a lag of k time steps. We would then choose θ such that
the prediction errors

ε(t + k∣t; θ) = y(t + k)− ŷ(t + k∣t; θ), t = 1, . . . , N − k

are small in some sense. We may for example use the quadratic
criterion (3.7)

Vpe,k(θ, zN) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

ε(1+ k∣1; θ)
⋮

ε(N∣N − k; θ)

⎤⎥⎥⎥⎥⎥⎥⎦

T

W

⎡⎢⎢⎢⎢⎢⎢⎣

ε(1+ k∣1; θ)
⋮

ε(N∣N − k; θ)

⎤⎥⎥⎥⎥⎥⎥⎦

3.3.3 Ranking statistics

An alternative way to come up with an estimator from a statistic
s is to compute the pdf p(s; η) and then use any of the previously
proposed "ranking" methods to construct an estimator of η.

Example 3.3. Suppose that

z(t) = v(t)

where {v(t)} is a sequence of independent N (0, λ)-distributed random
variables. The neg-loglikelihood is given by

1
λ

N
∑
t=1

z2(t)+ N log λ

The sample second order moment is given by

s = 1
N

N
∑
t=1

z2(t)

We have that Ns/λ is χ2(N) distributed, and hence s has pdf

p(s) = p ( λ

N
Ns
λ

) = N
λ

p (Ns
λ

) = N
λ

1
2N/2Γ(N/2)

(Ns
λ

)
N/2−1

e−
Ns
2λ

= NN/2

2N/2Γ(N/2)
sN/2−1 1

λN/2
e−

Ns
2λ

This gives the following neg-loglikelihood

N
λ

s + N log λ = 1
λ

N
∑
t=1

z2(t)+ N log λ

which is the same as for zN itself as seen above.
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Example 3.3 showed that the neg-loglikelihood may remain the
same even when we compress data. This is not always the case as
illustrated in the next example. In Section 5.5 we will return to the
question of when this is possible.

Example 3.4. Suppose that

z(t) = v(t)

where {v(t)} is a sequence of uniformly distributed random variables on
[θ, θ + 1]. Let us for simplicity consider the case when we have N = 2
observations. The joint density for (z1, z2) is 1 on the square [θ, θ+ 1] ×
[θ, θ+ 1], see Figure 3.1

Figure 3.1: The pdf is 1 within the
square.

Thus any θ for which the observation (z1, z2) belongs to this square is a
ML-estimate. This is equivalent to that

θ ≤ min(z1, z2) ≤ max(z1, z2) ≤ θ+ 1

giving that all θ ∈ [max(z1, z2)− 1, min(z1, z2)] are ML-estimates.
Now consider the statistic s = z1 + z2. The first moment of the corre-

sponding model v1+v2 is 2θ+1. Thus we could take (s−1)/2 as estimator
of θ.

We can also derive the pdf for s. We need to integrate over the lines in
Figure 3.1 where s = z1 + z2 is constant. This gives the pdf in Figure 3.2.
The ML estimate is thus to choose θ such that

s = 2θ+ 1

i.e. the ML estimate is (s − 1)/2. i.e. the same as we obtained using the
optimal estimator for the sum of the observations, but different from the
ML-estimate using z2.

A relation between ML estimation and PEM. Returning to prediction
error minimization, we can for a specific choice of cost function inter-
pret this method as consisting of a transformation of data followed
by ML-estimation. Let p be a generic notation for a pdf, where the
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Figure 3.2: The pdf for s.

argument makes it clear for which quantity it is a pdf. Let us also
hide the input dependence of a pdf. The likelihood p(yN ; θ) can be
factorized as

p(yN ; θ) = p(y(N)∣yN−1; θ)p(yN−1; θ) =
N
∏
t=1

p(y(t)∣yt−1; θ) p(y(0); θ)

Now, since ŷ(t + 1∣t; θ) is a function of yt−1, p(y(t)∣yt−1; θ) = p(y(t)−
ŷ(t + 1∣t; θ)∣yt−1; θ) = p(ε(t; θ)∣yt−1) so we can write

p(yN ; θ) =
N
∏
t=1

p(ε(t∣t − 1; θ)∣yt−1; θ) p(y(0); θ)

We can thus express the neg-loglikelihood in terms of the prediction
errors as

−
N
∑
t=1

log p(ε(t∣t − 1; θ)∣yt−1; θ) − log p(y(0); θ) (3.8)

Thus the prediction error method using the one-step ahead predictor
with the above cost function is equivalent to ML-estimation of θ.
Thus we can interpret the prediction error method as first making a
transformation of the observation zN into the prediction errors εN(θ)
and then maximizing the likelihood (3.8) for this new data set.

Notice that above we have made no assumptions on the form of
the predictor. In the case when the predictor is such that

y(t; θ) = ŷ(t∣t − 1; θ)+ e(t) (3.9)

where e(t) is independent of the past yt−1, then

p(ε(t∣t − 1; θ)∣yt−1; θ) = pe(t)(ε(t∣t − 1; θ))

and hence the likelihood becomes

−
N
∑
t=1

log pe(t)(ε(t∣t − 1; θ)) − log p(y(0); θ)

When (3.9) holds, the predictor ŷ(t∣t − 1; θ) is optimal in the MSE
sense, see Exercise 3.5. Hence, ŷ(t∣t − 1; θ) must be the posterior
mean. Notice that the reverse does not hold, i.e. y(t) −E [y(t)∣yt−1]
is not necessarily independent of the past, see Exercise 3.6.
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Parameter dependent statistics. What may appear bizarre in the in-
terpretation of the prediction error method above is that our trans-
formed "observation" εN(θ) is parameter dependent. Let us see what
effect this may have.

Example 3.5 (Example 3.3 continued). It may be tempting to use Ns/λ

as "observation" instead of s since we directly know that this is a χ2(N)-
distributed random variable. The pdf for this parameter dependent statistic
is

p (Ns
λ

) = N
λ

1
2N/2Γ(N/2)

(Ns
λ

)
N/2−1

e−
Ns
2λ

with neg-loglikelihood

N
λ

s + (N − 2) log λ = 1
λ

N
∑
t=1

z2(t)+ (N − 2) log λ

which differs from the neg-loglikelihood for z. We will thus obtain a different
estimate of λ.

Example 3.5 shows that the likelihood function may change if the
transformation is parameter dependent. We will need to better un-
derstand what goes on here. Lemma D.1.1 tells us how the pdf is
transformed when a 1-1 mapping f is applied. With zN

f ∶= f (zN)

p(zN
f ) =

p(z)
∣det f ′(z)∣

Thus the neg-loglikelihood for zN
f is given by

− log p(zN
f ) = − log p(z)+ log ∣det f ′(z)∣ (3.10)

Thus if ∣det f ′(z)∣ is independent of the hyperparameters, the ML-
estimators using zN

f = f (zN) and zN will be identical. However,
when ∣det f ′(z)∣ is a function of the hyperparameters the two ML-
estimators may very well be different even if in this case there is no
data-compression and the function is one-to-one so that zN can be
recovered from zN

f (by applying f−1). Thus care has to be exercised
when using parameter dependent transformations of data.

In view of this, let us return to prediction error minimization
where the transformation f is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)
y(2)
⋮

y(N − 1)
y(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)− ŷ(1∣y0; θ)
y(2)− ŷ(2∣y1; θ)

⋮
y(N − 1)− ŷ(N − 1∣yN−2; θ)

y(N)− ŷ(N∣yN−1; θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here y(0) is not an observation so it must either be assumed known
or being part of the unknown θ. The structure of the map above
means that the Jacobian f ′(y) is upper triangular and with 1’s on
the diagonal. But such a matrix has determinant one and is hence
independent of θ. Using this in (3.10) shows that the parameter de-
pendent parts of the neg-loglikelihoods for y and εN(θ) will be the
same.
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3.4 A Probabilistic Toolshed

In this section we will provide some tools for probabilistic modeling.
There are different objects we would like to model. Disturbances
and noise in sampled data systems can be modelled by a sequence
of random variables. This corresponds to discrete time stochastic
processes {s(t)}t∈T , where the domain T is the integers T = Z or the
natural numbers T = N. A nonlinear function f ∶ R → R can also
be modelled as a stochastic process but then the domain is T = R, or
perhaps a subset of R. Thus we will need to treat different domains.

3.4.1 Basic concepts

In mathematical terms probability theory is concerned with func-
tions that map sets to real numbers between 0 and 1. We start with a
set Ω, called the sample space, whose elements ω, the sample points,
can be thought of representing all possible outcomes that can occur.
An event is simply a subset of Ω. A probability measure P assigns
a probability to every event, i.e. a number between 0 and 1. It has
to hold that P(Ω) = 1 and for a disjoint family of sets {Ak}∞k=1, that
P(∪∞k=1 Ak) = ∑∞k=1 P(Ak). We can express the probability of an event
in integral form as

P(A) = ∫
A

dP = ∫
A

dP(ω)

where a generalization of the Riemann’s definition is needed for the
integral. The reader not familiar with measure theory may think of
dP as a non-negative weight function, weighting different outcomes
ω.

We would of course like to assign a probability to all possible
events, i.e. to all possible subsets of Ω. However, the sets of sets is
humongous and leads to inconsistencies.

Example 3.6 (Banach and Tarski). Let Ω be the unit sphere S2 in R3

and define the probability measure for a set F as the area of F divided with
the area of S2. Then it can be shown that there exists an F ∈ S2 and disjoint
rotations {Fi,k}k

i=1 of F such that P(Fi,j) = P(F) and S2 = ∪k
i=1Fi,k for k ≥ 3.

However, since the sets are disjoint this implies that

1 = P(S2) = P(∪k
i=1Fi,k) =

k
∑
i=1

P(Fi,k) = kP(F), k = 3, 4, . . .

i.e. it would appear that the area of F is not unique.

Thus, if we want to have probabilities defined in a meaningful
and consistent way the family of allowed sets must be restricted.
We will denote such a family of sets by F . Natural requirements
are that i) Ω ∈ F , ii) if A ∈ F then its complement Ac ∈ F , and
iii) the union of two sets belonging to F should be in F as well.
However, these requirements are not enough to be able to answer
pertient questions in estimation theory. Let us jump ahead and study
a typical estimation problem.
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Example 3.7. Let θ̂N be an estimator of a scalar quantity θ based on the
random vector YN ∈ RN and let us assume that we would like to examine the
properties of θ̂N when N becomes large. For example we might be interested
in the probability that θ̂N eventually remains within a distance ε > 0 from
θ. This event can be expressed as

F = {ω ∶ lim sup
N→∞

∣θ̂N − θ∣ ≤ ε} = {ω ∶ ∣θ̂N − θ∣ ≤ ε for N sufficiently large}

Defining FN = {ω ∶ ∣θ̂N − θ∣ ≤ ε} we can write

F = ∪∞m=1 ∩
∞
n=m Fn

For sets of the type F in the example to belong to F given that
Fk ∈ F , k = 1, 2, . . ., it turns out that we have to require

iv) Fk ∈ F , k = 1, 2, . . . ⇒ ∪∞k=1Fk ∈ F

A family F of sets satisfying i)–iv) is called a σ-algebra, the pair
(Ω,F) a measurable space and the triplet (Ω,F , P) a probability space.

Starting from a family C of subsets on Ω, σ(C) is the smallest σ-
algebra that contains all sets in C. An example is the Borel σ-algebra
B which is the smallest σ-algebra containing the open sets on the real
axis. The sets in this σ-algebra are called Borel sets. The concept of
Borel algebra extends to RN , N <∞.

3.4.2 Random Variables

Given a probability space (Ω,F , P), a real valued random variable is
a function from the sample space to the real axis: Ω → R. A typical
event for a random variable Y that we might be interested in is

{ω ∶ Y(ω) < c} (3.11)

for some constant c (this leads to the distribution function). For us
to be able to assign probabilities to such events, they have to be mea-
surable, i.e. they have to belong F . Real valued functions f from the
sample space for which sets of the type {ω ∶ f (ω) ∈ B}, where B is
any Borel set, are measurable, i.e. belong to F , are called measurable
functions. Sets of the type (3.11) are of this type and by requiring
random variables to be measurable functions, the probability for the
event (3.11) is well defined.

A random variable X is characterized by its probability distri-
bution function PX(B) ∶= P(X ∈ B) for all B ∈ B, where X ∈ B =
{ω ∶ X(ω) ∈ B}. We can see PX(B) as a probability measure on
the measurable space (R,B). The distribution function is defined as
FX(x) ∶= PX((−∞, x]), and since P is a measurable function so is FX

meaning that we can write

FX(y) = ∫
y

−∞
dFX(x)

If PX is absolutely continuous with respect to the Lesbegue measure,
there is a measurable function pX ∶ R → R called the probability den-
sity function (pdf) such that

PX(B) = ∫
B

pX(x)dx (3.12)
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Here absolutely continuous means that9. 9 Theorem 7.18 in
W. Rudin. Real and Complex Analysis.

McGraw-Hill, London, 1986

∫
B

dx = 0 ⇒ PX(B) = 0

When PX is absolutely continuous, it follows from (3.12) that the
distribution function for a random variable X can be written as

FX(x) = PX((−∞, x)) = ∫
x

−∞
pX(x)dx

and hence FX is absolutely continuous. Furthermore, by the funda-
mental law of calculus d

dx FX(x) = pX(x). In measure theoretic terms
we thus have dFX(x) = pX(x)dx.

Absolutely continuous distribution functions cannot represent dis-
tributions of random variables for which there is a non-zero proba-
bility of events like X = x, c.f. with the probabilities of the outcomes
from throwing a dice. For this discrete distribution functions are
needed. Such functions are piecewise constant, right continuous,
with at most a countable number of positive jumps

FX(x) =
∞
∑
k=0

pkσ(x − xk), pk ≥ 0, ∑
k

pk = 1

where

σ(x) = { 0 x < 0
1 x ≥ 0

The xk are simply the outcomes of X that can occur, and pk their
associated probabilities

A discrete distribution function can have at most a countable points
of discontinuity. Also a discrete distribution function is a measurable
function and here

dFX(x) =
∞
∑
k=0

pkδ(x − xk)

where δ is Dirac’s delta function.
With X and Y being independent and having a discrete and abso-

lutely continuous distrbution function, respectively, X +Y will have
a combination of the two as distribution function.

Theorem 3.4.1 (Theorem 1.3.2 in 10). Every distribution function can be
uniquely decomposed into a convex combination of a discrete, an absolutely
continuous, and a continuous singular distribution function.

A distribution function is right-continuous at every point of its
domain. A distribution function is singular if it is not identically zero
and its derivative exists and equals zero almost everywhere. Thus a
continuous singular distribution function can only increase on a set
of measure zero, on which the derivative does not exist but where
the function is still continuous. We refer to p.12 in 11 for an example 11 K.L. Chung. A Course in Probabil-

ity Theory. Academic Press, Orlando,
Florida 32887, 1974

of how such a peculiar function can be constructed.
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3.4.3 Expectation

A random variable X, defined on a probability space (Ω,F , P), has
expectation

E [X] = ∫
Ω

XdP ∶= ∫
Ω

X(ω)P(dω)

when the integral is defined. However, we can also express the ex-
pectation in terms of the probability distribution function PX , or the
distribution function

E [X] = ∫
Ω

X(ω)PX(X(dω)) = ∫
∞

−∞
xPX(dx) = ∫

∞

−∞
xdFX(x) (3.13)

When the sample space is discrete, so that the distribution function
is discrete, it follows that

E [X] =∑
k

xkPX(xk) =∑
k

xk pk

and when the pdf exists

E [X] = ∫
∞

−∞
xpX(x)dx

With f being a measurable function, f (X) is a random variable and
its expectation is given by

E [ f (X)] = ∫
∞

−∞
f (x)pX(x)dx

when the pdf of X exists. This is a non-trivial result.

3.4.4 Random vectors

A random vector X = [X(1) . . . X(n)]
T

is a vector where all ele-
ments are random variables. One can then proceed as for a ran-
dom variable and define a probability distribution function PX(B)
for events B = B1 × . . . × Bn ∈ Bn = B × . . . ×B such that

PX(B) = P(X ∈ B)

as well as the distribution function

FX(x1, . . . , xn) = P((X(1) < x1)∩ . . . ∩ (X(n) < xn))

The distribution function uniquely defines the probability distribu-
tion (Theorem 2 in $ 3, Chapter II 12). Furthermore, when PX is ab- 12 A.N. Shiryaev. Probability. Springer,

2nd edition, 1989solutely continuous the pdf pX(x1, . . . , xn) is defined by

PX(B) = ∫
B1

. . .∫
Bn

pX(x1, . . . , xn)dx1 . . . dxn

which, with x = [x1 . . . xn]
T

, we write compactly as

PX(B) = ∫
B

pX(x)dx

A different definition of a random vector could be that X is a random
vector in Rn if for all Borel sets B in Rn, {ω ∶ X(ω) ∈ B} is measurable.
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However, this definition is equivalent to the one above. This is a
subtle but non-trivial result which follows from that the set of Borel
sets in Rn is the smallest σ-algebra containing the sets B1 × . . . × Bn,
where the Bi are Borel sets in R.

Notice that, with X̄ being identical to X save that X(k) has been
removed,

pX̄(x1, . . . , xk−1, xk+1, . . . , xn) = ∫
∞

−∞
pX(x1, . . . , xn)dxk

The procedure of integrating out certain variables is called marginal-
ization. We can also define expectation for random vectors and func-
tions of random vectors

E [X] = ∫
∞

−∞
xpX(x)dx

E [ f (X)] = ∫
∞

−∞
f (x)pX(x)dx

Here f can also be matrix-valued, in particular the covariance between
two random vectors X and Y is defined as

CX,Y ∶= E [(X −E [X])(X −E [X])T]

We use CX or even Cov{X} for short of CX,X.

3.4.5 Stochastic Processes

A stochastic process is a generalization of a random vector to an
infinite number of random variables X(t) ∈ R, t ∈ T defined on a
common probability space (Ω, P,F). The index set T can be either
countable, e.g. the natural numbers T = N or the integers T = Z,
but T can also be uncountable, e.g. the set of reals T = R. Unless
important for the treatment we will not specify T.

For a given finite collection of these random variables X = [X(t1) . . . X(tn)]
T

,
a finite dimensional probability distribution PX is induced on (Rn,Bn)
as for random vectors. These in turn define a family of finite dimen-
sional distribution functions

Ft1,...,tn(x1, . . . , xn) ∶= PX(X(t1) ≤ x1, . . . , X(tn) ≤ xn), t1 < . . . < tn

(3.14)

and when these measures are absolutely continuous, the correspond-
ing pdfs pt1,...,tn(x1, . . . , xn) exists.

A stochastic process can also be vector valued, i.e. X(t) ∈ Rn, with
obvious modifications of the definitions of the probability measures
and pdfs above.

For two stochastic processes X(t) and Y(t) t ∈ T, defined on the
same probability space, we can define moment functions, such as the
mean, cross-correlation and cross-covariance functions

mX(t) ∶= E [X(t)]
RX,Y(t, s) ∶= E [X(t)YT(s)]

CX,Y(t, s) ∶= E [(X(t)−mX(t))(Y(s)−mY(s))T]
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We call RX,X(t, s) and CX,X(t, s) the auto-correlation (akf) and covari-
ance function, respectively.

The characterization of a stochastic process given above has the
shortcoming that it only allows us to compute probabilities for a
process X(t) which can be described by the process at a finite num-
ber of time instances. What we need is to adopt the alternate view
we briefly discussed for random vectors where we saw X(ω) as an
outcome of X ∈ Rn rather than the elements being individual random
variables. Similarly, for random processes we can think of X(⋅, ω) as
an element in RT , the space of real-valued functions defined on T.
The functions X(⋅, ω) are called realizations of X, or sample paths or
trajectories.

Example 3.8 (Example 3.1 in 13). Let η be a random variable uniformly
distributed on [0, 1] and define X(t) = δ(t − η), where δ(x) is Kronecker’s
delta function, for t ∈ [0, 1]. Then

PX(X(t) ∈ B) = { 1 0 ∈ B
0 otherwise

since η = t with probability 0, and for the same reason

PX(X(t1) ∈ B1, . . . , X(tn) ∈ Bn) = { 1 0 ∈ ∩n
k=1Bk

0 otherwise

The question now is for which sets B of functions in RT a proba-
bility is induced by P? Now for each t ∈ T, X(t) is a random variable
so for sets of the type

Bt(B) = {X(⋅, ω) ∈ RT ∶ X(t) ∈ B}, B ∈ B

we can define a probability PX(Bt(B)) = P(B). As for random vectors
we can take the intersection of such sets, i.e.

