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1. Introduction

In the present document we describe a toolbox for the spectral-element code
Nek5000 Fischer et al. (2008), aimed at computing turbulence statistics. The
toolbox is presented for a small test case, namely a periodic hill with Lx = 9h,
Ly = 3.035h and Lz = 4.5h, where x, y and z are the horizontal, vertical
and spanwise directions, respectively, and h is the hill height. The number of
elements in the xy−plane is 442, and the number of elements in z is 19, leading
to a total of 8,398 spectral elements. A polynomial order of N = 5 is chosen,
and the mesh is generated using ICEM-CFD. In this case, transition is triggered
by tripping the boundary layers on both surfaces by means of a random-volume
force implemented in the subroutine userf in per hill.usr. The toolbox
presented here allows to compute mean-velocity components, the Reynolds-
stress tensor as well as turbulent kinetic energy (TKE) and Reynolds-stress
budgets. Note that the present toolbox allows to compute turbulence statistics
in turbulent flows with one homogeneous direction (where the statistics are
based on time-averaging and averaging in the homogeneous direction), and
also in fully three-dimensional flows (with no periodic directions, where only
time-averaging is considered). The structure of the StatsToolbox folder is
as follows:

(i) The folder compile includes the files necessary to compile the main code,
both when running with 2D statistics (i.e., for flows with one homogeneous
direction) and with 3D statistics.

(ii) The folder run contains all the files necessary to run the case with the
statistics.

(iii) The folders cpost3d and post3d contain the files necessary to compile
and run the code used to postprocess the files obtained during the run
when using the 3D version of the statistics.
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(iv) The folders cinterp3d and interp3d contain the files necessary to
compile and run the code to interpolate spectrally the postprocessed
statistics into a given set of points.

(v) The folder post2d contains all the necessary files to compile and run the
postprocessing code corresponding to the 2D version of the statistics.

The usage of the statistics toolbox is described below, and the current ver-
sion for Nek5000-v17 is available at: https://github.com/atanarro94/
new-statistics.git

2. Description of the statistics toolbox

The statistics code is located in the compile folder. In particular, the
userchk subroutine from the main, per hill.usr file, calls the driver of the
statistics stat avg. This subroutine is located at ./stats/statistics.f,
which contains the main code for both the 2D and 3D statistics. All the variables
used in statistics.f are defined in the common block ./inc src/STATS,
which contains a very important parameter: STATS3D. If this parameter is set
to 1, then the 3D version of the statistics is used, whereas if this parameter is
set to 0 the 2D version will be used. Note that this parameter is important
since it defines the sizes of the variables when compiling, i.e., in the 2D version
of the statistics the variables are two-dimensional since the averaging in the
homogeneous direction is also performed while running the simulation.

Four run-time parameters are required by the statistics toolbox, and they
are all set in the .rea file located at ./run/per hill.rea. The parameters
under consideration are the following

(i) p068 STAT COMP. This parameter determines the number of time steps
between individual samples used to obtain the time-averaged statistics.
The default value is STAT COMP=10, and further insight on the recom-
mended values of STAT COMP to obtain converged statistics is given in
Ref. Vinuesa et al. (2016).

(ii) p069 STAT OUTP. This parameter determines the number of time steps
before writing statistics files on disk. These files will be described in detail
below, but a general rule is to write two statistics files per simulation.
Thus, if p011 NSTEPS is 1000, then p069 STAT OUTP would be set to
500.

(iii) p070 CHKPTSTEP. This parameter determines the number of time steps
before writing restart files on disk. We will not describe in detail the
restart procedure in the present document, but the general rule is as
with p069 STAT OUTP, namely to set this parameter so that two sets of
restart files are written per simulation.

(iv) p071 IFCHKPTRST. This parameter determines whether the simulation
is started from the initial condition provided in the useric subroutine,
or it is started from a restart field from a previous simulation. This will
not be discussed in detail in the present document, but the idea is that

https://github.com/atanarro94/new-statistics.git
https://github.com/atanarro94/new-statistics.git
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when p071 IFCHKPTRST is set to 1 then the simulation is initiated from
the restart fields.

