
Gather-scatter library in Nek5000

Documentation of the gs library developed by James Lottes

Nicolas Offermans

November 21, 2017

1 Introduction

The gather-scatter operation within Nek5000, using global communication be-
tween processes, has been implemented in a convenient library by James Lottes
(some of the issues regarding the implementation are discussed in [2]). In this
document, an overview of the capacities of this tool and a description on how
to use it are presented. The explanations that follow come mostly from the
comments in the gs code.

1.1 Basics of gather-scatter

When Nek5000 solves its equations on a global domain Ω made of E elements,
denoted Ωe (e = 1, ..., E), nodes may be numbered globally on Ω or locally
on Ωe. Following the notation and an example from [1] (see section 4.5.1), if
polynomial order N is considered, let N̄ = (N + 1)dE denote the number of
distinct nodes in Ω and u ∈ RN̄ denote the associated vector of nodal values.

Then, let ue ∈ R(N+1)d denote the vector of local basis coefficient associated
with Ωe. The collection of all the vectors ue is denoted uL. For example, if we
refer to figure (1), then the vectors u and uL are given by:

u =(u1, u2, u3, ..., u15)T ,

uL =(u1
1,1, u

1
1,2, ..., u

1
3,3, u

2
1,1, u

2
1,2, ..., u

2
3,3)T .

We denote Q the Boolean connectivity matrix that maps u to uL. The
operation

uL = Qu (1)

is called a scatter from the global to the local vector. The action of Q is to copy
the global values into the local vector. On the other hand, the operation

v = QTuL (2)

is called a gather. The action of QT is to sum entries from corresponding nodes.
Typically, a gather is usually very often followed directly by a scatter. The

combined gather-scatter operation is the result of the action of QQT .

1

Ω

u1 u2 u3

u4 u5 u6

u7 u8 u9

u10 u11

u12 u13

u14 u15

Ω1 Ω2

u1
1,1

u1
1,2

u1
1,3

u1
2,1

u1
2,2

u1
2,3

u1
3,1

u1
3,2

u1
3,3

u2
1,1

u2
1,2

u2
1,3

u2
2,1

u2
2,2

u2
2,3

u2
3,1

u2
3,2

u2
3,3

Figure 1: Example of a mapping between local and global numberings for a
domain made of two spectral elements.

2 Practical use of the library

In order to use the gather-scatter library, it is first necessary to initialize and
setup a handle based on a local-to-global mapping. Then, this handle can be
used for any gather-scatter operation on any corresponding data. In fact, the
way the library is built allows the user to perform more than a simple gather-
scatter operation. Depending on how the mapping is built, is is possible to
perform either a gather or a scatter operation only. It is also possible to compute
the minium or maximum value of a node. Furthermore, the flexibility of the
library allows the user to perform any kind of specific communication between
nodes with a proper mapping. First, we define some concepts and terms that
are necessary for the good comprehension of the library. Afterward, we explain
more in details the prototypes for the setup and the operation functions.

2.1 Concepts

2.1.1 Local-to-global mapping

For each element, a local-to-global mapping is a correspondence between the
local and the global numbering of the nodes. Consequently, for each group
of nel elements (each one being made of Nd nodes) owned by process p, the
mapping, denoted id(p), is simply an array of size nel × Nd, such that if i is
the local number of a node on the process, then its global number is given by
id(p)[i]. For example, if we consider the example in figure 1 and we assume that
nodes are owned by different processes (Ω1 on process 0 and Ω2 on process 1),
the local-to-global mapping arrays, are given by

id(0) =(1, 2, 3, 4, 5, 6, 7, 8, 9),

id(1) =(3, 10, 11, 6, 12, 13, 9, 14, 15).

If both elements are on the same process, the resulting mapping array is simply
the junction of id(0) and id(1). The elements of the mapping might positive
or negative, depending upon the desired behavior. If the element is negative,
then it is said to be “flagged”. This mapping allows the gs library to create a
topology for sending data between the processes and apply the gather-scatter
operation.

2

2.1.2 Symmetric behavior

If all the elements of the mapping are positve, then the behavior of the gather-
scatter operation is said to be symmetric. In that case, a gs operation performs
a “real” gather-scatter. If we assume that the vector uL is partioned among
several processes, each process p having a piece of the whole vector denoted by

u
(p)
L , then the resulting global vector v, which is partioned as well according to

v(p), is given after the gather-scatter operation by:

v(p)[i] =
∑

(p,j)∈S
id(p)[i]

u
(p)
L [j], (3)

where Si is the group of all local nodes having global index i. This means that
element i of v(p) is the sum of all elements having global index id(p)[i] (whatever
process they’re on).