Bt1,...,tn(B1 × . . . × Bn) = {X(⋅, ω) ∈ RT ∶ X(t1) ∈ Bn, . . . , X(tn) ∈ Bn},

where B1, . . . , Bn ∈ B. It then turns out that P induce probabilities for
sets in B(RT), the smallest σ-algebra containing all sets Bt1,...,tn(B1 ×
. . . × Bn) (Theorem 4 $3, Chapter II in 14). 14 A.N. Shiryaev. Probability. Springer,

2nd edition, 1989Seen from a modeling perspective, e.g. think of the problem of
defining a stochastic process which models a disturbance, it seems
natural to first define a suitable probability measure and then de-
fine a stochastic process obeying this probability measure. When
constructing a probability measure PX one must ensure that it is con-
sistent, meaning that for all sets s = {s1, . . . , sk} and t = {t1, . . . , tn},
s ⊆ t,

PX ({X(s1), . . . , X(sk)} ∶ {X(s1), . . . , X(sk)} ∈ B)
= PX ({X(t1), . . . , X(tn)} ∶ {X(s1), . . . , X(sk)} ∈ B)

c.f. marginalization. However, at this point it is not clear if for a
given probability measure PX on (RT ,B(RT)) there exists a proba-
bility space (Ω,F , P) and a stochastic process X(t) that has PX as
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probability distribution function. Fortunately, it has been shown that
this can always be done and that it suffices to specify the finite di-
mensional distribution functions (3.14) (Kolmogorov’s extension the-
orem, Theorem 1, §9, Chapter II in 15). It also holds that P is unique 15 A.N. Shiryaev. Probability. Springer,

2nd edition, 1989and one can thus say that the finite dimensional distribution func-
tions completely specify a stochastic process.

However, it should be noted that different stochastic processes
may have the same probability distribution functions but different
realizations, and hence there are restrictions in the sets for which
probabilities can be computed using the finite dimensional probabil-
ity distributions, especially when T is uncountable.

Example 3.9 (Example 3.8 continued). Let Y(t) = 0 ⋅ η for t ∈ [0, 1].
Then Y has the same finite dimensional probability distributions as X(t) in
Example 3.8. However,

P( sup
t∈[0,1]

Y(t) = 0) = P( sup
t∈[0,1]

X(t) = 1) = 1

so with probability 1 the sample paths of the two processes do not coincide.

The problem in the previous example is that the functional h( f ) ∶=
supt∈[0,1] f (t) is not measurable in RT , T = [0, 1], i.e. { f ∶ h( f ) ∈ B},
where B ∈ B, does not belong to B(RT).

Modeling considerations. Even if it suffices to specify the finite di-
mensional distribution functions of a stochastic process, the degrees
of freedom in defining a stochastic process are overwhelming. A
partial specification is given by the mean function and the akf. There
is a one-to-one correspondance between akfs and positive definite
functions (p. 132 of volume 2

16), where the latter are functions 16

K ∶ T × T → Rn×n such that K is non-negative in the sense that

m
∑
i=1

m
∑
j=1

a∗(i)K(ti, tj)a(j) ≥ 0, ∀a(i) ∈ Cn, ti ∈ T, m ∈ N (3.15)

The condition (3.15) implies that K is symmetric in the sense K(t, s) =
KT(s, t) 17, see Exercise 3.9. 17 An equivalent definition of a positive

definite function is that (3.15) holds for
real vectors, and that K is symmetric.

For any function f (τ) ∶ T → Rm, R(t, s) = f (t) f ∗(s), is a positive
definite function as well as a sum of different such products18. This

18 A further generalization is that if R̄ is
a positive definite function, then so is
f (t)R̄(t, s) f ∗(s)

leads to a simple way to parametrize an akf. For some suitable (basis)
functions ϕk ∶ T → Rm form19

19 That R is symmetric is trival and that
it is non-negative follows from

m
∑
i=1

m
∑
j=1

aT(i)R(ti , tj)a(j)

=
∞
∑
k=1

λk

m
∑
i=1

m
∑
j=1

aT(i)ϕk(ti)ϕT
k (tj)a(j)

=
∞
∑
k=1

λk

RRRRRRRRRRR

m
∑
i=1

aT(i)ϕk(ti)
RRRRRRRRRRR

2

≥ 0

R(t, s) =
∞
∑
k=1

λk ϕk(t)ϕT
k (s), ∞ > λ1 ≥ λ2 ≥ . . . ≥ 0, (3.16)

We may of course take only a finite number of basis functions to
further simplify the parametrization.

An abstract version of this approach is to consider maps Φ ∶ T →
Hn, where Hn is used to denote that Φ(t) is a vector where each
element belongs to the Hilbert space H, and define ⟨Φ(t), Φ(s)⟩ as
the matrix with ijth element ⟨Φi(t), Φj(s)⟩. Taking

R(t, s) = ⌊Φ(t), Φ(s)⌋
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where ⌊Φ(t), Φ(s)⌋ is the matrix with ⟨Φi(t).Φj(s)⟩ as element ij,
results in a positive definite function since

∑
i,j

aT(i)R(ti, tj)a(j) =∑
i,j

aT(i)⟨Φ(ti), Φ(tj)⟩a(j)

=∑
i,j

⟨∑
k

ak(i)Φk(ti),∑
k

ak(j)Φ(tj)⟩ = ∥∑
i

aT(i)Φ(ti)∥ ≥ 0

where ∥ ⋅ ∥ denotes the norm in H.

Some theory for positive definite functions∗. For background material
we refer to Appendix C. We will consider a particular choice of basis
functions in (3.16). As preparations for this we introduce the follow-
ing class of functions.

Definition 3.4.1. Lm
2 (T) is the space of measurable functions, f ∶ T → Cm

that are square integrable

∫
T
∣ f (t)∣2dt <∞

We now T to be a compact set20 in Rn. Equipped with the inner 20 Think about a closed interval [a, b],
−∞ < a < b <∞.product

⟨ f , g⟩ = ∫
T

g∗(t) f (t)dt (3.17)

Lm
2 (T) is a separable Hilbert space. Let us now in (3.16) take {ϕk}∞k=1

to be a complete orthonormal basis for Lm
2 (T) and {λk} satisfying

∑∞k=1 λk <∞. Let us also ensure that R(t, s) is bounded by enforcing
{ϕk}∞k=1 to be uniformly bounded

∣ϕk(t)∣ ≤ C, k = 1, 2, . . . ,∀t ∈ T

Then IR, defined as

IR( f )(t) = ∫
T

R(t, s) f (s)ds,

is called an integral operator with kernel R. Notice that R is linear
and since R is bounded it is well defined for functions f in L2(T).
Now21 21 See Exercise 3.8 for the inequality step

∥IR( f )∥2
2 = ⟨IR( f ), IR( f )⟩ = ∫

T
∣∫

T
R(s, t) f (t)ds∣

2
dsdt

≤ ∫
T
∫

T
∥R(s, t)∥2

Fds ∫
T
∣ f (r)∣2dr dt

= ∫
T
∫

T
∣R(s, t)∣2Fdsdt ∥ f ∥2

2

where22 22 The inequality follows from our as-
sumption that ∑∞k=1 λk <∞.

∫
T
∫

T
∣R(s, t)∣2Fdsdt =

∞
∑
k=1

∞
∑
l=1

λkλl ∫
T
∫

T
ϕ∗k (s)ϕl(s)ϕ∗l (t)ϕk(s)dsdt

=
∞
∑
k=1

λ2
k <∞
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so that

∥IR( f )∥2

∥ f ∥2
≤
∞
∑
k=1

λ2
k

This means that seen as a function, IR( f ) belongs to L2(T) which in
turn means that IR, as an operator, defines a map from the functions
in L2(T) to L2(T) which has finite induced norm23 ∥IR∥2 ≤ ∑∞k=1 λ2

k . 23 A linear operator with finite operator
norm is called bounded which is equiva-
lent to that the operator is continuous.

Using the same type of derivation as above, we also obtain

⟨IR( f ), f ⟩ = ∫
T
∫

T
f ∗(t)R(t, s) f (s)dtds =

∞
∑
k=1

λk∣⟨< ϕk, f ⟩∣2, ∀ f ∈ L2(T)

This shows that

∫
T
∫

T
f ∗(t)R(t, s) f (s)dtds ≥ 0, ∀ f ∈ L2(T) (3.18)

A kernel with this property is called positive definite. In regards to
the operator IR, the above shows

⟨IR( f ), f ⟩ = ⟨ f , IR( f )⟩ ≥ 0 ∀ f ∈ L2(T)

Operators satisfying the first equality are said to be self-adjoint. A
self-adjoint operator satisfying the inequality above is said to be pos-
itive. Self-adjoint positive operators can be seen as generalizations
of linear transformations from Rn to Rn corresponding to positive
semi-definite Hermitian matrices A ∈ Cn×n, A = A∗ ≥ 0, for which it
is well known that they have eigen-decomposition

A =
n
∑
k=1

λkϕkϕ
∗
k , λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0

In fact, using the orthonormality of the basis functions,

IR(ϕl)(t) = ∫
T

∞
∑
k=1

λkϕk(t)ϕT
l (s)ϕl(s)ds = λlϕl(t)

To summarize, the parametrization (3.16) where the basis functions
form a basis in L2(T) lead to that apart from R(t, s) being a positive
definite function, it is also a positive definite kernel, which defines a
positive integral operator which has {λk} as eigenvalues and {ϕk} as
eigenfunctions.

Let us now turn the reasoning around and start with a bounded
kernel satisfying (3.18) but not necessarily of the form (3.16)24. The 24 This type of operator is a special case

of what is known as Hilbert-Schmidt
operator (add: Fukumizu).

integral operator IR is then still well-defined and positive for which
we can define eigenvalues and eigenfunctions. An important result,
known as Mercer’s theorem 25, states that we can always decompose 25 J. Mercer. Functions of positive and

negative type and their connection with
the theory of integral equations. Philo-
sophical Transactions of the Royal Society,
London, 209:415–446, 1909; and H. K˙
Eigenvalue Distribution of Compact Oper-
ators

R as in (3.16). We state this result in the general setting of a finite
measure space (of which a compact T together with the Lesbegue
measure is an example).

Theorem 3.4.2 (Mercer’s theorem. Theorem 3.a.1 in 26). Let (Ω, µ)
be a finite measure space and R∞(Ω2, µ2) be a positive definite kernel27. 27 This is equivalent to that IR ∶

L2(Ω, µ)→ L2(Ω, µ) is positive.
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Then the eigenvalues λk of IR are absolutely summable and the correspond-
ing normalized eigenfunctions ϕk ∈ Ł2(Ω, µ) form an orthonormal set and
belong to L∞(Ω, µ) with supk ∣ϕk∣∞ <∞ and

R(t, s) =
∞
∑
k=1

λkϕk(t)ϕ∗k (s), holds µ almost everywhere

where the series converges absolutely and uniformly almost everywhere.

From a modeling perspective, Mercer’s theorem tells us that the
family of bounded positive definite kernels T ×T → Rm, with T com-
pact is completely parametrized by the expansion (3.16) with {ϕk}
being an orthonormal basis in L2(T) and ∑∞k=1 λk < ∞, λk ≥ 0, k =
1, 2, . . .. Since functions of the type (3.16) are positive definite func-
tions but not necessarily the converse, the set of positive definite
functions is larger than the set of positive definite kernels. However,
for continuous positive definite functions a one-to-one relationship
can be obtained.

Theorem 3.4.3 (28). Let T = [a, b] be a compact interval and let R ∶ T ×
T → C be continuous. Then R is a positive definite function if and only if

∫
T
∫

T
f (t)R(t, s) f (s)dtds ≥ 0 (3.19)

for all complex-valued continuous functions f with domain of definition
including T.

Now the set of continuous functions is dense in L2(T) and there-
fore (3.19) implies (3.18) and hence the theorem shows that the set
of continuous positive definite functions T × T → C, with T being a
compact interval, is equal to the set of positive definite kernels29. 29 This should generalize to matrix val-

ued kernels.Due to the strong link to the theory of positive definite kernels,
positive definite functions, in the sense (3.15), are often called posi-
tive definite kernels.

3.4.6 Gaussian Processes

Above we have discussed how to model the akf of stochastic process.
To simplify the modeling task we also need to restrict the class of
probability measures. A Gaussian random vector X with mean µ

and covariance matrix Σ > 0 has pdf

N (x; m, Σ) ∶= 1√
det 2πΣ

e−
1
2 (x−µ)TΣ−1(x−µ)

and to indicate this we write X ∼ N (m, Σ). This distribution is fully
characterized by its mean µ and covariance matrix Σ. A Gaussian
Process (GP) {X(t)} is a stochastic process for which all finite di-
mensional distributions are of the form above, i.e.

⎡⎢⎢⎢⎢⎢⎢⎣

X(t1)
⋮

X(tn)

⎤⎥⎥⎥⎥⎥⎥⎦

∼ N
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

m(t1)
⋮

m(tn)

⎤⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎣

C(t1, t1) . . . C(t1, tn)
⋮ . . . ⋮

C(tn, t1) . . . C(tn, tn)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

, ∀ti
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Modeling considerations. A GP is fully characterized by its mean and
covariance functions, or equivalently by its mean and auto-correlation
functions. The covariance function C(t, s) is known as the kernel of
the process. While Mercer’s theorem provides a general parametriza-
tion, these can also often quite easily be tailored to the specific be-
haviour of the quantity that is to be modelled.

A significant simplification is obtained by parametrizing the akf
(and the covariance function) as R(t, s) = R(t − s). This means that
the akf does not depend on absolute time, implying that the second
order properties of the process do not change over time. This brings
us to the next class of stochastic processes.

3.4.7 Stationary stochastic processes

A stationary process is characterized by that its probability measures
do not change with time shifts. This means that these processes are
characterized by that their finite dimensional distribution functions
satisfy

Ft1+∆,...,tn+∆(x1, . . . , xn) = Ft1,...,tn(x1, . . . , xn),

∀ti ∈ T, ti ≠ tj, ∆ + ti ∈ T, 1 ≤ i, j ≤ n, n ∈ N. For a process for which
the finite dimensional pdfs pt1,...,tn(xt1 , . . . , xtn) exist, these conditions
can be expressed as

pt1+∆,...,tn+∆(xt1 , . . . , xtn) = pt1,...,tn(xt1 , . . . , xtn)

Stationarity is sometimes referred to as strict stationarity. If [XT(t) YT(t)]
T

is stationary we say that X and Y are jointly stationary.
Stationarity implies that the mean function is independent of time

so we use the notation mX. Furthermore, the cross-correlation func-
tion and corss-covariance function do not depend on time-shifts for
jointly stationary processes X and Y and therefore we can introduce
the following notation

RX,Y(τ) ∶= RX,Y(τ, 0) = RX,Y(t, t − τ)
CX,Y(τ) ∶= CX,Y(τ, 0) = CX,Y(t, t − τ)

The positivity condition (3.15) becomes
m
∑
i=1

m
∑
j=1

a∗i R(ti − tj)aj ≥ 0, ∀ai ∈ Cn, ti ∈ T, m ∈ N (3.20)

which, using the symmetry requirement R(τ) = RT(−τ) (see Exercise
3.9), can be expressed as that

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R(t1 − t1) R(t1 − t2) . . . R(t1 − tm)
RT(t1 − t2) R(t2 − t2) . . . R(t2 − tm)

⋮ ⋮ ⋱ ⋮
RT(t1 − tm) RT(t2 − tm) . . . R(tm − tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (3.21)

for all matrices for the above type. Notice that T has the same block
along its block diagonals. Such a matrix is called a block Toeplitz
matrix, and Toeplitz matrix when R is scalar. A function R ∶ T → Rn

satisfying (3.20) is said to be positive definite.
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Wide-sense stationarity. A stochastic process is said to be wide-sense
stationary (weakly stationary) if the mean function does not depend
on time and if the auto-correlation function does not depend on time
shifts.

For Gaussian processes wide-sense and strict stationarity are equiv-
alent as the distribution functions only depend on the mean and co-
variance functions.

Quasi-stationarity. Certain non-stationary processes may behave more
and more like a stationary process as time increases, for example it
may hold that mX(t) → mX for some finite number mX . A special
class of such processes are quasi-stationary signals. For this we need
the following definition

E{ f (t)} = lim
N→∞

1
N

N
∑
t=1

E [ f (t)]

which is defined whenever the limit on the right exists.

Definition 3.4.2. X(t) is said to be a quasi-stationary signal if

∣mX(t)∣ ≤ C ∀t

∣RX,X(t, s)∣ ≤ C ∀t, s

RX,X(τ) ∶ = E{X(t)XT(t − τ)} , exists∀τ

Two signals X(t) and Y(t) are said to be jointly quasi-stationary if [XT(t) YT(t)]
T

is quasi-stationary.

Notice that deterministic signals may be quasi-stationary. For such
signals quasi-stationarity means that the auto-correlation function is
formed by taking the average over time, whereas for wide-sense sta-
tionary processes the auto-correlation function is formed by taking
the average over the different outcomes ω for fixed time points t and
s. Under weak conditions it holds for a stationary stochastic process
X(t) that E{X(t, ω)X(t − τ, ω)} = RX,X(τ) for all ω ∈ Ω except for
a set of probability measure zero - this is due to the law of large
numbers that we will return to.

Frequency domain characterization. Recall the discussion that led to
(3.16), namely that a product f (t) f ∗(s) is a positive definite func-
tion. Applying this to f (t) = eiωt gives that eiω(t−s) is a positive
definite function. We also notice that this function is of the type
R(t − s), meaning that R(τ) = eiωτ is a positive definite function, i.e.
it satisfies (3.20). Thus, summing such functions (having different
ω) with positive weights Q(ω) ≥ 0 will also give a positive definite
function. Extending this reasoning to integrals leads to a precise fre-
quency domain representation of positive definite functions due to
Herglotz and Bochner.

As preparation for this we need to extend the concept of a distri-
bution function to the matrix-valued case.
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Definition 3.4.3. F is a matrix valued distribution function on [a, b] (or
R), if F(a) = 0 (or limω→−∞ F(ω) = 0), F is right-continuous, F(ω) −
F(µ) is non-negative definite for all ω ≥ µ.

Theorem 3.4.4. i) Herglotz theorem. R ∶ T → Rm×m, with T = Z, is a
positive definite function, i.e. it satisfies (3.20) if and only if

R(τ) = 1
2π ∫

π

−π
eiωτdF(ω)

where F is an m ×m matrix valued distribution function on [−π, π].

ii) Bochner’s theorem. R ∶ T → Rm×m, with T = R is a continuous and
positive definite function, i.e. it satisfies (3.20), if and only if

R(τ) = ∫
∞

−∞
eiωτdF(ω)

where F is an m ×m matrix valued distribution function on R.

Proof. See 30. 30 L.L. Gihman and A.V. Skorohod. The
Theory of Stochastic Processes I. Springer-
Verlag, Berlin, 1974The matrix valued distribution function F in Theorem 3.4.4 is

called the spectral distribution function. Thus an autocorrelation func-
tion can be parametrized by its spectral distribution function. Under
restrictions on R there exists a simpler characterization.

Corollary 3.4.1. i) Suppose that R ∶ T → Rm×m, with T = Z, is abso-
lutely summable

∞
∑

τ=−∞
∥R(τ)∥F <∞ (3.22)

Then R is a positive definite function, i.e. it satisfies (3.20) if and only if

R(τ) = 1
2π ∫

π

−π
eiωτQ(ω)dω (3.23)

for some continuous function Q ∈ L1(R), satisfying Q(ω) ≥ 0, ω ∈
[−π, π].

ii) Suppose that R ∶ T → Rm×m, with T = R belongs to L1(R). Then R is
a continuous and positive definite function, i.e. it satisfies (3.20), if and
only if

R(τ) = ∫
∞

−∞
eiωτQ(ω)dω (3.24)

for some continuous function Q, satisfying Q(ω) ≥ 0, ∀ω.

Proof. An absolutely summable sequence {R(τ)} can be represented
as a Fourier integral (3.23) where

Q(ω) =
∞
∑

τ=−∞
R(τ)eiωτ

(e.g. Theorem 4.3.2 in 31). Positivity of Q follows from Corollary 31 P.J. Brockwell and R.A. Davis. Time
Series: Theory and Methods. Springer,
1991

4.3.2 in 32. Finally, dominated convergence now gives that Q must
32 P.J. Brockwell and R.A. Davis. Time
Series: Theory and Methods. Springer,
1991

be continuous. The converse follows directly from Theorem 3.4.4 as
F(ω) = ∫

ω
−π Q(µ)dµ is a matrix valued distribution function.
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For T = R, R ∈ L1(R) implies that its Fourier transform Q is con-
tinuous and vanishes at infinity, see Theorem 9.6 in 33. Positivity of 33

Q follows by a limit procedure similar to the proof of Corollary 4.3.2
in 34. 34 P.J. Brockwell and R.A. Davis. Time

Series: Theory and Methods. Springer,
1991

Conversely, if (3.24) holds, then Φ ∈ L1 and hence R is continuous
and vanishes at infinity by Theorem 9.6 in 35. Furthermore, Theorem 35

3.4.4 gives that R is a positive definite function.