When the subroutine driving the computation of turbulence statistics, i.e.
stat avg, is called for the first time, all the variables are initialized together
with the values of the parameters defined in the .rea file. If the current step
is a multiple of STAT COMP then the subroutine stat compute is called to
perform the statistic computation, and if the step is a multiple of STAT OUTP
then the statistics files are written to disk. Note that if the 3D version of the
statistics is used then the subroutine stat mfo outfld3D is used to write the
fields, and if the 2D version is used then a communication step is performed
first through the subroutine stat gl collation, and afterwards the writing
operation is carried out through the subroutine stat mfo outfld2D. The
writing operations use the .f field structure within Nek5000.

Regarding the stat compute subroutine, it is based on the idea of per-
forming time-averaging through the following process:

1) The time interval between the last sample taken to compute statistics and
the current one is calculated and stored in the variable dtime.

2) The total time period over which the current statistics file is being averaged
is stored in the variable stat atime.

3) The present sample represents a fraction of time with respect to the total
accumulated statistics of dtime/stat atime, and this fraction is stored
in variable beta.

4) Thus, the previously accumulated statistical quantities represent a fraction
of time corresponding to 1 − beta, a value that is stored in the variable
alpha.

5) The running time-average of a quantity φ, for which an accumulated time-
average φa has been obtained so far and for which a new statistical sample
φn has just been obtained, is computed as: φ = αφa + βφn. Note that here
φ denotes the running time-average of φ.

All the terms used to compute the various tensors and budgets, both in
the 2D and the 3D versions of the statistics, are described in §4. Note that the
process for time-averaging outlined above is the main operation performed in
the 3D version of the statistics, whereas in the 2D version the averaging over
the homogeneous direction is performed in addition to it. For instance, the
following Fortran 90 code is used in the stat compute subroutine to compute
the average of the horizontal velocity component:
! <u>t
if (STATS3D.eq.0) then
lnvar = lnvar + 1
npos = lnvar
call stat compute 1Dav1(slvel(1,1,1,1,1),npos,alpha,beta)
else
call add2sxy(STAT(1,npos),alpha,vx,beta,ntot)
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endif

If the 3D version of the statistics is considered, then the subroutine add2sxy
from the math.f file in the core of Nek5000 is used to compute the time av-
erage of the vx variable as described above, in terms of alpha and beta.
On the other hand, if the 2D version of the statistics is considered, then the
stat compute 1Dav1 subroutine is called. In this routine, the averaging
in the homogeneous direction is performed first, then the time-averaging is
carried out in a similar way as above, using the add2sxy subroutine. Note
that this subroutine is currently compatible with meshes extruded using the
n2to3 tool from Nek, and in the current version the homogeneous direction is
assumed to be z. This subroutine essentially performs local averages inside the
elements, seeks for all the elements aligned in the homogeneous direction, and
then calculates the mean of the locally-averaged values. Note that a similar
process is used in more complicated terms, such as for instance in the horizontal
velocity fluctuation term. This term would be computed as: u2 = ũũ − U2,
where ũũ is the time-average of the square of the instantaneous signal ũ, minus
the square of the mean value U . Since the mean value is only available after
averaging all the statistic files, in the run-time statistics code we compute the
term ũũ, and the final value u2 is computed in a post processing step. The code
employed to compute ũũ is the following:
! <uu>t
if (STATS3D.eq.0) then
lnvar = lnvar + 1
npos = lnvar
call stat compute 1Dav2(slvel(1,1,1,1,1),slvel(1,1,1,1,1),
$ npos,alpha,beta)
else
call col3(STAT UU,vx,vx,ntot)
call add2sxy(STAT(1,npos),alpha,STAT UU,beta,ntot)
endif