2.1.3 Asymmetric behavior

If some elements of the mapping are negative, then the behavior is said to be
asymmetric. If only one pair (p, i) is unflagged (i.e. only one id(p)[i] is positive on
all p), the topology is said to be unique. If the topology is unique, only interface
elements are flagged negatively. Two subcases of the asymmetric behavior exist:
the transposed asymmetric and the non-transposed asymmetric behaviors.

In the non-transpose case, a local node having a negative global index (i.e.
that is flagged) does not participate in the sum from equation (3) but does
receive the result. In the specific case when the topology is unique (i.e. only
one id(p)[i] is positive on all p), this corresponds to applying the Q operator
from equation (2) or scatter operation.

In the transpose case, a local node having a negative global index (i.e. that is
flagged) does participate in the sum from equation (3) but does not receive
the result. In the specific case when the topology is unique (i.e. only one id(p)[i]
is positive on all p), this corresponds to applying the QT operator from equation
(1) or gather operation.

2.2 Setup

Before performing a gather-scatter operation, a handle needs to be created.
This handle is a structure that contains the information about to how do the
communication.

2.2.1 In C

In C, the prototype to call the setup is the following:

struct gs data ∗ gs s e tup (const s l ong ∗ id , u int n , const struct comm
∗comm, int unique , gs method method , int verbose) ;

Let us detail the inputs and output for that function.
Output:

• struct gs data* : the output is a pointer of type struct gs data, which
is the structure built for gs operations. This handle is the one that is used
for any gs operation using the topology built by gs setup.

3

Inputs:

• const slong *id : constant pointer to a vector containing the local to
global mapping. slong denotes signed long integer and is a data type
defined in types.h.

• uint n : number of elements in the mapping. In the case of parallel
computation, n is the number of local nodes possessed by a process (i.e.
this is the size of vector id).

• const struct comm *comm : constant pointer to a structure called
comm. This is a structure that is specific to Nek and this is not a simple
MPI communicator. Basic usage of the communicator structure can be
found in comm.h.

• int unique : if unique = 0, topology is based explicitly on the mapping
that is given to the function. If unique 6= 0 (typically unique = 1), a unique
topology is built. This means that, no matter the signs of the mapping
elements, the topology is such that only one pair (p, i) is unflagged (i.e.
only one id(p)[i] is positive on all p). Let us not that in any case, the
vector id is left unchanged.

• gs method method : method for the communication between processes.
The different options are:

– gs pairwise: ?

– gs crystal router : ?

– gs all reduce: ?

– gs auto: tries approximately 10 runs of each of the previous methods
and then chooses the fastest one.

• int verbose : statistics for the gather-scatter operation are displayed in
command line if verbose 6= 0 and are not otherwise.

Once the handle is not needed any more, it can be freed with gs free(struct
gs data *gsh).

2.2.2 In Fortran

The gather-scatter library can also be called from Fortran in a very similar, but
more limited, way as it is in C. The setup is done with

subroutine gs s e tup (gs handle , id , n , comm, mp) ,

where

• gs handle is the Fortran version of the gs handle, which is being set up,

• id is an integer array of the global mapping,

• n is the number of elements in the array,

• comm is an MPI communicator and not a specific structure like in the C
version,

4

• mp is the number of parallel processes.

Let us note that it is not possible to create a unique topology or to chose the
method for parallel communication. To free the handle, use gs free(gs handle).

2.3 Gather-scatter operation

2.3.1 In C

Once the handle has been set up, gather-scatter operation can be performed.
In C, the prototype of the corresponding function is given by:

void gs (void ∗u , gs dom dom, gs op op , unsigned transpose , struct
gs data ∗gsh , bu f f e r ∗buf) ;

The function has not output so let us analyze the inputs and how u is affected
by the operation.

Inputs:

• void *u : pointer to the local array of data.

• gs dom dom : type of the data stored in u. The different types are:

– gs int,

– gs double,

– gs float,

– gs long : long integer,

– gs sint : sint is defined in types.h,

– gs slong : slong is defined in types.h.