Remark 3.4.1. The set of positive definite kernels form a closed convex
cone36 under the point-wise convergence topology. Herglotz/Bochner’s the- 36 A cone is a set C for which x ∈ C ⇒

cx ∈ C if c > 0.orem shows that the set of complex exponentials is the generator of the cone,
i.e. any element of the cone can be obtained as a linear combination from
this set.

Remark 3.4.2. The theorem can be extended to multivariable functions,
e.g. T = Rm. Then {eiωT t ∶ ω ∈ Rm} takes the role as generator.

When R is the akf of a (wide-sense) stationary process, the func-
tion Q is called the spectrum (or spectral density) of the process.
When the process is multivariate, an off-diagonal element of the
spectrum is called the cross-spectrum between the corresponding ele-
ments of the process. The same terminology applies for two disjoint
sub-vectors of the process. In view of that R is the inverse Fourier
transform of Q, the spectrum is the discrete time Fourier transform
of R. We can thus see the spectrum as a function of eiω when T = Z

and of iω when T = R. We will use the notations Φ(eiω) = Q(ω) and
Φ(iω) = Q(ω), respectively, for spectra of akfs in these two cases.
With

Φ(z) =
∞
∑

τ=−∞
R(τ)z−τ , and Φ(s) = ∫

∞

−∞
R(τ)e−sτdτ, (3.25)

we thus have that the spectrum is given by Φ(eiω) and Φ(iω), re-
spectively. For T = Z, with Φ being rational, Φ(z) is a Laurent-series
expansion convergent in an annulus including the unit circle ∣z∣ = 1.
When we do not want to distinguish between the cases T = Z and
T = R, we will use the generic notation Φ(ω).

Notice that the spectrum is Hermitian Φ∗(eiω) = Φ(eiω), Φ∗(iω) =
Φ(iω), respectively, see Exercise 3.10, which in the scalar case means
that Φ(e−iω) = Φ(eiω) and Φ(−iω) = Φ(iω), respectively.

Since

E [X(t)XT(t)] = RX(0) = {
1

2π ∫
π
−π Φx(eiω)dω T = Z

∫
∞
−∞ Φx(iω)dω T = R

we can interpret Φ(ω) as providing the distribution of the signal
power over different frequencies.

Modeling considerations. The spectrum characterization provides a
very convenient way to parametrize the akf of a (wide-sense) sta-
tionary process, or a stationary Gaussian process. A straightforward
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parametrization is to use Bk(ω) ≥ 0 and then take

Φ(ω) =
∞
∑
k=1

αkBk(ω), αk ≥ 0, k = 1, 2, . . .

Another straightforward approach is to form

Φ(ω) = H̃(ω)H̃∗(ω)

for some continuous function H̃(ω).
Probability density functions are positive so characteristic functions37 37 The characteristic function of a pdf is

its inverse Fourier transform.of pdfs that are symmetric about the origin can also be used as auto-
correlation functions.

Example 3.10. The characteristic function for a N (0, Σ) distributed ran-
dom variable is given by

R(τ) = e−
1
2 τTΣτ

Now, conversely, if the characteristic function of a pdf is a positive
function, then the pdf is a positive definite function. Clearly, the
characteristic function for a zero mean Gaussian is a positive function
and hence the pdf (omitting constant factors)

e−
1
2 xTΣ−1x

is a positive definite function. As it has the same form as the charac-
teristic function, we did not obtain a new class of akf’s in this case.
This function is known as the Gaussian kernel.

Example 3.11. The Laplace distribution with mean 0 and variance λ has
characteristic function

R(τ) = 1
1+ 1

2 λτ2

which then is a positive definite function. As R also is a positive function,
the corresponding pdf

p(x) = 1√
2λ

e−
√

2
λ ∣x∣

is a positive definite function. This is known as the Laplace kernel.

The preceding examples generalize to that

e−α∣τ∣p ,
1

1+ α∣τ∣p
, α > 0, 0 < p ≤ 2

are positive definite functions.
For the discrete time case, T = Z, one possibility is to use functions

H(z) that are holomorphic in an open set containing the unit circle
and take H̃(ω) = H(eiω). Such functions can be expanded in Laurent
series

H(z) =
∞
∑

k=−∞
Hkz−k
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The equivalent in the continuous time case, T = R, is to use H̃(ω) =
H(iω), where

H(s) =
∞
∑

k=−∞
Hks−k

This approach can be given a filtering interpretation which we turn
to next.

3.4.8 Filtered white noise

The scalar case.

Definition 3.4.4. A sequence {e(t)}∞t=−∞ of uncorrelated random variables
with zero mean and variance λ is called white noise.

When the sequence is independent it is called strict white noise.

For a white noise process it holds that

R(τ) = λδ(τ)

Hence the spectrum is Φ(ω) = λ, i.e. white noise has flat spectrum,
meaning that it contains all frequencies with an equal amount.

Now let

s(t) = H(q)e(t) =
∞
∑

k=−∞
h(k)e(t − k),

where H(q) = ∑∞k=−∞ h(k)q−k is stable in the sense that38 38 Notice that this condition is implied
by the bounded-input bounded-output
(BIBO) stability condition, see Defini-
tion 1.2.1.

∞
∑

k=−∞
∣h(k)∣2 <∞

Then s(t) is stationary with spectrum39 39

E [s(t)s(t − τ)]

=
∞
∑

k=−∞

∞
∑

l=−∞
h(k)h(l)E [s(t − k)s(t − τ − l)]

= λ
∞
∑

k=−∞
h(k)h(k − τ)

which only depends on τ and not t.
Furthermore, the limit is well defined
since
RRRRRRRRRRR

∞
∑

k=−∞
h(k)h(k − τ)

RRRRRRRRRRR
≤
¿
ÁÁÀ

∞
∑

k=−∞
h2(k)

∞
∑

k=−∞
h2(k − τ) <∞

where the first inequality is Cauchy-
Schwarz inequality and the second in-
equality follows from that the space of
square summable sequences (called `2)
is contained in the space of absolute
summable sequences (called `1). s(t) is
thus wide-sense stationary and it spec-
trum is

Φs(ω) = λ
∞
∑

τ=−∞

∞
∑

k=−∞
h(k)h(k − τ)e−iωτ

= λ
∞
∑

τ=−∞

∞
∑

k=−∞
h(k)e−iωkh(k − τ)e−iω(τ−k)

= λ
∞
∑

k=−∞
h(k)e−iωk

∞
∑

l=−∞
h(l)eiωl

= λ∣H(eiω)∣2

Φs(ω) = λ∣H(eiω)∣2

Thus the frequency domain characteristics of the signal can be mod-
elled by the filter characteristics. We now further restrict H(q).

Rational filters. A very common parametrization is to let H be a
rational function

H(z) = C(z)
D(z)

,

C(z) = c0 + c1z−1 + . . . cnc z−nc , D(z) = d0 + d1z−1 + . . . dnd z−nd

where the coefficients in C and D are real-valued. Using the funda-
mental theorem of algebra, we can then factorize H, giving

H(z) = c0

d0
znd−nc

∏nc
i=1(z − zi)
∏nd

i=1(z − pi)

where zi and pi, i = 1, . . . , n are the zeros and poles of H. The spec-
trum of s(t) is given by

Φs(eiω) = λ∣H(eiω)∣2 =
λc2

0

d2
0

∏nc
i=1(eiω − zi)(eiω − zi)

∏nd
i=1(eiω − pi)(eiω − pi)
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from which we see that we can take c0 = d0 = 1 without loss of
generality since we can obtain any scaling through the choice of the
variance λ > 0. We also see that there is no need to have poles or zeros
at the origin since the corresponding product, e.g. (eiω − zi)(eiω − zi),
is the constant 1. Next, we notice that since the coefficients in C and
D are real

∣H(eiω)∣2 = H(z)H(z−1)∣z=eiω

so let us study the factor (z − zi)(z−1 − zi) in this expression

(z − zi)(z−1 − zi) = (1− ziz
−1)(1− ziz) = z2

i (z−1
i − z−1)(z−1

i − z)
= z2

i (z − z−1
i )(z−1 − z−1

i )

but this means that by replacing the zero zi by z−1
i as zero in H gives

the same spectrum, save for a constant. Notice, however, that the
constant may be adjusted by the noise variance λ, meaning that we
can obtain the same spectrum using zi or z−1

i as zero in H. Now
if ∣zi∣ ≥ 1, ∣z−1

i ∣ ≤ 1. This means that for a certain rational spectrum
we can choose to have a zero in the unit disc or in the complement
of the interior of the unit disc. The reader may be worried that the
factor z2

i is complex if zi is a complex zero. However, complex zeros
always appear in pairs, zi and z̄i, if the coefficients of the polynomial
are real, so if perform the same operation on both zeros we obtain
the real-valued factor ∣zi∣4. As we will see later that there are good
reasons for assigning all zeros to be in the unit disc.

The same considerations apply to the poles. However, as the poles
represent singularities of the function H, which is required to be well
defined on the unit circle, they cannot have magnitude one. Thus, a
pole p outside the unit disc gives rise to exactly the same spectrum
as a pole located inside the unit circle at 1/p. However, the choice of
pole locations determine if the filter will be causal (hk = 0, k < 0), anti-
causal (hk = 0, k > 0) or non-causal. For H to be causal the poles have
to be strictly inside the unit circle so that causal expansions such as

1
z − pi

= 1
z

1
1− pi/z

= 1
z

∞
∑
k=0

pk
i z−k

are well defined on the unit circle ∣z∣ = 1. All poles strictly outside the
unit disc gives an anti-causal filter, and poles both inside and outside
the unit circle gives a non-causal filter.

Spectral factorization - Rational scalar spectra. Above we have seen that
a rational filter gives a rational spectrum. So is the converse true,
i.e. given a rational positive function on T can we realize that as
a stable causal filter with all its zeros in the unit disc? The answer
is affirmative and follows from the spectral factorization theorem,
which is a simple application of the Fejér-Riesz theorem (see Section
B.4.1).

Theorem 3.4.5 (Spectral factorization theorem - Scalar case). A pos-
itive function Φ(eiω) ≥ 0, defined for all ω ∈ [−π, π], that is rational in
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z = eiω can be factorized as

Φ(eiω) = λ∣H(eiω)∣2, H(z) = C(z)
D(z)

= 1+ c1z−1 + . . . cnc z−nc

1+ d1z−1 + . . . + dnd z−nd
(3.26)

where znc C(z) has all its zeros in the unit disc and znd D(z) all its zeros
inside the unit circle.

Furthermore, Φ(eiω) > 0, ∀ω is equivalent to that all zeros of znc C(z)
can be taken inside the unit circle.

Proof. See Appendix 3.A.

Autocorrelation functions with rational spectra. A rational spectrum
represents a structure of the spectrum so one may wonder which
structure this translates into when it comes to the akf. The answer to
this is obtained by way of the spectral factorization theorem which
implies that a rational spectrum can be seen as if the stationary pro-
cess is obtained by filtering white noise through a rational filter. Now
a rational filter has a finite-dimensional state-space representation
and from this representation we can obtain the structure of the akf.
We begin with a general result for the auto-correlation functions for
signals generated by a state-space model.

Lemma 3.4.1. Let

x(t + 1) = Ax(t + 1)+w(t), E [x(0)] = mx(0), E [x(0)xT(0)] = P(0)

y(t) = Cx(t)+ v(t), E

⎡⎢⎢⎢⎢⎣
[w(t + τ)

v(t + τ)
] [w(t)

v(t)
]

T⎤⎥⎥⎥⎥⎦
= Rδ(τ)

where w(t) and v(t) have zero mean, and where

R = [Rwv Rwv

Rvw Rvv
]

Let P(t) ∶= Rx(t, t). Then

mx(t + 1) = Amx(t)
P(t + 1) = AP(t)AT + Rww

Rx(t + τ, t) = Aτ P(t)
Ry(t, t) = CP(t)CT + Rvv

Ry(t + τ, t) = CAτ−1(AP(t)CT + Rwv), τ > 0

For the stationary case we have the following result.

Corollary 3.4.2. Adding that [xT(t) yT(t)]
T

is wide-sense stationary to
the assumptions in Lemma 3.4.1, it holds that

mx = 0

P(t) = P ∶= APAT + Rww (3.27)

Rx(τ) = Aτ P

Ry(0) = CPCT + Rvv

Ry(τ) = CAτ−1(APCT + Rwv), τ > 0
(3.28)
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The equation (3.27) is called a Lyapunov equation and has a unique
solution when F has all its eigenvalues inside the unit circle40. 40 This means that the system is stable

which is required for wide-sense sta-
tionarity.

Notice that a state-space representation of a transfer function is
not unique, but that the akf of the output is unique. Thus, regardless
of the realization (A, C, R), Ry defined by the above equations will
be the same, and the same holds for the spectrum. Let us define
D = (CPCT + Rvv)/2, and define B ∶= APCT + Rwv. Then

G(z) ∶=
∞
∑
k=1

RY(τ)z−τ +D =
∞
∑
k=1

CAτ−1Bz−τ +D = C(zI − A)−1B +D

(3.29)

and hence the spectrum for y(t) is given by

Φy(z) = G(z)+GT(z−1) (3.30)

The positive real part of a spectrum. The split (3.30) can be made for
any spectrum (3.25) by taking

G(z) = 1
2

R(0)+
∞
∑
k=1

R(k)z−k

so that

0 ≤ Φ(eiω) = G(eiω)+G(e−iω) = G(eiω)+G∗(eiω) = 2Re{G(eiω)}

For a rational spectrum, we observe that G must have the same poles
as H and therefore the order of G is the same as the order of H41 41 G is characterized in Lemma 4.3 in .

T. Söderström. Discrete-Time Stochastic
Systems. Estimation and control. Prentice-
Hall International, New York, 1994

A function G(z) satisfying Re{G(eiω)} ≥ 0 is said to be positive
real (PR). Design of spectra can thus be done indirectly by designing
positive real functions. A positive real function can also be taken as
starting point for the spectral factorization theorem.

Corollary 3.4.3. Suppose that Φ is a positive function that can be written
as

Φ(eiω) = G(eiω)+G∗(eiω) (3.31)

where G(z) is a rational function with poles strictly inside the unit circle.
Then Φ can be factored as (3.26) where H has all zeros inside the unit circle
and the same poles as G.

Proof. We refer to the reference given in the proof of Lemma 3.4.2

We will continue this discussion in the context of multivariable
spectra.

The multivariable case. With G ∈ L2, by G(q) we mean the non-causal
transfer function defined by the Fourier coefficients of G: G(q) ∶=
∑∞k=−∞ g(k)q−k, and we do the same for G ∈ H2 giving causal (or
one-sided) transfer functions G(q) = ∑∞k=0 g(k)q−k.

The idea of filtering white noise is straightforward to extend from
the scalar case to the multivariable case, but also to filtering of a
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wide-sense stationary process or a quasi-stationary process. How-
ever, so far we have ignored to exactly define what we mean with an
expression like

y(t) =
∞
∑

k=−∞
g(k)u(t − k)

when {u(t)} is a wide-sense stationary process. When only a finite
number of the impulse response coefficients are non-zero, the right-
hand side is simply a sum of random vectors and hence well defined,
but in the general case we need to define what we mean by the limit

lim
N→∞

N
∑

k=−N
g(k)u(t − k)

It would seem natural to define this as the limit for every outcome ω

in the probability space on which {u(t)} is defined, i.e.

y(t, ω) =
∞
∑

k=−∞
g(k)u(t − k, ω) (3.32)

For this expression to be meaningful we need to introduce some con-
dition on the impulse response.

Returning to the question when the filtering expression (3.32) is
meaningful when the input is a sequence of random variables, this
would work well when the system is BIBO-stable and the realization
{u(t, ω)} is bounded. However, we will often consider probabilis-
tic models of signals consisting of random variables with infinite
support, e.g. Gaussian random variables, where realizations are un-
bounded with probability 1, see Exercise 3.11. So can we still define
the limit in a meaningful way in such a case? To answer this we first
need the following definition.

Definition 3.4.5. Let {XN} be a sequence of random variables. If there
exists a set A with P(A) = 1 and

lim
N→∞

XN(ω) = 0

holds for all ω ∈ A then we say that XN converges to 0 with probability one
(w.p.1).

Alternative terminology is that XN converges to 0 almost every-
where (a.e.) or almost surely (a.s.). If XN − X tends to zero w.p.1 we
say that XN tends to X w.p.1.

Theorem 3.4.6. Let

zN(t) =
N
∑
τ=0

g(τ)v(t − τ)

where {g(τ)} is strictly stable and where

E [∣v(k)∣] ≤ C ∀k. (3.33)

Then ZN(t) converges to some random variable as N →∞ w.p.1.
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Proof. See Appendix 3.B.

Theorem 3.4.6 can be phrased in many ways. One can trade con-
ditions on the input {v(t)} for conditions on the system {g(k, )}.

Corollary 3.4.4. The conclusion of Theorem 3.4.6 remain true if {v(k)},
k ≤ t, is white noise and {gk} is strictly stable.

There are several types of convergence besides convergence w.p.1
that can be defined in probability theory. One that will be particu-
larly useful for us concerns random variables in the following class.

Definition 3.4.6. Lm
2 = Lm

2 (Ω,F , P) consists of the random vectors X
defined on (Ω,F , P), X ∶ Ω → Cm, for which E [∥X∥2

F] <∞.

We can make Lm
2 into a Hilbert space by introducing the inner

product

⟨X, Y⟩ = E [Y∗X] = ∫ Y(ω)∗X(ω)P(dω) (3.34)

so that the norm is ∥X∥2 =
√

E [X∗X]. It can be shown that

lim
n,m→∞

∥Xn −Xm∥ = 0 ⇔ ∃X ∶ ∥X∥2 <∞, lim
n→∞

∥Xn −X∥2 = 0

i.e. the criterion on the left, known as the Cauchy criterion, is equiv-
alent to convergence. This means that Ln

2 is complete. However,
we cannot distinguish two random variables in Lm

2 from each other
if the difference has square expectation zero and hence the limit X
above is only unique a.e. Uniqueness is obtained by dividing Ln

2 into
equivalence classes of random variables that are equal a.e. With this
construct Ln

2 is a Hilbert space. We thus need to keep in mind that
random variables X and Y for which E [∣X −Y∣2] = 0 are considered
to be the same. Another way of phrasing this is that when we say
that a random variable is 0, it need not be identically zero for all
outcomes but it only has to have zero variance, cf. the discussion in
Section 1.1.2.
Lm

2 can be seen as a space of functions X ∶ Ω → Rm (that we
happen to call random variables), just like Lm

2 defined in Defini-
tion 3.4.1. Comparing (3.34) with (3.17) we see that the essential
difference between Lm

2 (T) and Lm
2 is the weighting with P(dω) in the

inner-product. However, this does not change the principal proper-
ties of the spaces.

We can now talk about convergence in Lm
2 .

Definition 3.4.7. We say that a sequence {XN} of random vectors con-
verges to 0 in Lm

2 if XN ∈ Lm
2 , N = 1, 2, . . . and

∥XN∥2 → 0 as N →∞

As for convergence w.p.1, if {XN −X} converges to 0 in Lm
2 we say

that {XN} converges to X in Lm
2 .

A useful convergence condition is that a sequence in Lm
2 converges

if and only if it is a Cauchy sequence in Lm
2 since one does then not
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have to specify what the limit is. With this criterion it is easy to show
that the limit y(t) = G(q)u(t), with {u(t)} being white noise and
G(eiω) ∈ L2(T) exists as element in L2, see Exercise 3.12.

Theorem 3.4.7. Let

y(t) = G(q)u(t)

where G(q) = ∑∞k=−∞ g(k)q−k.

i) Suppose that {u(t)} is quasi-stationary process with spectrum Φu and
let G(q) have real valued impulse response {g(τ)} and be BIBO stable.
Then {y(t)} is quasi-stationary with spectrum

Φyy(eiω) = G(eiω)Φuu(eiω)G∗(eiω) (3.35)

where X∗ denotes the complex conjugate transpose of X.

ii) Suppose that {u(t)} is a wide-sense stationary process with spectral dis-
tribution function Fu. Then {y(t)} is wide-sense stationary with spectral
distribution function Fy satisfying

dFy(eiω) = G(eiω)dFu(eiω)G∗(eiω)

if and only if

∫
π

−π
G(eiω)dFy(eiω)dω <∞

In particular, if {u(t)} has spectrum Φuu, the spectrum of {y(t)} is
given by (3.35).