In the 3D version of the statistics, the subroutine col3 from the math.f file
is used first to compute the square of vx, and then the subroutine add2sxy is
used to perform the time-average operation as above. A similar process is carried
out in the 2D version of the statistics, where the subroutine stat compute 1Dav2
is a modified version of stat compute 1Dav1 which performs the averaging
in the homogeneous direction of the square of vx first, then it calculates the
time average through add2sxy. In the basic version of the toolbox presented
here, a total of 44 quantities are computed and stored, both in the 2D and 3D
version of the statistics. Note that this is defined by the parameter STAT LVAR
in the STATS common block. The averaged quantities are stored in the variable
STAT RUAVG in the case of the 2D statistics, and in STAT in the 3D version.
Note however that only one set of variables (2D or 3D) is compiled, as indicated
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by the parameter STATS3D. Moreover, the averaged quantities are stored in
the same field number in both versions of the statistics, as summarized in Table
1. A more detailed description of the various terms under consideration is given
in §4, and further information regarding turbulence statistics can be found in,
for instance, Ref. Pope (2008).

Variable Position Variable Position
<u>t 1 <pdwdz>t 23
<v>t 2 <uuu>t 24
<w>t 3 <vvv>t 25
<p>t 4 <www>t 26
<uu>t 5 <uuv>t 27
<vv>t 6 <uuw>t 28
<ww>t 7 <vvu>t 29
<pp>t 8 <vvw>t 30
<uv>t 9 <wwu>t 31
<vw>t 10 <wwv>t 32
<uw>t 11 <ppp>t 33
<pu>t 12 <pppp>t 34
<pv>t 13 <uvw>t 35
<pw>t 14 <uuuu>t 36

<pdudx>t 15 <vvvv>t 37
<pdudy>t 16 <wwww>t 38
<pdudz>t 17 <e11>t = (du/dx)**2 + (du/dy)**2 + (du/dz)**2 39
<pdvdx>t 18 <e22>t = (dv/dx)**2 + (dv/dy)**2 + (dv/dz)**2 40
<pdvdy>t 19 <e33>t = (dw/dx)**2 + (dw/dy)**2 + (dw/dz)**2 41
<pdvdz>t 20 <e12>t = (du/dx)*(dv/dx) + (du/dy)*(dv/dy) + (du/dz)*(dv/dz) 42
<pdwdx>t 21 <e13>t = (du/dx)*(dw/dx) + (du/dy)*(dw/dy) + (du/dz)*(dw/dz) 43
<pdwdy>t 22 <e23>t = (dv/dx)*(dw/dx) + (dv/dy)*(dw/dy) + (dv/dz)*(dw/dz) 44

Table 1: List of the 44 variables computed in the statistics toolbox, and position
where they are stored in the corresponding variable, i.e., STAT RUAVG in
the case of the 2D statistics, and STAT in the 3D version. Note that in the
nomenclature employed here, <u>t denotes time-average of the time signal ũ
in the 3D version; in the 2D version of the code, averaging in the homogeneous
direction is performed in addition to the time-averaging.

3. Postprocessing of the statistics files

3.1. Postprocessing using the 3D version of the statistics

When running the 3D version of the statistics toolbox, the result is the
time-average of the 44 variables summarized in Table 1. Since no averaging is per-
formed in any homogeneous direction, the resulting fields are three-dimensional.
These are stored in a total of 11 files, named from s01per hill0.f00001 to
s11per hill0.f00001. Note that one typically writes two sets of statistics
files per simulation, which means that at the end of the run one would obtain
11 fields with .f00001 and 11 more with .f00002. The time-average of these
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two would constitute the time-average of the full run. If the complete case under
consideration is split into, for instance, 10 runs, then the time-average of each
of the 11 files would be obtained from 20 individual fields. The postprocessing
code used to perform this operation is located at ./cpost3d/per hill.f.
In this folder one sets up the Nek5000 with the same SIZE parameters as the
original case, since the postprocessing files are also three-dimensional. In this
code, the variable mtimes defines the beginning of the time-averaging period.