• gs op op: operation performed by the function. Not only the simple
gather-scatter operation (sum) is available. It is also possible to get the
minimum of maximum value of each local element or to multiply the ele-
ments. Same logic as for the sum applies concerning the symmetric/asym-
metric behaviors, unique topology, etc. Operations available are:

– gs add : “basic” gather-scatter,

– gs mul : the sum from equation 3 is replaced by a multiplication,

– gs max : the sum from equation 3 is replaced by the max operator,

– gs min: the sum from equation 3 is replaced by the min operator,

– gs bpr : unknown.

• unsigned transpose : if transpose = 0, the non-transpose asymmetric
behavior is used. This means that flagged interface elements do not par-
ticipate to the operation but still receive the result (scatter). Inversely, if
transpose 6= 0 (typically = 1), the transpose asymmetric behavior is used.
This means that flagged interface elements do participate to the operation
but do not receive the result (gather).

• struct gs data *gsh : pointer to the handle that has been created by
gs setup.

• buffer *buf : ??. This buffer can be the NULL pointer, in which case,
a static buffer is used, shared across all gs handles. Buffer structure is
defined in mem.h.

5

2.3.2 In Fortran

A gs operation is called with

subroutine gs op (gs handle , u , dom, op , transpose) ,

where

• gs handle is the gs handle,

• u is the local array containing the data,

• dom defines the data type:

– gs double if dom = 1,

– gs sint if dom = 2,

– gs slong if dom = 3.

• op defines the operation to be performed:

– gs sum if op = 1,

– gs mult if op = 2,

– gs min if op = 3,

– gs max if op = 4.

• transpose : just like in C, if transpose = 0, the non-transpose asymmetric
behavior is used. Inversely, if transpose 6= 0 (typically = 1), the transpose
asymmetric behavior is used.

2.4 Other functions

Some additonnal functions that make the use of the library easier are available.

2.4.1 gs unique

This function is available in C only and the prototype is:

void gs un ique (s l ong ∗ id , u int n , const struct comm ∗comm) ;

This call modifies id, ”flagging” (by negating id[i]) all (p, i) pairs in each group
except one. The sole ”unflagged” member of the group is chosen in an arbitrary
but consistent way. If the ”unique” flag is set when calling gs setup, the behavior
is equivalent to first calling gs unique, except that the id array is left unmodified.

2.4.2 gs many

This function combines the communication for gs operations on multiple arrays.
Its prototype is:

void gs many (void ∗const ∗u , unsigned k , gs dom dom, gs op op ,
unsigned transpose , struct gs data ∗gsh , bu f f e r ∗buf) ;

If u is an array of k arrays (each of length n as specified in gs setup), built like

6

double v1 [n] , v2 [n] , . . . , vk [n] ;
double (∗u) [k] = {v1 , v2 , . . . , vk } ;

then the function

gs many (u , k , gs double , op , t , g ,&buf) ;

is equivalent to

gs (v1 , gs double , op , t , g , &buf) ;
gs (v2 , gs double , op , t , g , &buf) ;
. . .
gs (vk , gs double , op , t , g , &buf) ;

A call in Fortran is equivalent but the different arrays need to be given
separately (up to 6):

subroutine gs many (gs handle , u1 , u2 , u3 , u4 , u5 , u6 , k , dom, op ,
transpose) .

2.4.3 gs vec

In C:

void gs vec (void ∗u , unsigned k , gs dom dom, gs op op , unsigned
transpose , struct gs data ∗gsh , bu f f e r ∗buf)

This operation is like ”gs” operating on the data double u[n][k], with summation
here being vector summation. Number of messages sent is independent of k.

In Fortran:

subroutine gs vec (gs handle , u , k , dom, op , transpose)

3 Examples

We now implement the example from figure 1 and analyze the results for differ-
ent configurations. We assume that Ω1 and Ω2 are on two different processes.
In table 1, we remind the local-to-global mapping id() and we present its asym-
metric version id asym(), obtained by applying function gs unique() to id(),
and a vector of arbitrary values u, on which the gs operations will be applied.
Columns corresponding to interface elements are colored in red, blue and green
for nodes 3, 6 and 9 respectively because they are the nodes of interest.

3.1 Symmetric behavior

We test the four different operations gs sum, gs mul, gs min and gs max in the
case of symmetric behavior, when id() is used. Results are presented in table 2.

We see that each interface element participates to the operation and receives
the result.