Proof. For i), see Appendix 2A in 42 for the scalar quasi-stationary 42 L. Ljung. System identification, Theory
for the user. System sciences series. Pren-
tice Hall, Upper Saddle River, NJ, USA,
second edition, 1999

case and for ii) see Theorem 1.1, Chapter 2 in 43 for the multivariable

43 P.E. Caines. Linear stochastic systems.
SIAM, 2018

stationary case.

Corollary 3.4.5. Suppose that {u(t)} is a wide-sense stationary process
with spectrum Φu ∈ L∞(T) and that G ∈ L∞(T). Then y(t) = G(q)u(t)
is a wide-sense stationary process with spectrum (3.35).

Proof. Theorem 1.2, Chapter 2 in 44. 44 P.E. Caines. Linear stochastic systems.
SIAM, 2018

We have seen that scalar rational spectra correspond to akfs given
by (3.28). A natural extension of rational spectra to the multivari-
able case is thus spectra which correspond to akfs with this struc-
ture. However, this structure translates into (3.30) with G(z) = C(zI −
A)−1B +D for certain matrices (A, B, C, D). We can thus see (3.30) as
a parametrization of a rational multivariable spectrum. The Positive
Real lemma establishes exact conditions on A, B, C and D for G(z)
to be positive real, and hence for Φ(eiω) to be a spectrum.

Lemma 3.4.2 (Positive Real Lemma). Given A ∈ Rn×n, B ∈ Rn×m,
M = MT ∈ R(n+m)×(n+m), with det(eiω I − A) ≠ 0 for ω ∈ R and (A, B)
controllable, the following two statements are equivalent:

i)

[(eiω I − A)−1B
I

]
∗

M [(eiω I − A)−1B
I

] ≥ 0, ∀ω ∈ R∪ {∞}
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ii) There exists a symmetric matrix P ∈ Rn × n such that

M + [P − AT PA −AT PB
−BT PA −BT PB

] ≥ 0

The corresponding equivalence for strict inequalities holds even if (A, B) is
not controllable.

Proof. See 45. 45 A. Rantzer. On the Kalman-
Yakubovich-Popov lemma. Systems &
Control Letters, 28:7–10, 1996Corollary 3.4.6. Let G(z) = C(zI − A)−1B + D where (A, B) is control-

lable. Then G is positive real if and only if there exists a real symmetric
matrix P such that

[P − AT PA CT − AT PB
C − BT PA D +DT − BT PB

] ≥ 0

Proof. Take

M = [ 0 C
CT D +DT]

in Lemma 3.4.2.

In the continuous time case, G is positive real if G(iω)+G∗(iω) ≥ 0
∀ω.

Lemma 3.4.3. Given A ∈ Rn×n, B ∈ Rn×m, M = MT ∈ R(n+m)×(n+m),
with det(iωI −A) ≠ 0 for ω ∈ R and (A, B) controllable, the following two
statements are equivalent:

i)

[(iωI − A)−1B
I

]
∗

M [(iωI − A)−1B
I

] ≥ 0, ∀ω ∈ R∪ {∞}

ii) There exists a symmetric matrix P ∈ Rn × n such that

M − [AT P + PA PB
BT P 0

] ≥ 0

The corresponding equivalence for strict inequalities holds even if (A, B) is
not controllable.

Proof. See 46. 46 J.C. Willems. Least squares stationary
optimal control and the algebraic Ric-
cati equation. IEEE Trans. Aut. Control,
16:621–634, 1971; and A. Rantzer. On
the Kalman-Yakubovich-Popov lemma.
Systems & Control Letters, 28:7–10, 1996

Corollary 3.4.7. Let G(s) = C(sI − A)−1B + D where (A, B) is control-
lable. Then G is positive real if and only if there exists a real symmetric
matrix P such that

[−PA − AT P CT − PB
C − BT P D +DT ] ≥ 0

Proof. Take

M = [ 0 C
CT D +DT]

in Lemma 3.4.3.
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Theorem 3.4.8 (Spectral factorization - Multivariable finite dimen-
sional case). Let Φ(z) be the spectrum of a stationary process given by
(3.30), with G having the structure (3.29), and assume that Φ(z) is full
rank for almost all z. Then there is a factorization

Φ(z) = H(z)ΣHT(z−1)

where H(z) is a square real rational transfer function matrix with all poles
inside the unit circle, limz→∞ H(z) = I, H−1(z) has all its poles in the unit
disc, and Σ > 0. The factorization in unique.

Proof. Theorem 4.1 in Chapter 9 in 47. 47 B. D. O. Anderson and J.B. Moore.
Optimal Filtering. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1979Remark 3.4.3. That Φ(z) is full rank for almost all z is equivalent to that

a Gaussian process with spectrum Φ cannot be generated as filtered white
noise where the covariance matrix of the driving noise has rank lower than
the dimension of the process.

The way to construct H from the positive real part of the spectrum
is given in the following corollary to Theorem 3.4.8.

Corollary 3.4.8. Let G(z) = C(zI − A)−1B +D be the positive real part of
the full rank spectrum Φ. Then H(z) and Σ in Theorem 3.4.8 are given by

H(z) = I +C(zI − A)−1K, K = −(ATCT − B)Σ−1

Σ = 2D −CTCT

where T is the solution to

T = ATAT + (ATCT − B)(2D −CTCT)−1(ATCT − B)T

The general case. We will continue to elaborate on the structure of
(wide-sense) stationary stochastic processes and their spectral factor-
ization at the end of Chapter 4, when we have acquired the necessary
tools from estimation theory.

3.4.9 Markov Processes

In its simplest form a Markov Process (MP) is described by a finite
set of states S = {s1, . . . , sns} and a matrix of transition probabilities
P ∈ Rns×ns , where the i ∶ jth element is the probability of moving
from state i to state j. To specify such a model thus corresponds to
defining an n× n matrix with elements in the interval [0, 1] such that
the row sums are 1.

The model can be generalized to allow for that P varies with time.
A further generalization is to allow for that the transition proba-
bilities at a given time depends on some external action taken at
that time. This leads to the richer class of Markov Decision Processes
(MDP).

Yet, another generalization is to model the observations of the
states. A simple approach is to consider a finite set of possible obser-
vations {o1, . . . , ono}. The model for the observations then consists of
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a matrix Po ∈ Rns×no where the ijth element is the probability of ob-
serving oj given that the state is si. This is known as a Hidden Markov
Model (HMM).

Combining an observation model and a model for the transition
probabilities including actions leads to what is known as a Partially
Observed Markov Decision Process (POMDP).

These models can be generalized to include a continuum of states
and observations. A stochastic state-space model

x(t + 1) = f (x(t), u(t), w(t))
y(t) = h(x(t), u(t), v(t))

where w and v are stochastic processes and u a user controlled vari-
able, is of this type.

3.4.10 A swatch of building blocks

Above, we have provided building blocks for constructing proba-
bilistic models. Now, a disturbance may behave significantly differ-
ent from an impulse response of a linear system. Different quantities
may also have different domains, while disturbances and impulse
responses are defined in the time domain, which is discrete for sam-
pled data systems, the static non-linearity in a mechanical system
has R as domain. Recalling that the better one can rank the actual
behaviour, the better will the model be, it is important to use dif-
ferent types of models for quantities with different characteristics.
The purpose of this section is to provide a brief swatch of commonly
used models.

Let us see what we can achieve with a Gaussian Process with zero
mean and kernel K

f (⋅) ∼ N (0, K(⋅, ⋅))

To emphasize the type of quantity we are working with we will use
the kernel notation

K( f (x), f (y)) = E [ f (x) f (y)]

Disturbances and noise. Disturbances and noise often exhibit station-
ary behaviour over time. However, they may still have different char-
acteristics in terms of how quickly they vary over time.

This type of behaviour can conveniently be modelled as a station-
ary stochastic process where a filter H is used to model the frequency
behaviour. For a disturbance (or noise) sequence {v(t)} this gives

K(v(t), v(s)) = 1
2π ∫

π

−π
∣H(eiω ∣2eiω(t−s)dω

Taking a rational filter, the zeros and poles can be tuned so that some
frequency domain characteristics are obtained. The higher the filter
order, the more degrees of freedom to tweak the behaviour there
will be. The two filters with Bode diagrams in Figure 3.3 generate
the realizations in Figure 3.4.
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Figure 3.3: Bode diagrams of two filters.
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Impulse responses of stable linear systems. An impulse response {g(t)}
for a stable finite-dimensional linear system decays exponentially,
with the rate of decay determined by the pole closest to the unit
circle. The stable spline kernel

K(g(t), g(s)) = η1 η
min(t,s)
2 , ∣η2∣ < 1

models this type of non-stationary behaviour. Two features are mod-
elled: i) the impulse response decays over time since ∣η2∣ < 1, and ii)
the response at one point in time is correlated with the response at
other time instances in the same way as the response decays, through
the use of min(t, s. Figure 3.5 shows realizations for two different
values of η2.
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Figure 3.5: Realizations from the GP
with the stable spline kernel with η2 =
0.7 and η2 = 0.9, where the latter leads
to slower decay. An offset of 3 has been
provided to the former to help visibility.

Gaussian kernel. A Gaussian kernel is often used when modeling a
non-linear function f ∶ R→ R

K( f (x), f (y)) = η1 e−
∣x−y∣2

2η2 , η1 > 0, η2 > 0

This means that the correlations between function values decreases
exponentially with the squared distance between the points. Figure
3.6 illustrates this.

3.5 Summary

3.6 Exercises

3.1. Let ξ̂MAP(z) and ξ̂PM(z) be the MAP and PM estimators of ξ.
Let γ = γ(ξ) be a function of the model parameters.

a. Define the maximum a posteriori estimate of γ as

γ̂MAP(z) = arg max
γ

p(γ, z)

Show by counterexample that γ̂MAP(z) ≠ γ(ξ̂MAP(z)) may hold.
Show also that when γ is injective (one-to-one) equality holds.
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Figure 3.6: Realizations from the GP
with a Gaussian kernel with η2 = 1 and
η2 = 10. An offset of 5 has been added
to the latter to help visibility.

b. Define the posterior mean of γ(ξ) as

γ̄ = ∫ γp(γ∣z)dγ

Show that this is the same estimator of γ as (3.3).

3.2. Let p(ξ, z) be the joint pdf for the model parameters ξ and the
observations z, and let ξ̂MAP and ξ̂PM be the MAP and PM esti-
mators of ξ, respectively. Suppose now that q = f (z), where f is
one-to-one, is used as observations instead.

a. Determine the MAP estimator of ξ.

b. Determine the PM estimator of ξ.

3.3. Consider the state-space model

x(t + 1) = A(θ)x(t)+w(t), x(0) = 0

y = C(θ)x(t)+ v(t)
(3.36)

where {w(t)} and {v(t)} are i.i.d. sequences of normal distributed
random variables with zero mean and covariance I.

a. Show that the relation between y ∶= [yT(1) . . . yT(N)]
T

, x ∶=

[xT(1) . . . xT(N)]
T

and v ∶= [vT(1) . . . vT(N)]
T

can be
expressed as

y = H(θ)x + v, x ∼ N (0, Rx(θ)), v ∈ N (0, I)

for suitable choice of matrices H(θ) and Rx(θ).

b. Determine the covariance matrix Ry(θ) for y.

c. Determine the negative log-likelihood function when y is the
observed variable.

d. Let R be a square non-singular matrix with matrix square root
R1/2. Determine the negative log-likelihood function when R−1/2y
is considered as the observation. Is it the same as in 3.3.c?

e. Determine the negative log-likelihood function when R−1/2
y (θ)y

is considered as the observation. Is it the same as in 3.3.c?
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f. Compare the results in 3.3.d and 3.3.e.

g. Let Ry(θ) = L(θ)D(θ)LT(θ) be the unique LDL-decomposition
of Ry(θ), i.e. L is lower unit48 triangular and D positive definite 48 meaning that it has all ones on the di-

agonal.diagonal. What is the negative log-likelihood function when
the observation is considered to be L−1(θ)y? Is it the same
as in 3.3.c? Compare this result with that in 3.3.e. What is
the negative log-likelihood when the observation is taken as
L−1(θ)D−1/2(θ)y?

h. What can you conclude from the above in regards to how pa-
rameter dependent transformations change the likelihood func-
tion?

i. Determine the smoothed estimate, xs say, of x given y.

j. In view of (3.36), it may seem reasonable to construct an estima-
tor such that the difference between y(t) and C(θ)xs(t), where
xs(t) is the smoothed estimate of x(t), is small for t = 1, . . . , N.
Argue that this corresponds to basing the estimator on the
difference y −H(θ)xs. What is the negative log-likelihood for
y −H(θ)xs? Is it the same as in 3.3.c?

Study also the special case where Rx does not depend on θ

and where H(θ) = θ ∈ R. Which θ maximizes the likelihood of
y −H(θ)xs? Does it seem to be a useful estimator?

k. Also, in view of (3.36), it may seem reasonable to construct
an estimator such that not only the difference between y(t)
and C(θ)xs(t) is small but also the one between xs(t + 1) and
F(θ)xs(t). Argue that this corresponds to basing the estimator
on

⎡⎢⎢⎢⎢⎣

y −H(θ)xs

R−1/2
x (θ)xs

⎤⎥⎥⎥⎥⎦

What is the negative log-likelihood for this quantity. Consider the
same special case as in 3.3.j. Does the estimator maximizing the
likelihood function appear reasonable?

3.4. Suppose that the model of interest is the nonlinear in the pa-
rameters model

zN = g(θ)+ vN

where g ∶ Rn → RN is a known nonlinear function, where θ ∈
Rn and where vN is assumed to be a random vector with i.i.d.
distributed elements being N (0, 1).

Let a simplified (linear in the parameters) model be

zN = Tθ̃+ vN

where θ̃ ∈ Rm.

a. Determine the ML-estimator of θ̃.

b. Formulate an indirect inference estimator of θ based on the
estimator in a. and the cost function (3.7).



124 learning dynamic systems - system identification 20/20

c. Suppose that the weighting matrix is taken as W = TTT. Inter-
pret the effect this choice has on the estimator.

3.5. Suppose that (3.9) holds. Show that then ŷ(t∣t − 1; θ) minimizes
the MSE

E [∣y(t)− f (yt−1)∣2]

among all functions of yt−1.

3.6. Suppose that we have two samples of a Moving Average (MA)
process:

y(1) = w(1)+w(0)
y(2) = w(2)+w(0)

a. Suppose that {w(t)} are i.i.d. N (0, 1). Determine the posterior
mean of y(2) given y(1), E [y(2)∣y(1)]. Show that the error
y(2)−E [y(2)∣y(1)] is independent of y(1).

b. Suppose that {w(t)} are i.i.d. random variables taking the
values ± with equal probability. Compute the posterior mean
E [y(2)∣y(1)]. Is the error y(2) −E [y(2)∣y(1)] independent of
y(1)?

3.7. Consider the model

M(ξ) = f (θ)+ v, ξ = [θ

v
]

and suppose that the data has been generated by

z = f (θo)+ vo,

a. Suppose that θ̂ is obtained by solving the minimization prob-
lem

θ̂ = arg min
θ

J(z − f (θ))

Suppose that the criterion J is such that the solution θ̂ ≈ θo.
Show that then

θo − θ̂ ≈ − ( f ′(θo)T J′′(vo) f ′(θo))
−1

f ′(θo)T J′(vo)

b. Use 3.7.a to show that

J′′(vo)1/2 ( f (θo)− f (θ̂))

≈ −J′′(vo)1/2 f ′(θo) ( f ′(θo)T J′′(vo) f ′(θo))
−1

(J′′(vo)1/2 f ′(θo))
T

J′′(vo)−1/2 J′(vo)

Interpret this result in terms of an orthogonal projection.

c. Use 3.7.b to show that49 49 ∣x∣2Q = xTQx.

∣ f (θo)− f (θ̂)∣J′′(vo) ≈ ∣S J′′(vo)−1/2 J′(vo)∣2

where S is the nθ-dimensional subspace spanned by the columns
of J′′(vo)1/2 f ′(θ̂), and where Svo denotes the orthogonal pro-
jection of vo on the subspace S .
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d. Consider now that θ = [θ̃
T 0]

T
. Compare the model fit, using

∣ f (θo)− f (θ̂)∣J′′(vo)

as criterion, for the two cases when i) the entire vector θ is
estimated and, ii) only estimating θ̃ (assuming it known that
the last element is zero). Conclude that overfitting occurs under
general conditions when the model parameters are estimated
by solving an optimization problem.

3.8. Let f ∶ Rm → Rn and A ∶ Rm → Rn×n. Show that

∣∫ A(x) f (x)dx∣
2
≤ ∫ ∥A(x)∥2

Fdx∫ ∣ f (x)∣2dx

3.9. Show that a positive definite function K(s, t), i.e. a function
satisfying (3.15), has to be symmetric: K(t, s) = KT(s, t).

3.10. Show that a spectrum Φ is symmetric, i.e. Φ(−ω) = ΦT(ω).
Conclude that Φ∗(ω) = Φ(ω) i.e. that Φ(ω) is Hermitian.

3.11. Let {X(n)}∞n=1 be a sequence of independent random variables
which have distributions with unbounded support so that

P(∣X(n)∣ ≥ c) = p(c) > 0, ∀c > 0

Use Corollary D.2.1 to show that {X(n)}∞n=1 is unbounded with
probability 1.

3.12. Use the Cauchy criterion to show that

y(t) = G(q)u(t) =
∞
∑

k=−∞
g(k)u(t − k)

exists as a limit in L2 when {e(t)} is white noise.
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3.A Proof of the scalar spectral factorization theorem - Theo-
rem 3.4.5

The function Φ being rational in eiω means that

Φ(ω) = c eiωτ ∏
nz
k=1(eiω − zk)

∏
np
k=1(eiω − pk)

where there are no cancellations, where zk ≠ 0, k = 1, . . . , nz and
pk ≠ 0, k = 1, . . . , np, and where the factor eωτ corresponds to zeros of
the numerator or denominator at the origin50 but Φ being positive 50 τ > 0 corresponds to τ zeros of the

numerator at the origin, whereas τ < 0,
corresponds to −τ zeros of the denomi-
nator at the origin.

means that for all ω it has to hold

1 = Φ(ω)
Φ(ω)

= eiω2τ ∏
nz
k=1(eiω − zk)

∏nz
k=1(e−iω − zk)

∏
np
k=1(e−iω − pk)

∏
np
k=1(eiω − pk)

= (−1)np−nz eiω(2τ+nz−np) ∏
np
k=1 pk

∏nz
k=1 zk

∏nc
k=1(eiω − zk)

∏nc
k=1(eiω − z−1

k )
∏

np
k=1(eiω − p−1

k )

∏
np
k=1(eiω − pk)

For this function to be constant all factors need to cancel out. Firstly,
2τ = np − nz. Secondly, since the numerator zeros are distinct from
the denominator zeros the canellations have to take place within the
rational functions

∏nz
k=1(eiω − zk)

∏nz
k=1(eiω − z−1

k )
and

∏
np
k=1(eiω − p−1

k )

∏
np
k=1(eiω − pk)

This means that for each numerator zero zi there has to be another
numerator zero zk such that z−1

k = zi, and similarly for the denomina-
tor zeros. Thus, the denominator degree is even as the poles have to
appear pairwise. Assuming the zeros are sorted so those inside the
unit circle are pk, k = 1, . . . , np/2, gives the denominator

np/2

∏
k=1

(eiω − pk)(eiω − p−1
k ) = (−1)np/2eiωnp/2

np/2

∏
k=1

p−1
k D(eiω)D(eiω)

where D(z) =∏
np/2
k=1 (z− pk). We could do the same for the numerator,

was it not for that the argument above is not valid for zeros at 1 as
such factors cancel without a sibling. However, if we exclude all
zeros at 1, say that the last m zeros znz−m+1, . . . , znz are located at 1,
the same argument as for the denominator gives that the numerator
can be written

(−1)(nz−m)/2eiω(nz−m)/2
(nz−m)/2

∏
k=1

z−1
k F(eiω)F(eiω) (eiω − 1)m

where F(z) = ∏(nz−m)/2
k=1 (z − zk), contains the zeros inside the unit

circle. This gives that

Φ(ω) = eiω(τ−nz+np−m)/2 ∣F(eiω)∣2

∣D(eiω)∣2
(eiω − 1)m

= c̃
∣F(eiω)∣2

∣D(eiω)∣2
e−iωm/2(eiω − 1)m
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where c̃ = c(−1)(nz−m−np)/2∏(nz−m)/2
k=1 z−1

k /∏
np/2
k=1 p−1

k . For this to be
real-valued we need e−iωm/2(eiω − 1)m to be real valued, but

e−iωm/2(eiω − 1)m = (eiω/2 − e−iω/2)m = im sinm (ωm
2

)

and hence m needs to be even. We can thus define C(z) = F(z)(z −
1)m/2 and conclude that Φ must be of the form

Φ(ω) = c̃
∣C(eiω)∣2

∣D(eiω)∣2

where C(z) and D(z) are polynomials with their zeros in the unit
disc and inside the unit circle, respectively.