After setting up the case and compiling, the postprocessing code is run
on the directory ./post3d, where Nek5000 is set to postprocessing mode by
setting the parameter p011 NSTEPS from the .rea file to 0. The number of
fields to read and average in time, i.e., 20 in the example described above, is
set through the parameter p068 from the .rea file. This code computes all
the statistics described in §4, including mean flow, Reynolds-stress tensor and
budgets, and outposts all these terms in three-dimensional fields. The result is a
total of 20 files, named a01per hill0.f00001 to a22per hill0.f00001,
containing all the three-dimensional turbulence statistics and some derivatives.
These fields can then be visualized in VisIt, or further analyzed by interpolating
them into a new mesh with the files located at cinterp3d and interp3d.
The interpolation is done in the mesh defined through x.fort, y.fort and
z.fort, which is created with the Matlab script per hill geom.m (located
at interp3d) and saved at ./interp3d/ZSTAT. The interpolation gives as
result the file ./ZSTAT/int fld which contains the interpolated data. This
file is read and further postprocessed with the matlab script per hill stat.m

3.2. Postprocessing using the 2D version of the statistics

In the 2D version of the statistics, the result is the average in time and in
the homogeneous direction of the 44 variables summarized in Table 1, which
implies that the resulting fields are two-dimensional. These are stored in a
single file named stsper hill0.f00001, and as in §3.1 the typical approach
is to save two files per simulation: .f00001 and .f00002. The postprocessing
code for the 2D version of the statistics is located at ./post2d/per hill.f,
where Nek5000 is run in postprocessing mode (namely with the parameter p011
NSTEPS from the .rea file set to 0), but also with the dimension in the SIZE
file set to 2, given the fact that the statistics files are two-dimensional.

The variables in the stsper hill0.f files are defined in the 2D version
of the spectral-element mesh used to run the simulation. However, it is often
useful to define a different mesh, where the following analysis can be performed
more conveniently, for instance without the difficulties introduced by the Gauss–
Lobatto–Legendre (GLL) distribution of points within elements. This mesh is
defined in the Matlab script mesh G.m, which produces two binary files with
the mesh coordinates: x.fort and y.fort. These are stored in the folder
./ZSTAT. As in §3.1, the number of statistics fields to average is set through the
parameter p068 from the .rea file, and the beginning of the time-averaging
interval is defined through the variable mtimes. Then, when running this
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code all the stsper hill0.f files will be read, averaged in time, and then
interpolated to the mesh defined through x.fort and y.fort. The result is
stored in the file int fld, which is also located in the folder ./ZSTAT. Finally,
the Matlab script per hill stat.m reads the int fld, and computes all
the turbulence statistics, including mean flow, Reynolds-stress tensor and the
corresponding budgets. The final result is therefore expressed as a series of 2D
matrices in Matlab, which can be further analyzed.

4. Description of the terms

In the following, x, y and z denote the three spatial coordinates, whereas
ũ, ṽ and w̃ are the corresponding instantaneous velocity components. Time-
averages are denoted by (·) or capital letters (U , V and W are the mean velocity
components). Lower case corresponds to fluctuating velocities, so the velocity

fluctuation is defined as: u2 = ũ2 −U2. Note that index summation notation is
also used when required. Therefore, the mean velocities constitute a tensor of
rank 1:

Ui =

 U
V
W

 , (1)

and the (symmetric) Reynolds-stress tensor has rank 2:

uiuj =

 u2 uv uw

uv v2 vw

uw vw w2

 . (2)

Another second-order tensor corresponds to the velocity gradients of the mean
velocities:

∂iUj =

 ∂U/∂x ∂U/∂y ∂U/∂z
∂V/∂x ∂V/∂y ∂V/∂z
∂W/∂x ∂W/∂y ∂W/∂z

 . (3)

The skewness is a third-order tensor related to the triple-product terms, and it
is defined as:

Si,j,1 =

 u3 u2v u2w

u2v uv2 uvw

u2w uvw uw2

 , Si,j,2 =

 u2v uv2 uvw

uv2 v3 v2w

uvw v2w vw2

 , (4)

Si,j,3 =

 u2w uvw uw2

uvw v2w vw2

uw2 vw2 w3

 . (5)

The transport equation of the Reynolds-stress tensor can be written as:

∂

∂t
uiuj = Pij + εij +Dij + Tij −Πs

ij + Πt
ij − Cij , (6)

which involves the following tensors of rank 2: Pij is the production, εij is the
pseudo dissipation (see the discussion in Ref. Pope (2008)), Dij is the viscous
diffusion, Tij is the turbulent transport, Πs

ij is the pressure strain, Πt
ij is the
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pressure transport and Cij is the convection. Time is denoted by t. The various
tensors are defined as (where ρ and ν denote the fluid density and kinematic
viscosity respectively, and p corresponds to the pressure):

Pij = −uiuk
∂Uj
∂xk

− ujuk
∂Ui
∂xk

, (7)

εij = −2ν
∂ui
∂xk

∂uj
∂xk

, (8)

Dij = ν
∂2

∂x2k
uiuj , (9)

Tij = − ∂

∂xk
uiujuk, (10)

Πs
ij = −1

ρ

(
p
∂ui
∂xj

+ p
∂uj
∂xi

)
, (11)

Πt
ij = −1

ρ

(
∂

∂xj
pui +

∂

∂xi
puj

)
. (12)

Cij = Uk
∂

∂xk
uiuj . (13)

The pressure transport and the pressure strain tensors can be combined to form
the velocity-pressure-gradient tensor Πij , defined as follows:

Πij = −1

ρ

(
ui
∂p

∂xj
+ uj

∂p

∂xi

)
. (14)

Using the chain rule:

∂

∂xi
puj = uj

∂p

∂xi
+ p

∂uj
∂xi

, (15)

which implies that the velocity-pressure-gradient tensor can be computed as:

Πij = Πt
ij −Πs

ij . (16)

It is also possible to write a transport equation for the turbulent kinetic

energy (TKE), defined as k = 1/2
(
u2 + v2 + w2

)
:

∂k

∂t
= P k + εk +Dk + T k −Πk,s + Πk,t − Ck, (17)

where each of the terms can be obtained from the respective tensor, as exempli-
fied here for the case of TKE production:

P k =
1

2
(Pxx + Pyy + Pzz) . (18)
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4.1. Components of the production tensor

The following terms constitute the various components of the production
tensor Pij , both in 2D and in 3D:

P 2D
xx = −2

(
u2
∂U

∂x
+ uv

∂U

∂y

)
, (19)

P 3D
xx = −2

(
u2
∂U

∂x
+ uv

∂U

∂y
+ uw

∂U

∂z

)
. (20)

P 2D
yy = −2

(
uv
∂V

∂x
+ v2

∂V

∂y

)
, (21)

P 3D
yy = −2

(
uv
∂V

∂x
+ v2

∂V

∂y
+ vw

∂V

∂z

)
. (22)

P 2D
zz = −2

(
uw

∂W

∂x
+ vw

∂W

∂y

)
, (23)

P 3D
zz = −2

(
uw

∂W

∂x
+ vw

∂W

∂y
+ w2

∂W

∂z

)
, (24)

P 2D
xy = −

(
u2
∂V

∂x
+ uv

∂U

∂x
+ uv

∂V

∂y
+ v2

∂U

∂y

)
, (25)

P 3D
xy = −

(
u2
∂V

∂x
+ uv

∂U

∂x
+ uv

∂V

∂y
+ v2

∂U

∂y
+ uw

∂V

∂z
+ vw

∂U

∂z

)
. (26)

P 2D
xz = −

(
u2
∂W

∂x
+ uw

∂U

∂x
+ uv

∂W

∂y
+ vw

∂U

∂y

)
, (27)