7

id() 1 2 3 4 5 6 7 8 9
Ω1 id asym() 1 2 -3 4 5 6 7 8 -9

u 1.0 1.5 2.0 2.0 0.8 0.4 0.5 0.1 2.5

id() 3 10 11 6 12 13 9 14 15
Ω2 id asym() 3 10 11 -6 12 13 9 14 15

u 1.0 0.3 0.9 1.2 1.2 2.1 0.8 0.3 0.7

Table 1: Mappings and initial array u. Columns corresponding to interface
elements are colored in red, blue and green for nodes 3, 6 and 9 respectively.

gs add Ω1 1.0 1.5 3.0 2.0 0.8 1.6 0.5 0.1 3.3
Ω2 3.0 0.3 0.9 1.6 1.2 2.1 3.3 0.3 0.7

gs mul Ω1 1.0 1.5 2.0 2.0 0.8 0.48 0.5 0.1 2.0
Ω2 2.0 0.3 0.9 0.48 1.2 2.1 2.0 0.3 0.7

gs min Ω1 1.0 1.5 1.0 2.0 0.8 0.4 0.5 0.1 0.8
Ω2 1.0 0.3 0.9 0.4 1.2 2.1 0.8 0.3 0.7

gs max Ω1 1.0 1.5 2.0 2.0 0.8 1.2 0.5 0.1 2.5
Ω2 2.0 0.3 0.9 1.2 1.2 2.1 2.5 0.3 0.7

Table 2: Results of the different gs operations when applied on array u in the
symmetric case.

3.2 Asymmetric behavior, transpose = 0

We test the four different operations gs sum, gs mul, gs min and gs max for the
asymmetric behavior, when id asym() is used, and when the transpose param-
eter is equal to 0. Results are presented in table 3.

As we can see for that very simple case, all the operations produce the same
result. The important thing to notice here is that nodes that have a negative id
do not participate to the operation but still receive the result (scatter operation).

gs add Ω1 1.0 1.5 1.0 2.0 0.8 0.4 0.5 0.1 0.8
Ω2 1.0 0.3 0.9 0.4 1.2 2.1 0.8 0.3 0.7

gs mul Ω1 1.0 1.5 1.0 2.0 0.8 0.4 0.5 0.1 0.8
Ω2 1.0 0.3 0.9 0.4 1.2 2.1 0.8 0.3 0.7

gs min Ω1 1.0 1.5 1.0 2.0 0.8 0.4 0.5 0.1 0.8
Ω2 1.0 0.3 0.9 0.4 1.2 2.1 0.8 0.3 0.7

gs max Ω1 1.0 1.5 1.0 2.0 0.8 0.4 0.5 0.1 0.8
Ω2 1.0 0.3 0.9 0.4 1.2 2.1 0.8 0.3 0.7

Table 3: Results of the different gs operations when applied on array u in the
symmetric case.

8

gs add Ω1 1.0 1.5 2.0 2.0 0.8 1.6 0.5 0.1 2.5
Ω2 3.0 0.3 0.9 1.2 1.2 2.1 3.3 0.3 0.7

gs mul Ω1 1.0 1.5 2.0 2.0 0.8 0.48 0.5 0.1 2.5
Ω2 2.0 0.3 0.9 1.2 1.2 2.1 2.0 0.3 0.7

gs min Ω1 1.0 1.5 2.0 2.0 0.8 0.4 0.5 0.1 2.5
Ω2 1.0 0.3 0.9 1.2 1.2 2.1 0.8 0.3 0.7

gs max Ω1 1.0 1.5 2.0 2.0 0.8 1.2 0.5 0.1 2.5
Ω2 2.0 0.3 0.9 1.2 1.2 2.1 2.5 0.3 0.7

Table 4: Results of the different gs operations when applied on array u in the
symmetric case.

3.3 Asymmetric behavior, transpose = 1

We test the four different operations gs sum, gs mul, gs min and gs max for the
asymmetric behavior, when id asym() is used, and when the transpose param-
eter is equal to 1. Results are presented in table 4.

Once again, results are pretty straightforward because the case is very simple.
The nodes which have a negative id do participate to the operation but do not
receive the result (gather operation).

9

References

[1] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge University Press, 2002. Cambridge
Books Online.

[2] P. F. Fischer, J. Lottes, D. Pointer, and A. Siegel. Petascale algo-
rithms for reactor hydrodynamics. Journal of Physics: Conference Series,
125(1):012076, 2008.

10