3.B Proof of Theorem 3.4.6

We have ∣zN(t)∣ ≤ η(N) where

η(N) =
N
∑
τ=0

∣g(τ)∣∣v(t − τ)∣

Hence, if we can prove that {η(N)} converges with probability one,
the theorem follows from Stone-Weierstrass’ theorem, see for exam-
ple Theorem 7.10 p. 148

51. Let ε > 0 be arbitrary and M > N. Then 51 W. Rudin. Principles of Mathematical
Analysis. McGraw-Hill, London, 1976

P(∣η(M)− η(N)∣ ≥ ε) ≤ 1
ε

M
∑

τ=N+1
∣g(τ)∣E [∣v(t − τ)∣] ≤ C

ε

∞
∑

τ=N+1
∣g(τ)∣

(3.37)

where we first have used Chebyshev’s inequality and in the second
inequality (3.33). Hence

∞
∑
N=1

sup
M>N

P(∣η(M)− η(N)∣ ≥ ε) < C
ε

∞
∑
N=1

∞
∑

τ=N+1
∣g(τ)∣ = C

ε

∞
∑
k=2

(k − 1)∣g(k)∣ <∞

and the Cauchy version of Borel-Cantelli’s lemma, Corollary D.2.1,
implies that {η(N)} converges almost surely.

For Corollary 3.4.4, Chebyshev’s inequality, Lemma D.2.2, with
ϕ(x) = x2 and using that the input is white gives

P(∣η(M)− η(N)∣ ≥ ε) ≤ 1
ε2 C

∞
∑

τ=N+1
∣g(τ)∣2 ∀M > N

and the proposition in Theorem 3.4.6 is true if

∞
∑
N=1

∞
∑

τ=N+1
∣g(τ)∣2 =

∞
∑
k=2

(k − 1)∣g(k)∣2 <∞.





4
Estimation Theory

This chapter treats more formally the problem of estimating model-
parameters from observations. Recall that in the formalism of Chap-
ter 3 model parameters ξN are random variables, and hence, under
our measurement model (3.1), the observation zN is the realization
of a random variable, which we denote Z. We will thus discuss the
inference problem of estimating one random vector given an obser-
vation of another random vector.

We can quantify the properties of an estimator in terms of its pdf.
Generally, a good estimator has a distribution peaked around the
quantity of interest. A quality measure for an estimator is called
a risk function, and a commonly used risk function is the Mean-
Square Error (MSE). With ξ denoting the model parameter and ξ̂(Z)
its estimator, the MSE is defined as

MSE [ξ̂(Z)] ∶= E [(ξ̂(Z)− ξ)(ξ̂(Z)− ξ)T]

which is small for a good estimator. Notice that the MSE is a matrix
when n > 1 in which case the trace of the quantity above is what one
would normally call the MSE.

4.1 Information contents in random signals

We start this chapter with some general considerations regarding
information in observations of random variables.

4.1.1 Information contents in events

Consider two events A and B. When the sample space is restricted
to A, i.e. whenever an outome occurs that is not in A it is discarded,
the probability of the event B changes. The probability that both A
and B occurs is P(A ∩ B) and the probability that we will have A is
P(A) which gives then that the probability of B occuring when A has
occured is

P(B∣A) = P(A ∩ B)
P(A)

(4.1)

provided P(A) > 0.
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When the probability of B does not change if we are given that A
has occured, i.e.

P(B∣A) = P(B),

we say that the events are independent.
We can express the conditional P(B∣A) using P(A∣B)

P(B∣A) = P(A ∩ B)
P(A)

= P(A∣B)P(B)
P(A)

This is Bayes rule from which we see that if A and B are independent
(according to the definition above)

P(A∣B) = P(A)

From (4.1) we have see that see that when P(A) > 0, independence is
equivalent to

P(A ∩ B) = P(A)P(B∣A) = P(A)P(B)

This relation relation is typically taken as the definition of indepen-
dence of events.

4.1.2 Information Contents in Random Variables

Let (Ω,F , P) be the probability space in which our probabilistic model
is defined. We will be interested in the information contained in an
observation of a random variable Y, i.e. what information does the
outcome Y(ω) carry? It is obvious that we can determine if the event
(3.11) has occured or not and in fact we can determine if events of
the type {ω ∶ Y(ω) ∈ B}, where B is a Borel set, has occured or not.
It turns out that the events we can determine if they have occured or
not are exactly those belonging to the σ-algebra generated by Y,

σ(Y) ∶= σ ({ω ∶ Y(ω) ∈ B, B ∈ B}) ,

The σ-algebra σ(Y) thus represents the events whose occurence we
can determine by observing Y. σ(Y) is a sub σ-algebra to F , i.e. if
A ∈ σ(Y), then A ∈ F . This means that there are typically events in F
which we cannot determine if they have occured or not by observing
Y. For example, suppose that there is another real valued random
variable X. From the knowledge of Y we then only get partial infor-
mation about X, i.e. we typically cannot determine the occurence of
all events in σ(X). So what can be said in such a case? Consider that
we only know that Y ∈ BY and that P(Y ∈Y) > 0. What can we then
say about the probability that X ∈ BX? Well, from Section 4.1.1 we
have that the probability changes to

PX∣Y(BX ∣BY) ∶= P(X ∈ BX ∩Y ∈ BY)
P(Y ∈ BY)

(4.2)

For each fix BY such that the denominator is positive, this is a prob-
ability measure over (Ω, σ(X)). In the context of estimation we will
call this the conditional distribution function of X.



estimation theory 131

For example

PX∣Y(BX ∣y) =
P(X ∈ BX ∩Y = y)

P(Y = y)
(4.3)

would give the probability of different events related for X when
Y = y is observed.

Example 4.1. Suppose that X is Bernouilli distributed with equal proba-
bilities for taking the values 0 and 1 and suppose that Y takes the values
−1, 0, 2, and that the joint distribution of X, Y is given by

x y P(X = x, Y = y)
-1 -1 1/8
1 -1 2/8
-1 0 3/8
1 2 2/8

This gives

x y PX∣Y(X = x∣Y = y)

-1 -1 P(X=−1,Y=−1)
P(Y=−1) =

1
8

1
8+

2
8
= 1

3

1 -1 P(X=1,Y=−1)
P(Y=−1) =

2
8

1
8+

2
8
= 2

3

-1 0 P(X=−1,Y=0)
P(Y=−1) =

3
8
3
8
= 1

1 2 P(X=1,Y=2)
P(Y=−1) =

2
8
2
8
= 1

However, there is a technical problem with (4.3), namely that it is
not well defined when P(Y = y) = 0. For full generality we there-
fore need a more abstract definition of the conditional probability
distribution function. What we would like is that PX∣Y(BX ∣y) is a
function such that when we integrate it with respect to y over a re-
gion BY, taking the probability measure for Y into account, we obtain
P(X ∈ BX ∩Y ∈ BY)

∫
Y∈BY

PX∣Y(BX ∣Y(ω))P(dω) = P(X ∈ BX ∩Y ∈ BY) (4.4)

As noted above, in addition to (4.4) we also need that PX∣Y(BX ∣BY)
is a probability measure on σ(X) for any fix BY. Fortunately it can
be shown that there exists a function satisfying these requirements,
however it is beyond this exposition to show this.

The expectation of the conditional distribution for X given Y = y
is given by

∫
Ω

X(ω)PX∣Y(X(dω)∣y)

cf. (3.13). We can also define the conditional expectation of X given
Y as

E [X∣Y] (ω) = ∫
Ω

X(ω̄)PX∣Y(X(dω̄)∣Y(ω)) (4.5)
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This is a random variable which on the event Y = y has as outcome
the mean of the conditional distribution for this observation of Y.

This random variable has the same expectation as X

E [E [X∣Y]] = ∫
Ω

E [X∣Y] (ω)P(dω) = ∫
Ω
∫

Ω
X(ω̄)PX∣Y(X(dω̄)∣Y(ω))P(dω)

= ∫
Ω

X(ω̄)∫
Ω

PX∣Y(X(dω̄)∣Y(ω))P(dω)

= ∫
Ω

X(ω̄)P ({ω ∶ X(ω) ∈ X(dω̄)}∩ (Y ∈ Ω))

= ∫
Ω

X(ω̄)P(dω̄) = E [X]

Example 4.2 (Example 4.1 continued). The conditional mean is given by

E [X∣Y = −1] = −1×PX∣Y(X = −1∣Y = 1)+ 1×PX∣Y(X = 1∣Y = 1) = −1× 1
3
+ 1× 2

3
= 1

3
E [X∣Y = 0] = −1×PX∣Y(X = −1∣Y = 0)+ 1×PX∣Y(X = 1∣Y = 0) = −1× 1+ 0 = −1

E [X∣Y = 2] = −1×PX∣Y(X = −1∣Y = 2)+ 1×PX∣Y(X = 1∣Y = 2) = 0+ 1× 1 = 1

Example 4.3. In the case where the probability distributions of X and Y can
be represented by the joint probability distribution function (pdf) p(x, y),
the conditional distribution function of X given Y can be expressed in terms
of the conditional pdf (cpdf)

pX∣Y(x∣y) =
⎧⎪⎪⎨⎪⎪⎩

pX,Y(x,y)
pY(y) p(y) > 0

0 pY(y) = 0

where pY(y) is the marginal pdf

pY(y) = ∫ pY(x, y)dx

The conditional expectation can the be expressed as

E [X∣Y] = ∫
∞

−∞
xpX∣Y(x∣Y)dx

4.1.3 Independent Random Variables

So when does one random variable Y not contain any information
about another random variable X? It is when the probability of any
event in σ(X) does not change when we observe an event in σ(Y),
i.e. when

PX∣Y(BX ∣BY) = P(X ∈ BX ∩Y ∈ BY)
P(Y ∈ BY)

= P(X ∈ BX) (4.6)

i.e. when

P(X ∈ BX ∩Y ∈ BY) = P(X ∈ BX)P(Y ∈ BY) ∀BX ∈ σ(X), BY ∈ σ(Y)
(4.7)

Since the sub-σ-algebras σ(X) and σ(Y) are generated by sets of the
type {ω ∶ X(ω) < c} it is sufficient to prove that (4.6) holds for all
sets of this type. In this case the conditional probability is given by

PX∣Y(BX ∣y) = P(X ∈ BX)
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We conclude that when (4.7) holds, Y does not carry any information
about X. We then say that X and Y are independent. When X, Y have
a joint pdf pX, Y(x, y), X and Y are independent if and only if

pX,Y(x, y) = pX(x)pY(y), ∀x, y

A consequence of independence is that

E [X∣Y] (ω) = ∫
Ω

X(ω̄)dPX∣Y(ω̄∣Y(ω)) = ∫
Ω

X(ω̄)dP(ω̄) = E [X] a.e.

4.2 Estimation of random variables

4.2.1 Minimizing the Mean-Square Error

Let X be a random vector defined on a probability space (Ω, , P).
Suppose that we would like to estimate X, i.e. provide a guess x̂.
One possible quality measure is the mean-square error

MSE [x̂] = E [∣X − x̂∣2]

The MSE can be split in two terms

MSE [x̂] = E [∣X −E [X] ∣2]+ ∣E [X]− x̂∣2 (4.8)

The first term is called the variance error (it is simply the variance
of X) and the second term the bias (systematic) error. We see that
here the variance error is something we cannot influence while we
can eliminate the bias error by taking x̂ = x̂∗ ∶= E [X]. This gives the
minimimum mean-square error (MMSE)

MMSE ∶= MSE [x̂∗] = E [∣X −E [X] ∣2] = E [X2]−E2[X] ≤ MSE [x̂] , ∀x̂

Suppose now that we are given the information that another random
vector Y, defined on the same probability space, has taken the value
y. Can we then improve our estimate of X? Well, now the proba-
bility distribution for X has changed to the conditional distribution
PX∣Y(X ∈ BX ∣Y = y) so the MSE is now given by

MSE [x̂∣Y = y] = E [∣X − x̂∣2∣Y = y]

However, we can expand this expression into a variance term and a
bias term just as in (4.8)

MSE [x̂∣Y = y] = E [∣X −E [X∣Y = y] ∣2∣Y = y]+ ∣E [X∣Y = y]− x̂∣2 (4.9)

which again is minimized by taking x̂ to be the mean of X, but now
the conditional mean E [X∣Y = y]. This means that the optimal x̂
now will depend on the observation y: x̂ = x̂∗(y) = E [X∣Y = y]. The
minimum MSE is now a function of y and given by

MMSE(y) = MSE [x̂∗(y)∣Y = y] = E [∣X −E [X∣Y = y] ∣2∣Y = y]

= E [X2∣Y = y]−E2[X∣Y = y] (4.10)
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We would expect that our observation should improve the quality of
the estimate, i.e. that

MMSE(y) < MMSE(E [X])

but is this true, and, if so, how much better is x̂(y) than x̂? To
examine this we re-write the MSE as

MSE [x̂] = E [∣X − x̂∣2] = EY [E [∣X − x̂∣2∣Y]] = ∫ E [∣X − x̂∣2∣Y = y] pY(y)dy

= ∫ MSE [x̂∣Y = y] pY(y)dy (4.11)

Thus, while x̂∗ ∶= E [X] minimizes this integral expression, x̂∗(y) ∶=
E [X∣Y = y] minimizes the integrand at the point y so clearly

MSE [E [X∣Y = y] ∣Y = y] ≤ MSE [E [X] ∣Y = y]

Furthermore, we observe that when X and Y are independent we
have equality since conditioning on Y then does not change the dis-
tribution of X.

We now pose the question how to estimate X from an arbitrary
observation of Y. We will then allow x̂ to be a function of Y, x̂ = x̂(Y).
We notice that the decomposition (4.11) is still valid in this case and
that taking x̂(Y) = x̂∗(Y) = E [X∣Y] will for each Y = y minimize the
integrand, and hence minimize the MSE. Taking the expectation of
(4.10) gives

MMSE = MSE [E [X∣Y]] = E [X2]−E [E2[X∣Y]] (4.12)

which is the minimum MSE that can be achieved if x̂ is allowed to
be a function of Y, and which is achieved by taking x̂(Y) = E [X∣Y].

4.2.2 The Internal Structure of the Conditional Expectation∗

Above, we have seen that the conditional expection of X given the
observed variable Y gives the MMSE estimator. In this section we
will try to understand a little bit better why this is the case.

In general terms estimating a random variable X from another
random variable Y means how well we can mimick the behaviour
of X using Y. Now X is defined by its probability distribution over
arbitrary sets in F . In fact suppose that there is another random
variable Z such that

∫
A

Z(ω)P(dω) = ∫
A

X(ω)P(dω) ∀A ∈ σ(X) (4.13)

Then it follows that Z = X except possibly on a set of measure zero.
To see this suppose that Z ≠ X on a set A ∈ σ(X) for which P(A) >
0. Then we can take the subset on A either for which Z > X or
Z < X, whichever has non-zero measure. This subset also belong to
σ(X) and clearly the two integrals above cannot be the same then.
Hence we can take the set of pairs {{A ∈ σ(A), ∫A X(ω)P(dω)}} as
definition of a random variable.

So a natural question is if we can use our observed variable Y to
construct a new random variable Z = Z(Y) which has a probability
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distribution as close as possible to the above. Since Z is a function of
Y we can only try to match (4.13) for events A ∈ σ(Y), i.e. we can try
to find Z such that

∫
A

Z((Y(ω))P(dω) = ∫
A

X(ω)P(dω) ∀A ∈ σ(Y) (4.14)

It is far from obvious that there is such a function and that, if so, it is
a measurable function so that Z is a random variable so let us study
a couple of examples.

Example 4.4 (Example 4.2 continued). In this example, the sets of σ(Y)
are Y = −1, Y = 0, Y = 2, and unions of these. For example

∫
Y=−1

X(ω)P(dω) = −1×P(X = −1, Y = −1)+ 1×P(X = 1, Y = −1) = −1× 1
8
+ 1× 2

8
= 1

8

whereas

∫
Y=−1

E [X∣Y] (ω)P(dω) = E [X∣Y = −1]P(Y = −1) = 1
3
× 3

8
= 1

8

showing that E [X∣Y] (ω) has the same mean as X over the event Y = −1.
The same can be shown for the other sets of σ(Y).

Example 4.5. Suppose that X(ω) = 1 for ω ∈ AX and zero otherwise.
Similarly Y(ω) = 1 for ω ∈ AY and zero otherwise. Let BX = {X(ω) ∶ ω ∈
AX} and BY = {Y(ω) ∶ ω ∈ AY}.

Then σ(Y) = {0, AY, Ac
Y, Ω} and Z has to be constant on AY (and Ac

Y).
Let us call this value z. In order to satisfy (4.14) we need

∫
AY

ZdP = ∫
AY

XdP = P(AX ∩ AY)

but since Z is constant, Z = z, on AY

∫
AY

ZdP = zP(AY)

we have

z = P(AX ∩ AY)
P(AY)

= P(X ∈ BX ∩Y ∈ BY)
PY ∈ BY)

= PX∣Y(BX ∣BY)

Repeating these calculations for the event Bc
Y gives that Z should take the

value P(BX ∣Bc
Y) on this set. We thus have

Z = { PX∣Y(BX ∣BY) Y ∈ BY

PX∣Y(BX ∣Bc
Y) Y ∈ Bc

Y

Consider now the conditional expectation (4.5)

E [X∣Y] (ω) = ∫
Ω

X(ω̄)PX∣Y(X(dω̄)∣Y(ω))

For Y(ω) ∈ BY this evaluates to PX∣Y(BX ∣BY) and for Y(ω) ∈ Bc
Y to

PX∣Y(BX ∣Bc
Y). Thus Z coincides with the conditional expectation E [X∣Y].
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The preceeding two examples suggests that the conditional ex-
pectation E [X∣Y] satisfies (4.14) and this is indeed true. We will not
prove this in full generality but restrain ourselves to the simple case
that X = 1BX , generalizing Example 4.5. Then

∫
Y∈BY

X(ω)P(dω) = P(X ∈ BX ∩Y ∈ BY)

while

∫
Y∈BY

E [X∣Y] (ω)P(dω) = ∫
Y∈BY

∫
Ω

X(ω̄)PX∣Y(dω̄∣Y(ω))P(dω)

=∫
Y∈BY

PX∣Y(BX ∣Y(ω))P(dω) = P(X ∈ BX ∩Y ∈ BY)

The general result is obtained by a constructive procedure where X
is built up as a limit of indicator functions.

The condition (4.14) can be taken as a definition of the conditional
expectation. From this we realize that the conditional expectation is
not unique: If Z satisfies (4.14) we can change it on a subset of Ω
of measure zero, i.e. for which the probability measure P is zero,
and still maintain (4.14). We say that the conditional expectation is
uniquely defined a.e. (almost everywhere).

Suppose now that X = f (Y) where f is a measurable function.
Then we see immediately that Z = X = f (Y) satisfies (4.14), i.e.

E [ f (Y)∣Y] = f (Y) a.e.

More generally we see that when X = VW where V ∈ σ(Y) and W is
another random variable,

E [X∣Y] = E [VW∣Y] = VE [W∣Y] a.e., ∀V ∈ σ(Y) (4.15)

4.2.3 A Hilbert space interpretation

By embedding the estimation problem in a Hilbert space setting we
will be able to handle a wide range of estimation problems. There-
fore, let (Ω,F , P) be a probability space and let L2 be the Hilbert
space defined in Definition 3.4.6 with m = 1 (for a start).

Consider now that we would like to use a random variable Y to
estimate another random variable X in MMSE sense. We notice that

MSE [g(Y)] = ∥X − g(Y)∥2
2

To approach the problem of minimizing this quantity we form the
subspace S(Y) consisting of all elements Z in L2 for which the σ-
algebra generated by the corresponding random variable, let us call
it σ(Z), is a subset of σ(Y). This essentially means the subspace of
all measurable functions of Y which have bounded second moment.

From the Hilbert space theory (Appendix C) we then know that
there is a unique element in S(Y) solving

min
Z∈S(Y)

∥X − Z∥2 (4.16)
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and that this element is uniquely determined by the orthogonality
conditition

⟨X − Z, W⟩ = 0 ∀W ∈ S(Y) (4.17)

in other words Z should be the orthogonal projection of X on S(Y).
We observe that S(Y) is infinite dimensional so it does not seem
trivial to find the projection. However, spurred by the results in
Section 4.2.1 let us take E [X∣Y] as candidate. We have for any W ∈
S(Y)

⟨X −E [X∣Y] , W⟩ = E [(X −E [X∣Y])W]
= E [XW]−E [WE [X∣Y]] = E [XW]−E [E [WX∣Y]]
= E [XW]−E [WX] = 0 (4.18)

where the third equality follows from (4.15). We have thus proved
that the conditional expectation is the orthogonal projection of X on
S(Y) which we write as

E [X∣Y] = X∥S(Y) (4.19)

A rather remarkable result considering that S(Y) is infinite dimen-
sional.