P 3D
xz = −

(
u2
∂W

∂x
+ uw

∂U

∂x
+ uv

∂W

∂y
+ vw

∂U

∂y
+ uw

∂W

∂z
+ w2

∂U

∂z

)
. (28)

P 2D
yz = −

(
uv
∂W

∂x
+ uw

∂V

∂x
+ v2

∂W

∂y
+ vw

∂V

∂y

)
, (29)

P 3D
yz = −

(
uv
∂W

∂x
+ uw

∂V

∂x
+ v2

∂W

∂y
+ vw

∂V

∂y
+ vw

∂W

∂z
+ w2

∂V

∂z

)
. (30)

4.2. Components of the pseudo dissipation tensor

As discussed by Pope Pope (2008), the difference between the pseudo
dissipation and the dissipation is very small in virtually all cases. Expressing
the budget in terms of the pseudo dissipation leads to a small additional term,
which would be added to the viscous diffusion discussed below. The following
terms constitute the various components of the pseudo dissipation tensor εij ,
which are the same in 2D and in 3D:

ε2D,3Dxx = −2ν

[ (
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2
]
. (31)
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ε2D,3Dyy = −2ν

[ (
∂v

∂x

)2

+

(
∂v

∂y

)2

+

(
∂v

∂z

)2
]
. (32)

ε2D,3Dzz = −2ν

[ (
∂w

∂x

)2

+

(
∂w

∂y

)2

+

(
∂w

∂z

)2
]
. (33)

ε2D,3Dxy = −2ν

[
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
+
∂u

∂z

∂v

∂z

]
. (34)

ε2D,3Dxz = −2ν

[
∂u

∂x

∂w

∂x
+
∂u

∂y

∂w

∂y
+
∂u

∂z

∂w

∂z

]
. (35)

ε2D,3Dyz = −2ν

[
∂v

∂x

∂w

∂x
+
∂v

∂y

∂w

∂y
+
∂v

∂z

∂w

∂z

]
. (36)

4.3. Components of the viscous diffusion tensor

The following terms constitute the various components of the viscous
diffusion tensor Dij , which are the same in 2D and in 3D:

D2D,3D
xx = ν

(
∂2

∂x2
u2 +

∂2

∂y2
u2 +

∂2

∂z2
u2
)
. (37)

D2D,3D
yy = ν

(
∂2

∂x2
v2 +

∂2

∂y2
v2 +

∂2

∂z2
v2
)
. (38)

D2D,3D
zz = ν

(
∂2

∂x2
w2 +

∂2

∂y2
w2 +

∂2

∂z2
w2

)
. (39)

D2D,3D
xy = ν

(
∂2

∂x2
uv +

∂2

∂y2
uv +

∂2

∂z2
uv

)
. (40)

D2D,3D
xz = ν

(
∂2

∂x2
uw +

∂2

∂y2
uw +

∂2

∂z2
uw

)
. (41)

D2D,3D
yz = ν

(
∂2

∂x2
vw +

∂2

∂y2
vw +

∂2

∂z2
vw

)
. (42)
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4.4. Components of the turbulent transport tensor

The following terms constitute the various components of the turbulent
transport tensor Tij , both in 2D and in 3D:

T 2D
xx = −

(
∂

∂x
u3 +

∂

∂y
u2v

)
, (43)

T 3D
xx = −

(
∂

∂x
u3 +

∂

∂y
u2v +

∂

∂z
u2w

)
. (44)

T 2D
yy = −

(
∂

∂x
uv2 +

∂

∂y
v3
)
, (45)

T 3D
yy = −

(
∂

∂x
uv2 +

∂

∂y
v3 +

∂

∂z
v2w

)
. (46)

T 2D
zz = −

(
∂

∂x
uw2 +

∂

∂y
vw2

)
, (47)

T 3D
zz = −

(
∂

∂x
uw2 +

∂

∂y
vw2 +

∂

∂z
w3

)
. (48)