We recoqnize (4.12) as Pythagoras relation

∥X −X∥S(Y)∥2 = ∥X∥2 − ∥X∥S(Y)∥2 (4.20)

We can extend the setting to the case where both X and Y are
m-dimensional random vectors by considering the space Lm

2 . Then
E [X∣Y] is a vector of the conditional expectations E [X(i)∣Y] and each
element of X−E [X∣Y] is orthogonal to all measurable functions of Y
that have bounded second moments. We can then extend Pythagoras
relation (4.20) to a matrix equality1 1 See notations.

⌊X −X∥S(Y), (X −X∥S(Y))T⌋ = [X, X]− [X∥S(Y), X∥S(Y)] (4.21)

Using that E [X∥S(Y)] = E [X] (recall that the conditional mean has
the same mean as the random variable itself), we can re-write this as

Cov{X −X∥S(Y)} = Cov{X}−Cov{X∥S(Y)} (4.22)

It follows that

Cov{X − X̂(Y)} ≥ Cov{X −X∥S(Y)} (4.23)

for any (measurable) estimator X̂(Y) with equality iff X̂(Y) = X∥S(Y) =
E [X∣Y] a.e.

4.2.4 Linear Estimators

It is not always easy to compute the conditional mean, and also the
entire joint distribution of X, Y may not be known. It may therefore
be attractive to project on other subspaces than S(Y). The derivations
in the preceeding section still hold. However, (4.22) holds only if
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the subspace is such that the projection has the same mean as the
estimated variable.

Consider estimating the random variable X ∈ R from the random
vector Y ∈ RN , Sacrificing accuracy, an estimator simpler to compute
requiring only second order moments is the linear estimator

X̂ = LY

To solve this case we let SL(Y) be the subspace SL(Y) = Span{Y(1), . . . , Y(n)}.
Since this is a finite dimensional subspace spanned by Y(1), . . . , Y(n)
it is sufficient that the orthogonality condition (4.17) holds for W =
Y(1), . . . , Y(n)

⟨X − LY, Y(k)⟩ = 0 k = 1, . . . , n (4.24)

which, using (C.9), can be written

L⌊Y, YT⌋ = ⌊X, YT⌋ (4.25)

i.e. the orthogonal projection is given by

X∥SL(Y) = ⌊X, YT⌋⌊Y, YT⌋−1Y (4.26)

We call X∥SL(Y) the optimal linear estimator (OLE) of X given Y.
The OLE only depends on the second order properties of X, Y. Since
SL(Y) ⊂ S(Y) it follows that

∥X −X∥S(Y)∥2 ≤ ∥X −X∥SL(Y)∥2

Unless the means of X and Y are zero, the OLE may be biased.
A simple way to improve the estimator is then to extend Y with a
constant element, we denote the resulting subspace SLe(Y). This is
equivalent to adding a constant term to the OLE. Adjusting this term
such that the mean of the OLE is the same as the mean of X gives the
smallest MSE2. The simplest way to do this is to construct the OLE 2 Why?

for X −E [X] given Y −E [Y] and then to add E [X] to the estimator:

X∥SLe(Y) =

⌊X −E [X] , (Y −E [Y])T⌋⌊Y −E [Y] , (Y −E [Y])T⌋−1(Y −E [Y])+E [X]

The OLE can be more compactly expressed as

X∥SLe(Y) = Cov{X, Y}Cov−1 {Y} (Y −E [Y])+E [X] (4.27)

which has covariance

Cov{X∥SLe(Y)} = Cov{X, Y}Cov−1 {Y}Cov{Y, X}

and Pythagoras relation (4.22) becomes

Cov{X −X∥S(Y)} = Cov{X}−Cov{X, Y}Cov−1 {Y}Cov{Y, X}
(4.28)

We can also estimate a random vector X = [X(1) . . . X(m)]
T

us-
ing linear combinations of Y. With now L being a matrix, each el-
ement of X can be estimated as above rendering exactly the same
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expression as above for X∥SLe(Y) and its covariance, and the matrix
expression (4.22) for Pythagoras relation remain intact.

For future use we file the information that whenever we encounter
an expression that can be written on the form

⌊x, y⌋⌊y, y⌋−1⌊y, x⌋ (4.29)

for vectors x and y whose elements are in a Hilbert space, then we
can interpret this expression as the norm of the projection of x on the
span of y.

4.2.5 Maximum A Posteriori Estimation

The Maximum A Posteriori (MAP) estimate given Y = y is defined as
the mode of the posterior density

X̂MAP(y) = arg max pX∣Y(x∣y)

4.2.6 Other Estimation Criteria∗

A generalization of the MSE is to include a positive weighting func-
tion W which may depend on X (the variable we want to estimate),
giving

E [W(X)∥X − X̂(Y)∥2]

as criterion. The optimal estimator for this criterion is

X̂(Y) = E [W(X)X∣Y)]
E [W(X)∣Y)]

while the criterion

E [∥X − X̂(Y)∥]

leads to the optimal estimator being the median of the conditional
distribution.

4.3 Wold decomposition

Let us now return to the issue of how to model a stationary stochastic
process {v(t)}∞t=−∞ that we discussed extensively in Section 3.4.7. It
turns out that there is yet more to say on this subject and we will
consider the more general class of wide-sense stationary processes.

We will consider the Wold decomposition which has as basis a lin-
ear projection of v(t) on the span of its past v(t − 1), v(t − 2), . . .. De-
noting this projection v̂(t∣t − 1) and the prediction error v(t)− v̂(t∣t −
1) by e(t), we can write

v(t) = e(t)+ v̂(t∣t − 1) = e(t)+
∞
∑
k=1

α(k)v(t − k) (4.30)
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for some sequence {α(k)}∞k=1. However, we can now replace v(t − 1)
by the same type of expansion, giving

v(t) = e(t)+ α(1)v(t − 1)+
∞
∑
k=2

α(k)v(t − k)

= e(t)+ α(1)e(t − 1)+
∞
∑
k=2

β(k)v(t − k)

for a new sequence of coefficients {β(k)}. Continuing like this sug-
gests that we should obtain

v(t) =
∞
∑
k=0

h(k)e(t − k) (4.31)

for some sequence {h(k)}, for which h(0) = I. Since e(t) is orthogo-
nal to the past and e(s), s < t, is a function of the past, {e(t)} form an
uncorrelated sequence. In view of (4.30) we can see e(t) as the lin-
early unpredictable part of v(t) given the entire past of the process.
The process {e(t)} is therefore called the innovation-process and the
quantity

Σ ∶= E [(v(t)− v̂(t∣t − 1)) (v(t)− v̂(t∣t − 1))T]

is called the prediction error matrix.
The representation (4.31) emphasizes that one could model a sta-

tionary process as filtered white noise. However, the representation
does not cover all stationary processes.

Example 4.6. Suppose that

v(t) = x, −∞ < t <∞

where x is a random variable. Clearly {v(t)} is stationary. Then v̂(t∣t−1) =
v(t−1) = x and e(t) = 0. We can thus not represent v(t) on the form (4.31).

In the example, x is perfectly predictable given the past of v(t). A
formal definition of this concept is that a process {v(t)} is said to be
linearly singular (or linearly, purely deterministic) if v̂(t∣t − k) = v(t)
for a pair t, k, k > 0. It then follows from stationarity that this holds
for any t and by iterating over k it follows that this also holds for
any k > 0. A process for which v̂(t∣t − k) ≠ v(t), for some k ∈ N holds
is said to be linearly non-deterministic. For a wide-sense stationary
process it then holds that v̂(t∣t − k) ≠ v(t), ∀t and ∀k ∈ N.

It turns out that any stationary process can be represented if a
linearly singular term is added to (4.31). We begin with an example.

Example 4.7. Suppose that

v(t) = e(t)+ 0.5e(t − 1)+ x, −∞ < t <∞ (4.32)

where x is a random variable and {e(t)} is zero mean white noise. From
Example 4.6, vd(t) ∶= x is linearly singular. We now show that vd(t) also
can be perfectly predicted using the past of v(t). For this, let

v̂N
d (t) ∶= 1

N

N
∑
k=1

v(t − k) = x + 1
N

N
∑
k=1

e(t − k)+ 0.5
1
N

N
∑
k=1

e(t − 1− k)
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which tends to vd(t) = x as N → ∞ since the two last terms tend to zero
by the law of large numbers as {e(t)} is white noise. Thus vd(t) is per-
fectly predictable given the past of v(t) and since {e(t)} is an uncorrelated
sequence, (4.32) can be written as

v(t) =
∞
∑
k=0

h(k)e(t − k)+ vd(t), −∞ < t <∞, (4.33)

with h(0) = 1, h(1) = 0.5, h(k) = 0, k ≥ 2 and where vd(t) = x is a linearly
singular process.

Next, notice that for a process that can be decomposed as (4.31) it
must hold that

v̂(t∣t − s) =
∞
∑
k=s

h(k)e(t − k)

and that

E [v̂(t∣t − s)v̂T(t∣t − s)] =
∞
∑

k=s+1
h(k)ΣhT(k)→ 0 as s →∞

Hence3 3 Here we see {v(t∣t− s)}∞s=1 as elements
of the Hilbert space of random variables
with finite variance, meaning that a ran-
dom variable that is 0 has variance 0.

lim
s→∞

v̂(t∣t − s) = 0

A process with this property is said to be linearly regular (linearly,
purely non-deterministic). Such processes can be characterized in
several different ways.

Theorem 4.3.1 (Theorem 6.13 in 4). The following statements are equiv-
alent for a wide-sense stationary process {v(t)}:

i) {v(t)} is linearly regular

ii) v(t) = A(q)w(t) for some A(q) = ∑∞k=0 a(k)q−k where {w(t)} is white
noise.

iii) v(t) belongs to its remote past S−∞(v), v(t) ∈ S−∞(v), defined as
S−∞(v) = ∩∞t=−∞St(v) where

St(v) = Span{v(s) ∶ −∞ < s ≤ t},

Notice that with necessity the limit ∑∞k=0 aT(k)Ka(k), where K ∶=
E [w(t)wT(t)], exists in ii) as a wide-sense stationary process is as-
sumed to have finite variance.

We are now ready the following decomposition result.

Theorem 4.3.2 (Wold Decomposition, Theorem 6.11 in 5). A wide-
sense stationary stochastic process {v(t)}∞t=−∞ can be uniquely decomposed
as

v(t) = vr(t)+ vd(t), (4.34)

where {vr(t)} and {vd(t)} are uncorrelated and linearly regular and lin-
early singular, respectively.
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The linearly regular term vr(t) can be written as

vr(t) = H(q)e(t) (4.35)

where H(q) = ∑∞k=0 h(k)q−k and {e(t)} is the innovation-process for {v(t)},
having the same dimension as {v(t)}, which has the following properties

i) E [e(t)] = 0 and E [e(t)eT(t − τ)] = Σ δ(τ) where Σ ≥ 0 is the predic-
tion error matrix.

ii) E [v(0)eT(t − k)] = h(k)Σ, where h(0)Σ = Σ = ΣhT(0)

iii)

∞
∑
k=0

h(k)ΣhT(k) <∞ (4.36)

iv) E [e(t)vT
d (t)] = 0 for all s, t ∈ Z.

v) e(t) ∈ St(v)

and where the linearly singular term vd(t) ∈ S−∞(v) for all t ∈ Z, implying
that

E [(vd(t)− vd(t)∥St−1(v)) (vd(t)− vd(t)∥St−1(v))
T] = 0

For multivariable processes, the linearly singular term of a process
may not be the only quantity that is perfectly predictable.

Example 4.8. Suppose that

v(t) = [ w(t)
w(t − 1)

]

where {w(t)} is white noise with variance λ. Here we see that while the
best estimate of v1(t) is zero, we can predict v2(t) perfectly by v1(t − 1),
giving

v̂(t∣t − 1) = [ 0
v1(t − 1)

] = [0 0
1 0

] v(t − 1)

and hence the prediction error matrix. given by

Σ = E

⎡⎢⎢⎢⎢⎣
[w(t)

0
] [w(t)

0
]

T⎤⎥⎥⎥⎥⎦
= [λ 0

0 0
]

is singular since v2(t) can be perfectly predicted.

The rank of a stationary process {v(t)} is the rank of its prediction
error matrix. Thus when this matrix is not full rank, there are linear
combinations of v(t) that can be perfectly predicted. However, there
is also another issue, namely that the representation (4.39) is not
unique, see Exercise 4.6. This is the reason for that h(0) is only
determined as in ii) in the theorem.
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Corollary 4.3.1. When the process {v(t)} is full rank the decomposition in
Theorem 4.3.2 is unique and h(0) = I and H(z) ∶= ∑∞k=0 = ∑

∞
k=0 h(k)z−k ∈

H2 so that the expression (4.39) for the linearly regular term can be written

vr(t) = H(q)e(t)

Proof. Being wide-sense stationary, the variance of v(t) is finite and
hence

∞ > E [v(t)vT(t)] ≥ E [vr(t)vT
r (t)] =

∞
∑
k=0

h(k)ΣhT(k)

where the last equality is due to Theorem 3.4.7. Now if Σ is full rank
this implies that H(z) ∈ H2.

In Theorem 3.4.4 we characterized a wide-sense stationary pro-
cess in terms of its spectral distribution function. A matrix valued
distribution function F inherits the properties of a one dimensional
distribution function.

Theorem 4.3.3. A matrix valued distribution function F is differentiable
almost everywhere, has at most a countable number of discontinuities, and
can be decomposed into three terms

F = Fa + Fd + Fs

where Fu is absolutely continuous, Fd is piecewise constant and Fs, called
the singular part, is continuous with zero derivative almost everywhere.
Furthermore, the derivative F′ ∈ L1(T).

Proof. We refer to Sections 4 and 7 of 6. For showing that F′ ∈ L1, we 6 N. Wiener and P. Masani. The pre-
diction theory of multivariate stochastic
processes: I. The regularity condition.
Acta Math, 98:111–150, 1957

note that

∞ > F(π) ≥ ∫
π

−π
F′(eiω)dω = ∫

π

−π
∣F′(eiω)∣dω

where the equality follows from the non-increasing property of F.

Let us now relate the Wold decomposition to this representation.
First we notice that Theorem 3.4.7 implies that vr has an absolutely
continuous spectral distribution function with spectrum

Φvr(eiω) = A(eiω)ΣA∗(eiω), A(eiω) ∶=
∞
∑
k=0

a(k)e−iωk

This means that vr contributes to the absolute continuous part of the
spectral distribution function. The question is now if the linearly
singular part vd can contribute to this part as well.

Example 4.9. Let {e(t)} and {w(t)} be mutually independent with {e(t)}
being white noise with variance λ and with {w(t)} having the spectrum

Φw(eiω) = 1[−1,1](ω)

Then {w(t)} is linearly singular7 whereas {e(t)} is linearly regular. Now 7 See Exercise ??.
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set

v(t) = [ e(t)
w(t)

]

Then the spectral distribution function of {v(t)} is absolutely continuous
and the spectrum is

Φv(eiω) = [λ 0
0 Φw(eiω)

]

From the preceding example we see that indeed the linearly sin-
gular part of a wide-sense process can contribute to the absolute
continuous part of the spectral distribution function. Notice that in
the example, the prediction error matrix is singular since w(t) can
be perfectly predicted from its past which is available as part of the
past of v(t), i.e. we have

Σ = [λ 0
0 0

]

It turns out that the situation changes radically if we exclude this
case. To proceed with this, notice that F′ = Fa almost everywhere
since Fd is piecewise constant, except at a countable number of points,
and Fs has zero derivative almost everywhere. Hence, if vr is not
full rank then F′ will be singular almost everywhere, which in turn
means that det F′ = 0 almost everywhere so that log det F′ is not in
L1(T). It turns out that we can characterize a full rank process by
this condition.

Theorem 4.3.4 (7.10 Main Theorem I in 8). A wide-sense stationary
process is full rank if and only if its spectral distribution function F is such
that log det F′ ∈ L1(T).

Corollary 4.3.2. For a full rank process,

log det Σ = 1
2π ∫

π

−π
log det F′(eiω)dω

For full rank processes we now have the following addendum to
the Wold decomposition

Theorem 4.3.5 (7.11 Main Theorem II in 9). For a full rank wide-sense
stationary process, vr corresponds to the absolutely continuous part and
vd to the piecewise constant and singular parts of the spectral distribution
function, respectively.

Corollary 4.3.3 (7.12 Main Theorem III in 10). A wide-sense stationary
process is full rank and regular if and only if its spectral distribution func-
tion is absolutely continuous with spectrum satisfying log det Φ ∈ L1(T).

From Theorem 4.3.5 we see that for a full rank process we cannot
have that the linearly singular part of the process has a spectrum as
in Example 4.3.
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There is still one more loose end to tie up. From Wolds decompo-
sition we have that a full rank linearly regular wide-sense stationary
process can be written as

v(t) = H(q)e(t) =
∞
∑
k=0

h(k)et−k

and according to Theorem 4.3.1 its spectrum is given by

Φv(eiω = H(eiω)ΣH∗(eiω)

The spectral factorization theorem, Theorem 3.4.8, shows that for
wide-sense stationary processes where the spectrum has a rational
structure and is of full rank almost everywhere there is a particular
spectral factorization such that H has all its poles strictly inside the
unit circle and H−1(z) all its poles in the unit disc. We now pro-
ceed with a general spectral factorization theorem. For this, let L1

and L2 be the classes of absolutely integrable and square integrable
functions on [−π, π], respectively, see Definition B.2.2.

Theorem 4.3.6. Let Φ ∈ L1(T) be non-negative, and let log det Φ ∈
L1(T). Then there exists Σ > 0 and H ∈ L2(T) for which the Fourier
coefficients satisfy

h(k) = 1
2π ∫

π

−π
H(eiω)eiωkdω = 0, k < 0

and h(0) = I, such that

Φ(eiω) = H(eiω)ΣH∗(eiω) almost everywhere

The function H is the radial limit of some H̃ = ∑∞k=0 h̃(k)z−k ∈ H2 having
the properties that H̃−1(z) is holomorphic i ∣z∣ > 1, that H̃(∞) ≥ 0 and that

log det Σ = 1
2π ∫

π

−π
log det Φ(eiω)dω (4.37)

Proof. We start with not requiring h(0) = I. Then, with the left-hand
side of (4.37) being

2 log ∣det H̃(∞)∣

all results except that H̃−1 is holomorphic in ∣z∣ > 1 follows from
Theorem 7.13 in 11. For the last result we use the approach in the 11 N. Wiener and P. Masani. The pre-

diction theory of multivariate stochastic
processes: I. The regularity condition.
Acta Math, 98:111–150, 1957

proof of Theorem 1 in 12. For this we will use the transformation

12 P.E. Caines and L. Gerencsér. A sim-
ple proof for a spectral factorization
theorem. IMA Journal of Mathematical
Control & Information, 8:39–44, 1991

z → 1/z so that H̃ is analytic in ∣z∣ < 1. Since H̃ ∈ H2 it is also bounded
on ∣z∣ < 1 and we can apply Jensen’s inequality (Theorem 15.19 in 13)

13 W. Rudin. Real and Complex Analysis.
McGraw-Hill, London, 1986

to det H̃(z) giving

log ∣det H̃(0)∣ ≤ 1
2π ∫

π

−π
log ∣det H̃(reiω)∣dω

≤ 1
2π ∫

π

−π
log ∣det H̃(eiω)∣dω, 0 < r < 1

Now ∣det H̃∗(reiω)∣ = ∣det H̃(reiω)∣, and hence we can write this as

log ∣det H̃(0)H̃∗(0)∣ ≤ 1
2π ∫

π

−π
log ∣det H̃(reiω)H̃∗(reiω)∣dω

≤ 1
2π ∫

π

−π
log ∣det Φ(eiω)∣dω, 0 < r < 1
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However, by (4.37) the lower bound equals the upper bound14. We 14 Recall that in the proof we have z →
1/z, meaning that the point z = 0 in the
proof corresponds to z =∞ in the theo-
rem.

thus have

log ∣det H̃(0)H̃∗(0)∣ = 1
2π ∫

π

−π
log ∣det H̃(reiω)H̃∗(reiω)∣dω, 0 < r < 1

but according to Jenssen’s formula (Theorem 5.18 in 15) for this to 15 W. Rudin. Real and Complex Analysis.
McGraw-Hill, London, 1986hold det H̃(z) can have no zeros in ∣z∣ < r. The result now follows

since 0 < r < 1. An alternative is to base the proof on Theorem
17.17 in 16. Now 2 log ∣det H̃(∞)∣ being finite means that H̃(∞) = 16 W. Rudin. Real and Complex Analysis.