T 2D
xy = −

(
∂

∂x
u2v +

∂

∂y
uv2
)
, (49)

T 3D
xy = −

(
∂

∂x
u2v +

∂

∂y
uv2 +

∂

∂z
uvw

)
. (50)

T 2D
xz = −

(
∂

∂x
u2w +

∂

∂y
uvw

)
, (51)

T 3D
xz = −

(
∂

∂x
u2w +

∂

∂y
uvw +

∂

∂z
uw2

)
. (52)

T 2D
yz = −

(
∂

∂x
uvw +

∂

∂y
v2w

)
, (53)

T 3D
yz = −

(
∂

∂x
uvw +

∂

∂y
v2w +

∂

∂z
vw2

)
. (54)

4.5. Components of the velocity-pressure-gradient tensor

The following terms constitute the various components of the viscous
diffusion tensor Πij , which are the same in 2D and in 3D:

Π2D,3D
xx = −2

ρ
u
∂p

∂x
. (55)

Π2D,3D
yy = −2

ρ
v
∂p

∂y
. (56)
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Π2D,3D
zz = −2

ρ
w
∂p

∂z
. (57)

Π2D,3D
xy = −1

ρ

(
u
∂p

∂y
+ v

∂p

∂x

)
. (58)

Π2D,3D
xz = −1

ρ

(
u
∂p

∂z
+ w

∂p

∂x

)
. (59)

Π2D,3D
yz = −1

ρ

(
v
∂p

∂z
+ w

∂p

∂y

)
. (60)

4.6. Components of the pressure strain tensor

The following terms constitute the various components of the pressure strain
tensor Πs

ij , which are the same in 2D and in 3D:

Πs,2D,3D
xx = −2

ρ
p
∂u

∂x
. (61)

Πs,2D,3D
yy = −2

ρ
p
∂v

∂y
. (62)

Πs,2D,3D
zz = −2

ρ
p
∂w

∂z
. (63)

Πs,2D,3D
xy = −1

ρ

(
p
∂u

∂y
+ p

∂v

∂x

)
. (64)

Πs,2D,3D
xz = −1

ρ

(
p
∂u

∂z
+ p

∂w

∂x

)
. (65)

Πs,2D,3D
yz = −1

ρ

(
p
∂v

∂z
+ p

∂w

∂y

)
. (66)

4.7. Components of the pressure transport tensor

The following terms constitute the various components of the pressure
transport tensor Πt

ij , which are the same in 2D and in 3D:

Πt,2D,3D
xx = −2

ρ

∂

∂x
pu. (67)

Πt,2D,3D
yy = −2

ρ

∂

∂y
pv. (68)

Πt,2D,3D
zz = −2

ρ

∂

∂z
pw. (69)
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Πt,2D,3D
xy = −1

ρ

(
∂

∂y
pu+

∂

∂x
pv

)
. (70)

Πt,2D,3D
xz = −1

ρ

(
∂

∂z
pu+

∂

∂x
pw

)
. (71)

Πt,2D,3D
yz = −1

ρ

(
∂

∂z
pv +

∂

∂y
pw

)
. (72)

4.8. Components of the convection tensor

The following terms constitute the various components of the convection
tensor Cij , both in 2D and in 3D:

C2D
xx = U

∂

∂x
u2 + V

∂

∂y
u2, (73)

C3D
xx = U

∂

∂x
u2 + V

∂

∂y
u2 +W

∂

∂z
u2. (74)

C2D
yy = U

∂

∂x
v2 + V

∂

∂y
v2, (75)

C3D
yy = U

∂

∂x
v2 + V

∂

∂y
v2 +W

∂

∂z
v2. (76)

C2D
zz = U

∂

∂x
w2 + V

∂

∂y
w2, (77)

C3D
zz = U

∂

∂x
w2 + V

∂

∂y
w2 +W

∂

∂z
w2. (78)