McGraw-Hill, London, 1986h̃(0) > 0, and hence we can factorize H̃(z) so that h(0) = I and take
Σ = h(0)hT(0) > 0.

The formula (4.37) is known as Szegös formula. We now summa-
rize the results for full rank processes.

Theorem 4.3.7 (Wold Decomposition full rank processes). A wide-
sense stationary stochastic process {v(t)}∞t=−∞ is full rank if and only if its
spectral distribution function F satisfies log det F′ ∈ L1(T).

Such a process can be uniquely decomposed as

v(t) = vr(t)+ vd(t), (4.38)

where {vr(t)} and {vd(t)} are uncorrelated and linearly regular and lin-
early singular, respectively.

The linearly regular process {vr(t)} can be expressed as

vr(t) = H(q)e(t) (4.39)

where {e(t)} is white noise with its covariance matrix Σ > 0 being the
prediction error matrix and e(t) ∈ St(v), t ∈ Z, and where H(z) ∈ H2,
H(∞) = I and with H−1(z) holomorphic in ∣z∣ > 1. The spectrum of vr is
Φr(eiω) = H(eiω)ΣH∗(eiω).

The linearly singular process {vd(t)} corresponds to the piecewise con-
stant and singular parts of the spectral distribution function. Furthermore
E [e(t)vT

d (t)] = 0 for all s, t ∈ Z and vd(t) ∈ S−∞(v) for all t ∈ Z, implying
that

E [(vd(t)− vd(t)∥St−1(v)) (vd(t)− vd(t)∥St−1(v))
T] = 0

It is common to restrict the model class to some parametrized
family, such as

H(q) =
C(q)
D(q)

=
1+ c1q−1 + . . . + cnc q−nc

1+ d1q−1 + . . . + dnd q−nd
(4.40)

where znc C(z) has no zeros outside the unit disc and where znd D(z)
has no zeros on or outside the unit disc and where ci, i = 1, . . . , nc

and di, i = 1, . . . , nd are parameters (possibly constrained to some
set). We stress, however, that when disturbances and noise undergo
non-linear transformations in the model, the above model class is not
sufficient as only second order characteristics are modeled. Then the
finite dimensional distributions of the process need further model-
ing.
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An important exception is when {v(t)} is a Gaussian process.
Then {e(t)} will be an iid Gaussian process since uncorrelated Gaus-
sian random variables are independent. This is an important result
so we state it separately.

Corollary 4.3.4. Any regular full rank stationary Gaussian stochastic pro-
cess {v(t)} can be decomposed as

v(t) = H(q)e(t)+m (4.41)

where {e(t)} is a sequence of zero mean iid Gaussian random variables with
E [e(t)eT(t)] = Σ for some Σ > 0, and where H(z) ∶= ∑∞k=0 h(k)z−k, with
h(0) = I, has no zeros or poles on or outside of the unit circle. The constant
m is the mean of the process.

When higher order moments of v(t) come into play in the model,
a simple modification of (4.39) and (4.40) is to add the assumption
that {e(t)} is a sequence of iid random variables with some (possibly
parametrized) pdf pe.

In Exercise 4.7 it is discussed what it means that a spectrum looses
rank.

4.4 Exercises

4.1. Let X ∈ Rm and Y ∈ Rn be two random vectors that are jointly
Gaussian:

[X
Y
] ∼ N ([mX

mY
] , [ΣXX ΣXY

ΣYX ΣYY
])

Derive the conditional probability density function for X given
Y. What is the conditional mean and the conditional covariance
matrix?

Compare with the OLE. What conclusions can you draw?

4.2. A typical situation is that the distribution of the observed vari-
able Y is known when the variable X to be estimated is given, i.e.
p(y∣x). Suppose that X is Bernouilli distributed with probability
p that X = 0 and suppose that Y∣X = 0 is N(2, 1) and Y∣X = 1 is
χ2(3). What is the conditional distribution of X given Y?

4.3. The Monty Hall problem. Suppose that you are in a game show
where a car is hidden behind one of three closed doors. Initially
you choose one of the doors and then the game host, which knows
where the car is hidden, opens one of the other doors which is
empty. You are now given the option of keeping the door that
you selected in the first place or to change to the other closed
door. Compute the posterior probabilities for which door the car
hides behind, given your initial choice and the game hosts choice.
What is the posterior mean? Which door has the maximum a
posteriori probability? What is the optimal strategy and what are
the winning chances?
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This problem caused a big media ruccus in 1990 with an ensuing
torrent of mails from the public in regards to the correct solution.
Interestingly, 62% of the answers coming from PhDs were incor-
rect. Google after you have solved the problem!

4.4. Prove that (4.28) is positive using Schur complement.

4.5. Consider the problem of estimating X given Z when

Cov{[X
Z
]} = [ΣX,X ΣX,Y

ΣY,X ΣY,Y
]

Show that the largest estimation error in the MSE-sense is ob-
tained when the joint distribution of X, Z is Gaussian.

4.6. Show by construction that the innovations-process is not unique
in Example 4.8.

4.7. Let Φ(eiω) = H(eiω)ΣH∗(eiω) be full rank for almost all ω.

a) Show that a process with Φ as spectrum is full rank.

b) Show that H(eiω) cannot be a tall matrix, i.e. have more rows
than columns.

c) Show that if H(eiω) is a ’fat’ matrix, i.e it has more columns
than rows, then the spectrum can be written as Φ(eiω) = H̃(eiω)Σ̃H̃∗(eiω)
where H̃ is square, H̃(∞) = I and Σ̃ > 0.

d) Suppose that H(z) looses rank at zo. Show that then there is a
non-zero input u such that

y(t) = H(q)u(t) =
∞
∑
k=0

h(k)u(t − k) = 0, t ∈ Z

Such a point zo is called a zero of H(q).

e) Let H(z) have the form

H(z) = C(zI − A)−1B +D (4.42)

Reformulate the statement in the spectral factorization theorem
that "H(z) can be taken such that H−1(z) is holomorphic in
∣z∣ > 1" in terms of the zeros of H(z).

f) Give a necessary condition on the rank of D for H−1(z) to be
holomorphic in ∣z∣ > 1.

g) Under the condition in f) and the matrix inversion lemma,
Lemma A.2.1, to derive an expression for H−1(z).

h) Use the condition in f) and the state space realization

x(t + 1) = Ax(t)+ Bu(t)
y(t) = Cx(t)+Du(t)

of H(q) to derive an expression for H−1(z).





A
Matrix Algebra

A.1 Matrix norms

∣x∣ denotes the Euclidean norm of a vector x

∣x∣ =
√
∑
k

∣xk∣2

The Frobenius norm for a matrix A ∈ Cn×m is defined as

∥A∥F =
√
∑
i,j

∣Ai,j∣2

and the operator (or 2-) norm as

∥A∥2 = sup
x

∣Ax∣
∣x∣

= σ(A)

where σ(A) is the largest singular value of A.

A.2 Matrix Inversion Lemma

Next follows a useful result on matrix inversion.

Lemma A.2.1. Suppose that A ∈ Rn×n and C ∈ Rm×m are invertible. Then
for B ∈ Rn×m, D ∈ Rm×n

(A + BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1 (A.1)

A.3 Block Matrix Inversion

Let ∆A = D −CA−1B and ∆D = A − BD−1C. Then

[A B
C D

]
−1

= [A−1 + A−1B∆−1
A CA−1 −A−1B∆−1

A
−∆−1

A CA−1 ∆−1
A

] = [ ∆−1
D −∆−1

D D−1B
−D−1C∆−1

D D−1 +D−1C∆−1
D BD−1]

whenever the inverses exist.

A.3.1 Inverse of an Inner Product

As an application of the formulae above, let

Y = [Y1

Y2
]
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and let θYi ∣Yj
= ⟨Yi, Yj⟩⟨Yj, Yj⟩−1 be the coordinates for the projection

of the elements of Yi on the linear span of Yj. Then

⟨Y, Y⟩−1 =
⎡⎢⎢⎢⎢⎣

⟨Y1Y2, Y1Y2⟩−1 −θY2∣Y1
⟨Y2Y1, Y2Y1⟩−1

−θT
Y1∣Y2

⟨Y1Y2, Y1Y2⟩−1 ⟨Y2Y1, Y2Y1⟩−1

⎤⎥⎥⎥⎥⎦
=∶ [ A B

BT C
]

Thus Y1∥Y2
= −A−1BY2 and the “norm” of the error Y1 − Y1∥Y2

is
A−1. Similarly Y2∥Y1

= −BD−1Y1 with “norm” of the error being D−1.
Notice that this holds regardless of how Y is divided into Y1 and Y2.

A.4 Schur Complement

Consider the symmetric block-matrix

Z = [ A B
BT C

]

If A > 0 then

Z > 0 ⇔ C − BT A−1B > 0

Z ≥ 0 ⇔ C − BT A−1B ≥ 0

If C > 0 then

Z > 0 ⇔ A − BC−1BT > 0

Z ≥ 0 ⇔ A − BC−1BT ≥ 0

For

Z = ⟨[X
Y
] , [X

Y
]⟩

we get the following special case: When ⟨X, X⟩ > 0, Z is positive def-
inite iff no linear combination of X can be linearly predicted exactly
by Y. Symmetrically, when ⟨Y, Y⟩ > 0, Z is positive definite iff no
linear combination of Y can be linearly predicted exactly by X.

A.5 Completing the square

Lemma A.5.1. Suppose that ∈ Rn, x ∈ Rm, A ∈ Rn×m and Py ∈ Rn×n,
Py > 0. Then

(y −Ax)TP−1
y (y −Ax) = (x − x̂)ATP−1

y A(x − x̂)+ ∥y − ŷ∥2
P−1

y
(A.2)

where

x̂ = (ATP−1
y A)−1ATP−1

y y

ŷ = Ax̂

Suppose in addition that z ∈ Rm and Px ∈ Rm×m, Px > 0. Then

(y −Ax)TP−1
y (y −Ax)+ (x − z)TP−1

x (x − z)

= (x − x̃)TS−1(x − x̃)+ (y −Az)TT−1(y −Az) (A.3)
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where

T = (Py +APxAT)
S = (P−1

x +ATP−1
y A)−1 = Px − PxATT−1APx

x̃ = z + L(y −Az)
L = PxATT−1

Proof. Expanding (A.2)

(y −Ax)TP−1
y (y −Ax) = xTATP−1

y Ax − 2yTP−1
y Ax + yTP−1

y y

= (x − x̂)TATP−1
y A(x − x̂)− x̂TATP−1

y Ax̂ + yTP−1
y y

We see that x = x̂ is the solution to the minimization problem

arg min
x

∥y −Ax∥P−1
y

meaning that ŷ = Ax̂ is the orthogonal projection of y on the column
span of A and that therefore y − ŷ is orthogonal to the column span
of A, in turn implying that

yTP−1
y y − x̂TATP−1

y Ax̂ = ∥y∥2
P−1

y
− ∥ŷ∥2

P−1
y
= ∥y − ŷ∥2

P−1
y

For (A.3) we have

(y −Ax)TP−1
y (y −Ax)+ (x − z)TP−1

x (x − z)

= xT(P−1
x +ATP−1

y A)x − 2xT(ATP−1
y y + P−1

x z)+ yTP−1
y y + zTP−1

x z

= (x − Sw)TS−1(x − Sw)−wTSw + yTP−1
y y + zTP−1

x z (A.4)

(A.5)

where

w = ATP−1
y y + P−1

x z

Using the Matrix Inversion Lemma (A.1),

T−1 = (Py +APxAT)−1 = P−1
y − P−1

y ASATP−1
y (A.6)

and furthermore, using Exercise 6.1,

P−1
x − P−1

x SP−1
x = P−1

x S(S−1 − P−1
x ) = P−1

x (P−1
x +ATP−1

y A)−1ATP−1
y A

= (I +ATP−1
y APx)−1ATP−1

y A

= ATP−1
y (I +APxATP−1

y )−1A

= AT(Py +APxAT)−1A = ATT−1A (A.7)

Also

P−1
x SATP−1

y = P−1
x (P−1

x +ATP−1
y A)−1ATP−1

y = (I +ATP−1
y APx)−1ATP−1

y

= AT(I + P−1
y APxAT)−1P−1

y = AT(Py +APxAT)−1 = ATT−1

(A.8)
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Using (A.6)–(A.8) gives

−wTSw + yTP−1
y y + zTP−1

x z =

yT(P−1
y − P−1

y ASATP−1
y )y + zT(P−1

x − P−1
x SP−1

x )z − 2zT(P−1
x SATP−1

y )y

yTT−1y + zTATT−1Az − 2zTATT−1y = (y −Az)TT−1(y −Az) (A.9)

Next

Sw = (Px − PxATT−1APx)(ATP−1
y Ay + P−1

x z)

= PxATT−1(T −APxAT)P−1
y y + z − PxATT−1Az

= PxATT−1y + z − PxATT−1Az (A.10)

Inserting (A.9) and (A.10) in (A.4) now gives the result.



B
Bits and Pieces of Complex Analysis

We follow the notation in 1, from which also much of the results, 1 N. Wiener and P. Masani. The pre-
diction theory of multivariate stochastic
processes: I. The regularity condition.
Acta Math, 98:111–150, 1957

proofs, and references, can be found. The symbols C, D+(r) and
D−(r) will denote the sets ∣z∣ = 1, ∣z∣ < r and r < ∣z∣ < ∞, respectively,
of the extended complex plane. D+(1) and D(1) will be denoted by
D+ and D−, respectively.

B.1 Holomorphic functions

Definition B.1.1. Suppose that the limit

lim
z→zo

f (z)− f (zo)
z − zo

exists. Then this limit is called the derivative of f at zo. A function f is
said to be holomorphic (analytic) in an open set Ω if it is differentiable at
every point in Ω.

Theorem B.1.1 (Cauchy integral formula). Let f be analytic in the open
set Ω and let Q ⊂ Ω denote a closed contour. Then

f (k)(z) = n!
2πi ∮Q

f (s)ds
(s − z)n+1

From the Cauchy integral formula the following important result
follows.

Theorem B.1.2 (Theorem 10.16 in 2). Every holomorphic function f (z)
in an open set Ω, can be represented by a unique power series expansion

f (z) =
∞
∑
k=0

ck(z − a)n (B.1)

in an open disc belonging to Ω and centered at a.

Corollary B.1.1. The coefficients in the power series expansion are given
by

ck =
f (k)(a)

k!

In particular, if f is holomorphic in D+(r), a = 0 can be used in the
theorem.
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B.2 Hardy classes Hp and limits of functions in Hp

We now add some regularity to holomorphic functions.

Definition B.2.1. The Hardy class Hp, p > 0, consists of all complex-
valued holomorphic functions f on D+ for which there exists a constant M
such that

∫
π

−π
∣ f (reω)∣pdω ≤ M, 0 < r < 1

From Theorem B.1.2, a function f ∈ Hp, p > 0, on D+ can be repre-
sented as

f (reiω) =
∞
∑
k=0

ckrkeiωk, 0 ≤ r < 1 (B.2)

The class H2 can be exactly characterized by this expansion.

Theorem B.2.1 (Theorem 17.12
3). Suppose that f is analytic in D+ and

f (z) =
∞
∑
k=0

ckzk (B.3)

Then f ∈ H2 if and only if ∑∞k=0 ∣ck∣2 <∞.

Now if the stronger condition

∞
∑
k=0

∣ck∣ <∞ (B.4)

holds, (B.2) implies that the limit limr→1− f (reiω) is well defined and
define the function

f (eiω) =
∞
∑
k=0

ckeiωk

on C. This means that we can see the expansion (B.3) as valid in
∣z∣ ≤ 1. Notice also that the function f is absolute integrable on C

∫
π

−π
∣ f (eiω)∣dω = ∫

π

−π
∣
∞
∑
k=0

ckeiωk∣dω ≤ 2π
∞
∑
k=0

∣ck∣ <∞

For a more precise formulation of this type of result we introduce a
function class on C.

Definition B.2.2. The class Lp consists of all complex-valued measurable
functions f on C for which

∫
π

−π
∣ f (eiω)∣pdω <∞

Theorem B.2.2 (Theorem 2.6 in 4). Suppose f+ ∈ Hp, p > 0. Then

(a) f (eiω) = limr→1− f+(reiω) exists a.e. on C and f ∈ Lp.

(b) The convergence is also in the Lp-topology.
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It turns out that we can characterize the magnitude of f+ at the
origin through its limit function in Lp, somewhat reminiscent of the
Cauchy integral formula. This is an important result from estimation
point of view. Introducing g(z) = ∑∞k=0 c̄kz−k, and making the change
of variable z = eiω gives

1
2π ∫

π

−π
log ∣ f (eiω)∣ dω = 1

4π ∫
π

−π
log ∣ f (eiω)∣2 dω

= 1
4π ∫

π

−π
log f (eiω)g(eiω) dω

= 1
4πi ∮C

log f (z)g(z) dz
z

= 1
4πi ∮C

log f (z) dz
z
+ 1

4πi ∮C
log g(z) dz

z

Now, assume f is analytic in the set D+(r) for some r > 1, e.g. f (z) is
a rational function with all poles having radius larger than r. Then
the first integral is obtained from the Cauchy integral formula as
1
2 log f (0) if f does not have any zeros on D+(r) then log f (z) is
holomorphic on D+(r). Using the variable transformation s = z−1 on
the second integral, one then similarly get that this integral is equal
to 1

2 log f (0). We thus have shown that

1
2π ∫

π

−π
log ∣ f (eiω)∣ dω = 1

2
log f (0)+ 1

2
log f (0) = 1

2
log ∣ f (0)∣2 = log ∣ f (0)∣

under the assumption that f is holomorphic and non-zero in a set
including C. We can write this as

∣ f (0)∣ = e
1

2π ∫
π
−π log ∣ f(eiω)∣ dω

The general result is as follows.

Corollary B.2.1. Under the same assumptions as in Theorem B.2.2 and
with f+ ≠ 0, then

(c) log ∣ f ∣ ∈ L1 on C and

∣ f+(0)∣ ≤ e
1

2π ∫
π
−π log ∣ f(eiω)∣ dω (B.5)

(d) Equality in (B.5) can only hold if f+ has no zeros on D+.

Notice that (c) implies that f (eiω) ≠ 0 a.e.

B.3 Mapping Lp to Hp

Theorem B.2.2 implies that f ∈ Lp, 1 ≤ p ≤ ∞, is a limit of a function
in Hp only if the Fourier coefficients

ck ∶=
1

2π ∫−π
f (eiω)e−iωkdω

are zero for negative k.
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It can be shown that for 1 < p <∞, setting f+(z) = ∑∞k=0 ckzk defines
a function in Hp and that all functions in Hp, 1 < p < ∞ can be
obtained in this way (Exercise 25, Chapter 17

5). 5

For f ∈ L1, the Fourier coefficients tend to zero as ∣k∣ → ∞ due to
the Riemann-Lesbegue lemma (5.14 in 6) and hence 6

f+(z) =
∞
∑
k=0

ckzk, f−(z) =
∞
∑
k=1

ckz−k

are defined point-wise on D+, and D−. These are called the inner
and outer functions determined by f .

Theorem B.3.1 (Theorem 2.4 in 7). Let f ∈ L1 on C then

lim
r→1−

f+(reiω)+ f−(r−1eiω) = f (eiω)

Corollary B.3.1 (Corollary 2.5 8). Suppose that f ∈ Lp, p ≥ 1, on C and
f− = 0, then f+ ∈ Hp on D+.

Under the assumptions of the corollary, we see that we can view
an f ∈ Lp with Fourier coefficients ck = 0 for k < 0, as defined on ∣z∣ ≤ 1
by the function

f (z) =
∞
∑
k=0

ckzk

holomorphic in D+ and where on C the expression in general is to be
interpreted as a limit, but when ∑k ∣ck∣ < ∞, the expression is valid
in the entire of ∣z∣ ≤ 1. In view of Theorem B.2.1, the latter applies
when p = 2. Notice that f may not be analytic on C as it may not be
defined for any z outside C.

B.4 Positive functions on L1

In this section we consider an extension of the Fejér-Riesz theorem
to Lp.

Theorem B.4.1 (Fejér-Riesz theorem). A trigonometric polynomial g(eiω) =
∑n

k=−n ckeiωk assumes non-negative values if and only if it can be expressed
as g(eiω) = ∣p(eiω)∣2 for some polynomial p(z) = ∑n

k=0 akzk. The poly-
nomial can be chosen to have no roots in D+, and is then unique up to a
multiplicative constant of modulus one.