C2D
xy = U

∂

∂x
uv + V

∂

∂y
uv, (79)

C3D
xy = U

∂

∂x
uv + V

∂

∂y
uv +W

∂

∂z
uv. (80)

C2D
xz = U

∂

∂x
uw + V

∂

∂y
uw, (81)

C3D
xz = U

∂

∂x
uw + V

∂

∂y
uw +W

∂

∂z
uw. (82)

C2D
yz = U

∂

∂x
vw + V

∂

∂y
vw, (83)

C3D
yz = U

∂

∂x
vw + V

∂

∂y
vw +W

∂

∂z
vw. (84)
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5. Description of the volume-force tripping

The tripping used in this case to trigger the turbulent boundary layer
is implemented as a weak random volume forcing which acts in the vertical
direction. This tripping is based on the work by Schlatter and Örlü Schlatter
& Örlü (2012) where a detailed description of the parameters and functions
defining the tripping is included, and it has been used in complex simulations
such as the direct numerical simulation (DNS) of a wing by Hosseini et al.
Hosseini et al. (2016).

The tripping code is located in the compile folder. In particular, in the
per hill.usr file which calls the driver of the tripping tripf. This subrou-
tine is located at ./tripf.f, which contains the main code for the tripping
except some subroutines which are included in per hill.usr. All the variables
used in tripf.f are defined in the common block ./inc src/TRIPF.

The parts of the tripping code that need to be added in the .usr file are:

• The definition of the Gaussian forcing in the subroutine userf. Note
that this definition must be changed according to the case under study
(e.g. tripping along the 4 walls of a square duct) since the routine in the
example is only valid for two tripping lines in the z direction.

• Two lines in userchk to call the subroutines that read the tripping
parameters, readtrip par, and drive the tripping, tripf.

• In usrdat3, the code that reads the tripping parameters again (call
readwallfile) and finds the GLL points in which the tripping is
applied.

In order to run with tripping, two files are required in the run folder:
per hill.wall and forparam.i. Both of these files contain the param-
eters needed for tripping. Regarding the per hill.wall file, the included
parameters are:

• nwalls: determines the number of tripping lines to be used in the
problem.

• nwallpar: number of global parameters (i.e. defined in the same file).
• npwallpar: number of parameters rows for each wall (coordinates

of the line are not considered as a row). In the current version of
the tripping this value is equal to 1 referring to the line in which the
smoothing lengths in each direction are defined.

• Global parameters: these parameters are computed following the guide-
lines from Ref. Schlatter & Örlü (2012). The parameters correspond
to: time-independent amplitude, time-dependent amplitude, temporal
cut-off scale (i.e. ts = 4δ∗/U∞), number of modes for the top wall in the
periodic hill (i.e. zs = L/(1.7δ∗) where L is the length of the tripping
line) and the number of modes of the bottom wall of the periodic hill.
Note that δ∗ is the displacement thickness of the laminar boundary layer
at the inflow.
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• Parameters per wall: usually consists of 3 rows for each wall in which
the following parameters are defined: the direction of the tripping (i.e.
x, y or z), the coordinates of position for the tripping line (note that
the coordinates of the points in the direction of the tripping line are not
needed) and the smoothing parameters of the Gaussian, function which
are determined as σx = 4δ∗, σy = δ∗ and σz = 0 for a case with x as the
streamwise direction, y as the vertical direction and z as the direction in
which the tripping is applied.

The other file in which the tripping parameters are defined is forparam.i.
These parameters correspond, in sequential order, to:

1. x coordinate of the first tripping line (it must match the first tripping
line defined in per hill.wall).

2. y coordinate of the first tripping line.
3. x coordinate of the second tripping line.
4. y coordinate of the second tripping line.
5. σx for the first tripping line.
6. σy for the first tripping line.
7. σx for the second tripping line.
8. σy for the second tripping line.
9. Temporal cutoff scale ts.

10. Time-independent amplitude.
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