Theorem B.4.2 (Theorem 2.8 in 9). Let g ∈ Lp on C, p ≥ 0, g ≥ 0 and
suppose that log g ∈ L1. Then there exists f+ ∈ Hp on D+ without zeros in
D+ such that its radial limit f satisfies ∣ f ∣ = g a.e. on C and

∣ f+(0)∣ = e
1

2π ∫
π
−π log g(eiω) dω

As a particular application of Theorem B.4.2, suppose that g sat-
isfies the conditions of the theorem with p = 1. Then √g ∈ L2 since
g ∈ L1 and log√g = 1

2 log g ∈ L1 since log g ∈ L1. Thus we can apply
Theorem B.4.2 to √g giving that there exists an f ∈ H2 without zeros
in D+ such that ∣ f (eiω)∣2 = g(eiω) and

∣ f (0)∣2 = e
1

2π ∫
π
−π log g(eiω) dω
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C
Vector Spaces

There are other spaces of elements where the geometry of the Eu-
clidean space holds. A vector space is a set V of elements v, called
vectors, on which two operations + and ⋅, called vector addition and
scalar multiplication, are defined such that for all vectors u, v, w ∈ V
and scalars c, d it holds

1. Closure: u + v ∈ V

2. Commutativity: u + v = v + u

3. Associativity: (u + v)+w = u + (v +w)

4. Additive identity: V contains an element, denoted by 0, such that
0+ v = v, ∀v ∈ V

5. Additive inverse: There exists a unique x(v) ∈ V such that v +
x(v) = 0. x(v) is called −v.

6. For any scalar c, c ⋅ v ∈ V

7. Distributivity: c ⋅ (u + v) = c ⋅ u + c ⋅ v

8. Distributivity: (c + d) ⋅ v = c ⋅ v + d ⋅ v

9. Associativity: c ⋅ (d ⋅ v) = (cd) ⋅ v

10. Multiplicative identity: 1 ⋅ v = v

If the above hold when the scalars belong to the field of reals, V is
said to be a real vector space, and when c ∈ C, V is a complex vector
space. We will consider complex vector spaces.

C.1 Inner Product Spaces

What gives the Euclidean space its geometry is the scalar product
○. For two vectors x and y we have that the angle between the two
vectors can be determined from

cos(α) =
x ○ y

∥x∥ ∥y∥
(C.1)

The corresponding operator in a complex vector space is the inner
product ⟨⋅, ⋅⟩ ∶ V × V → C, which, mimicking the properties of the
scalar product, has to satisfy the following axioms for all u, v, w ∈ V
and λ ∈ C:
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1. ⟨u + v, w⟩ = ⟨u, w⟩+ ⟨v, w⟩

2. ⟨λu, v⟩ = λ⟨u, v⟩

3. ⟨u, v⟩ = ⟨v, u⟩∗

4. ⟨v, v⟩ ≥ 0 with equality iff v = 0

A vector space endowed with an inner product is called an inner
product space. For such spaces we can introduce a topology via the
norm

∥v∥ ∶=
√

⟨v, v⟩

It is easy to verify that this is a norm, i.e. that ∥ ⋅ ∥ satisfies i) ∥v∥ ≥ 0,
∀v ∈ V with equality iff v = 0, ii) ∥λv∥ = ∣λ∣∥v∥, and iii) ∥u + v∥ ≤
∥u∥+ ∥v∥.

It can be noted, although we will not make use of this, that a
normed vector space V is an inner product space iff the parallel-
logram law

2∥u∥2 + 2∥v∥2 = ∥u + v∥2 + ∥u − v∥2

holds for all u, v ∈ V . If this law holds then the inner product is given
by

⟨x, y⟩ = 1
4
(∥u + v∥2 − ∥u − v∥2)

The geometry in an inner product space becomes clear if we for a
vector u ∈ V define its orthogonal projection on another vector v ∈ V
as u∥v ∶= αv where α satisfies the normal equation

⟨u − αv, v⟩ = 0 (C.2)

i.e.

u∥v =
⟨u, v⟩
⟨v, v⟩

v

Then

0 ≤ ∥u − u∥v∥2 = ∥u∥2 − ∣⟨u, v⟩∣2

∥v∥2

with equality iff u = λv for some λ ∈ C, so that

0 ≤ ∣⟨u, v⟩∣
∥u∥∥v∥

≤ 1 (C.3)

with the upper inequality true iff u = λv for some λ ∈ C. As in (C.1)
we can interpret the number in the middle above as the cosine of the
angle between u and v. Since

⟨u − u∥v, v⟩ = 0 (C.4)

we say that u − u∥v is orthogonal to v (written u − u∥v ⊥ v) and from
this and the decomposition u = (u − u∥v)+ u∥v we obtain Pythagoras
theorem

∥u∥2 = ∥u∥v∥2 + ∥u − u∥v∥2 (C.5)
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The upper inequality in (C.3) is known as the Cauchy-Schwarz in-
equality. Using this, the geometric interpretation is completed by
considering

∥u − λv∥2 = ∥u − u∥v + u∥v − λv∥2 = ∥u − u∥v∥2 + ∥u∥v − λv∥2 ≥ ∥u − u∥v∥2

(C.6)

with equality only if λv = u∥v, which shows that u∥v is the vector in
the direction of v that is closest to u, i.e. the notion of an orthogo-
nal projection in an inner product space is consistent with the same
notion in the Euclidean space.

C.2 Subspaces and Orthogonal Projections

A subspace S to a vector space V is a subset of V that is closed under
addition and scalar multiplication, i.e. if u, v ∈ S then λ1u + λ2v ∈ S
for any scalars λ1 and λ2.

Starting from a set of vectors {vα}α∈A}, we can generate a subspace
by all finite linear combinations of these vectors. We denote such a
subspace Span{{vα}α∈A}.

A finite set of vectors {vk}n
k=1, n < ∞, is said to be linearly in-

dependent if the only solution to ∑n
k=1 αkvk = 0 is α1 = . . . = αn = 0.

More generally, a set is said to be linearly independent if every finite
collection of vectors from is linearly independent.

A vector space V is said to be finite dimensional if there is an
n < ∞, the dimension of V , dim [V], such that V contains a linearly
independent set of n vectors, whereas all sets of n + 1 vectors are
linearly dependent.

A basis for a vector space is a linearly independent set such that
all vectors in the space can be uniquely represented as a finite linear
combination of elements in the set, the basis elements. A basis exists
for every vector space but it is not unique.

For an inner product space V with an n-dimensional subspace S
having basis {v1, . . . , vn}, we can for a vector u define its orthogonal
projection on S as u∥S ∶= ∑n

k=1 αkvk where, similarly to (C.2), the {αk}
are defined by the normal equations

⟨u −
n
∑
k=1

αkvk, vl⟩ = 0, l = 1, . . . , n (C.7)

which in matrix form becomes

⎡⎢⎢⎢⎢⎢⎢⎣

⟨v1, v1⟩ . . . ⟨v1, vn⟩
⋮ ⋮ ⋮

⟨vn, v1⟩ . . . ⟨vn, vn⟩

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

α1

⋮
αn

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

⟨u, v1⟩
⋮

⟨u, vn⟩

⎤⎥⎥⎥⎥⎥⎥⎦

(C.8)

If we form v = [v1, . . . , vn]
T

and x = [x1, . . . , xm]
T

define

⌊v, xT⌋ =

⎡⎢⎢⎢⎢⎢⎢⎣

⟨v1, x1⟩ . . . ⟨v1, xm⟩
⋮ ⋮ ⋮

⟨vn, x1⟩ . . . ⟨vn, xm⟩

⎤⎥⎥⎥⎥⎥⎥⎦
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we can write (C.8) in compact form as

⌊v, vT⌋α = ⌊v, x⌋ (C.9)

where α = [α1 . . . αn]
T

.
Considering an arbitrary point w in S , we obtain the same in-

equality as in (C.6), i.e. u∥S is the unique point closest to u in S .
We call this the orthogonal projection of u on S. We can also define
the orthogonal complement S⊥ of S to be the set of all vectors in V
orthogonal to all vectors in S, i.e.

S⊥ = {u ∈ V ∶ ⟨u, vk⟩ = 0, k = 1, . . . , n}

Clearly S⊥ is a subspace. Furthermore, we can uniquely decompose
any vector u ∈ V into u = u∥S + uS, where u∥S is the orthogonal
projection on S and where uS ∶= u − u∥S . We write V = S ⊕S⊥.

C.3 Hilbert Spaces

It is easy to see that the limit point of convergent sequences in finite
dimensional subspaces to normed spaces also belong to the subspace
in question. Topologically, finite dimensional subspaces are always
closed. A set S in a normed space is said to be open if there to every
point v ∈ S exists a neighbourhood {u ∶ ∥u − v∥ < ε} ⊂ S , ε > 0. A set
is closed if its complement is open. Matters become somewhat more
complicated when considering subspaces of infinite dimensions.

Example C.1. Let V = C[0, 1], the space of continuous function on the in-
terval [0, 1]. Clearly this is a vector space under standard definitions of ad-
dition and scalar multiplication. We take the norm to be ∥v∥ = max0≤x≤1 ∣v(x)∣
(this is not an inner product space).

Now, let S be the subspace to V consisting of all polynomials. Then
the sequence of monomials vk ∶ vk(x) ∶= xk, k = 1, 2, . . . converges to the
discontinuous function

v∗(x) ∶= { 0, 0 ≤ x < 1
1, x = 1

in the used norm, i.e. to a function not even belonging to V , and even less
to S.

Example C.2. Let the vector space V consist of the real numbers over the
field of rationals, i.e. the scalars we use are rational, equipped with the in-
ner product ⟨u, v⟩ = uv. Now consider the subset S consisting of rational
numbers. Clearly, S is a subspace over the field of rationals. This sub-
space is not closed as there are rational sequences that converge to irrational
numbers (this is in fact a way to extend rational numbers to reals).

When working with infinite dimensional subspaces we must there-
fore typically require that the subspace is closed as otherwise or-
thogonal projections in the spirit above may not even belong to the
subspace onto which we project.
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Apart from the geometrical properties discussed in the preceed-
ing section, the Euclidean space possess another desirable property
namely that convergence of a sequence {xk} is equivalent to that the
sequence is a Cauchy sequence, i.e. for every ε > 0 there exists an N
such that ∥xk − xl∥ < ε when k, l > N. This holds also for subspaces
to an Euclidean space. A metric space with the property that every
Cauchy sequence converges to an element in the space is said to be
complete. A Hilbert space is a complete inner product space. Per-
haps not surprising, there is a strong connection between closedness
and completeness: In a Hilbert space a subspace is closed iff it is
complete. Furthermore, as in the Euclidean space, a finite dimen-
sional subspace is complete.

Above we have seen that in a finite dimensional subspace S to an
inner product space V there is a vector in the subspace that is closest
to a given vector u ∈ V , c.f. with the Euclidean space. In a Hilbert
space this generalizes to infinite dimensional subspaces:

Theorem C.3.1. Let S be a closed subspace to a Hilbert space H and let
u ∈H be given. Then there is a unique vector v ∈ S such that u − v ⊥ w for
all w ∈ S . The vector v solves

min
v∈S

∥u − v∥

For Hilbert spaces we can thus talk about the orthogonal projec-
tion on S even when S is infinite dimensional and any vector u ∈ V
can uniquely be split into u = u∥S + uS where u∥S ∈ S and where
uS ∈ S⊥, the orthogonal complement to S defined as S⊥ = {v ∶ v ⊥ S}.
There is dual formulation to the problem in Theorem C.3.1 which has
u⊥S as solution.

Corollary C.3.1. Let S be a closed subspace to a Hilbert space H and let
u ∈H be given. Consider the linear variety

Lu = {x = u + v, v ∈ S}

Then the problem

min
x∈Lu

∥x∥

has a unique solution u⊥S . The solution is the unique x ∈ Lu satisfying

⟨x, v⟩ = 0 ∀v ∈ S

C.4 Orthonormal bases

A subset in an inner product space is said to be an orthonormal set
if all vectors in have norm 1 and for any pair u, v ∈, ⟨u, v⟩ = 0 when
u ≠ v.

Given an orthonormal sequence {ek}∞k=1 in a Hilbert space H, we
can take Sk to be the span of {ek}n

k=1. Then the orthonormality gives

∥u∥Sk
∥2 =

n
∑
k=1

∣⟨u, ek⟩∣2
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and from Pythagoras theorem (C.5) it follows that

∥u∥Sk
∥2 =

n
∑
k=1

∣⟨u, ek⟩∣2 ≤ ∥u∥2, k = 1, 2, . . .

Since this holds for every finite k, Bessel’s inequality

∞
∑
k=1

∣⟨u, ek⟩∣2 ≤ ∥u∥2 (C.10)

follows. A remarkable consequence of this inequality is that if one
has an uncountable orthonormal set in an inner product space V ,
then for a given u ∈ V , at most a countable set of Fourier coefficients
⟨u, e⟩, e ∈ can be non-zero. In this case we can thus still associate u to
a series

∞
∑
k=1

⟨u, ek⟩ek

where {ek} is an enumeration of the elements in that have non-zero
inner products with u.

Now, suppose that we have a series ∑∞k=1 αkek in a Hilbert space
H. Then this series is convergent, to v say, iff ∑∞k=1 ∣αk∣2 is convergent.
This follows since ∑∞k=1 αkek then is a Cauchy sequence.

Furthermore, in this case αk = ⟨v, ek⟩.
In particular it holds that for any u ∈H, ∑∞k=1⟨u, ek⟩ek is convergent.

However, the series may not correspond to u despite that, as per the
preceeding paragraph, the Fourier coefficients ⟨u, ek⟩ are the same
as for u. Denoting the series by v, it is easy to see that u − v is
orthogonal to every ek. Thus for u − v to be non-zero must mean
that the orthonormal sequence does not span the whole of H. This
is guaranteed by requiring the orthonormal sequence {ek}∞k=1 to be
what is called a complete (or total) orthonormal basis in H. This
means that the span of the sequence is dense in H, i.e. the closure of
the span is H itself.

For a complete orthonormal basis equality holds in (C.10) which
is then known as Parseval’s relation which can be seen as a gener-
alization of Pythagoras theorem. Conversely, if Parseval’s relation
holds for every u ∈H, then the orthonormal set is complete.

So for which Hilbert spaces does there exist a countable complete
orthogonal set? It turns out that the space must be separable which
means that it has a countable subset which is dense and for such
spaces every orthonormal set is countable.
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Probability Theory

D.1 Transformation of random variables

Lemma D.1.1 (Transformation of random variables). Suppose that the
random vector x ∈ X ⊆ Rn has pdf px(x). Let f ∶ X → Y ∈ Rn be injective
and continuously differentiable. Then y = f (x) ∈ Y has pdf py defined by

py( f (x)) =
px(x)

∣det f ′(x)∣
(D.1)

Proof: Let A ∈ X. Then using the change of variables formula

∫
A

px(x)dx = P(x ∈ A) = P(y ∈ f (A)) = ∫
f(A)

py(y)dy

= { y = f (x)
dy = ∣det f ′(x)∣dx

}

= ∫
A

py( f (x))∣det f ′(x)∣dx

Since this holds for any measurable A, comparing the first integral
with the last one, (D.1) must hold. ◻

D.2 Limits of random variables

A fundamental result that is useful for establishing convergence w.p.1
is the Borel-Cantelli lemma. Let {An} be events in a probability space
(Ω,F , P) and consider the set

lim sup
n

An = ∩∞n=1 ∪
∞
m=n Am

This event contains the outcomes that belong to the events An an
infinitely number of times and is also denoted An infinitely often,
An i.o.

Lemma D.2.1 (Theorem 4.2.1 in 1. The Borel-Cantelli lemma). Let
{An} be events in a probability space (Ω,F , P) for which

∞
∑
n=1

P(An) <∞

Then

P(An i.o.) = 0
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Corollary D.2.1. If the events {An} are independent, then

∞
∑
n=1

P(An) =∞ ⇒ P(An i.o. ) = 1

Corollary D.2.2 (Proposition 6.4 in 2). Let {X(n)} be a sequence of
random variables. Suppose that for every ε > 0

∞
∑
n=1

sup
m≥n

P(∣X(n)−X(m)∣ ≥ ε) <∞

then {X(n)} converges a.e.

The Chebyshev inequality is often used to show that the summa-
bility condition in the Borel-Cantelli lemma is satisfied.

Lemma D.2.2 (p.48
3. Chebyshev’s inequality). Let ϕ be a symmetric,

strictly positive and increasing function on (0,∞) and let X be a random
variable such that E [ϕ(X))]. Then

P(∣X∣ ≥ ε) ≤
E [ϕ(X)]

ϕ(u)

D.3 The normal distribution

Definition D.3.1. A random vector X ∈ Rn with pdf

N (x; µ, Σ) ∶= 1√
det(2π)Σ

e−
1
2 (x−µ)TΣ−1(x−µ), Σ > 0

is said to be normal distributed and has mean µ and covariance matrix Σ.

D.3.1 Singular normal distributions

When Σ is singular with rank m < n, X − µ is restricted to the range
space of Σ. With the factorization Σ = KKT where K ∈ Rn×m, X can
be given the following description

X = KZ + µ, where Z ∈ N (0, I)

Thus the outcomes of X − µ belong to the m-dimensional subspace
Rn

K ∶= {x = Kz, z ∈ Rm} of Rn. Then X does not have pdf in an
ordinary sense. In order to be able to write

P(X ∈ B) = ∫
B

px(x)dx

where B − µ ∈ Rn
K, we need to interpret dx as a volume measure over

Rn
K so that

∫
Rn

K

px(x)dx = 1

With this interpretation, the scaling of volume by the transformation
x − µ = Kz is given by dx =

√
det KTK dz 4. With B = {x = Kz + µ, z ∈ 4 S. Krantz and H. Parks. Geometric

Integration Theory. Birkhäuser Boston,
Boston, 2008. Chapter 5
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A}

∫
A

pz(z)dz = P(z ∈ A) = P(x ∈ B) = ∫
B

px(x)dx

= {
x = Kz + µ

dx =
√

det KTKdz
}

= ∫
A

px(Kz + µ)
√

det KTK dz

Since this holds for any measurable A, we can formally write

px(Kz + µ) = 1√
det KTK

pz(z) = 1√
det(2π)KTK

e−
1
2 zTz

which we can express in terms of x through the relation z = (KTK)−1KT(x−
µ)

px(x) = 1√
det(2π)KTK

e−
1
2 (x−µ)TK(KTK)−2KT(x−µ) (D.2)

We here recognize that K(KTK)−2KT is the Moore-Penrose pseudo-
inverse, denoted Σ+, of Σ = KKT , and that det KTK is the pseudo-
determinant of Σ, denoted det∗ Σ. We can thus write

px(x) = 1√
det∗(2π)Σ

e−
1
2 (x−µ)TΣ+(x−µ)

D.3.2 The expectation of a normal pdf

Lemma D.3.1. LetN (y; m, P) denote the pdf of a normal distribution with
mean m ∈ Rn and covariance P. Let X ∼ N (m, Px), X ∈ Rm. Then

E [N (y; AX, Py)] = N (y; Am, Py + APx AT) (D.3)

Proof. Completing the square using Lemma (A.5.1) gives

E [N(y; AX, Py)] (D.4)

=∫
e−

1
2 (y−Ax)T P−1

y (y−Ax)

(2π)n/2
√

detPy

e−
1
2 (x−m)T P−1

x (x−m)

(2π)m/2
√

detPx
dx

=∫
e−

1
2((y−Ax)T P−1

y (y−Ax)+(x−m)T P−1
x (x−m))

(2π)(n+m)/2
√

detPyPx
dx

=∫
e−

1
2((y−Am)T T−1(y−Am)+(x−x̂)TS−1(x−x̂))

(2π)(n+m)/2
√

detPyPx
dx (D.5)

where T, S and x̂ are defined in Lemma (A.5.1). We can further write
this as

E [N(y; AX, Py)]

= e−
1
2 (y−Am)T T−1(y−Am)

(2π)(n)/2
√

detPyPxS ∫
N(x; x̂, S)dx

= e−
1
2 (y−Am)T T−1(y−Am)

(2π)(n)/2
√

detPyPxS−1
(D.6)
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but

detPyPxS−1 = detPyPx(P−1
x + AT P−1

y A)−1 = detPy(I + AT P−1
y APx)

= detPydet(I + AT P−1
y APx) = detPydet(I + APx AT P−1

y )

= det(Py(I + APx AT P−1
y ) = det(Py + APx AT) = detT (D.7)

Inserting this in (D.6) gives the result.

D.4 Stein’s Identity

Lemma D.4.1. Let Z be distributed according to the canonical exponential
family (5.11)

p(z; θ) = eθT T(z)−A(θ)h(z) (D.8)

and let g be any differentiable function such that E [∣g′(Z)∣] <∞. Then

E [g′(Z)] = −E [(d
d

log h(Z)+ T′(Z)Tθ) gT(Z)] (D.9)
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