
DD2459: Software Reliability, sofRel22

Lab 1: White-box Testing
Answer all 4 questions.

Introduction:
The triangle program is a famous testing problem that originated in Myers classical 1979
textbook on testing. It has appeared in many books and papers since, as it is often a good
benchmark for new ideas about testing. The program requirement is defined as follows:

“The program reads three integer values. The three values are interpreted as representing the
lengths of the sides of a triangle. The program prints a message that states whether the triangle
is scalene, isosceles, or equilateral” (Myers, page 1)

We need to recall some facts from elementary geometry:

1. A triangle is a polygon with three sides.

2. The vertices of a triangle must not be in a straight line.

3. An equilateral triangle has three sides of equal length.

4. An isosceles triangle has two sides of equal length.

5. A scalene triangle has three sides of different lengths.

The	Triangle	Test	algorithm	below	(hopefully)	implements	the	requirement	defined	
above.	Note	below	that	|	is	the	eager	or	sequential	or	operation	(aka	classical	Boolean	
disjunction)	and	&	is	the	eager	or	sequential	and	operation	(aka	classical	Boolean	
conjunction).	
	
enumeration Kind = { scalene, isosceles, equilateral, notriangle,
badside } // a data type definition

Kind triangleTest(s1, s2, s3 : int) {
 if s1 <= 0 | s2 <= 0 | s3 <= 0
 then return badside
 else
 if s1+s2 <= s3 | s2+s3 <= s1 | s1+s3 <= s2
 then return notriangle
 else
 if s1==s2 & s2==s3
 then
 return equilateral
 else
 if s1==s2 | s2==s3 | s1==s3
 then
 return isosceles

 else
 return scalene
}

Question 1. Draw a condensation graph for the Triangle Test algorithm.

In this exercise, you will write out test requirements as paths through this condensation
graph to achieve different levels of control flow coverage. Make sure to introduce a
systematic naming convention for (a) your requirements and (b) your test cases, such
as the one used below.

Worked Example: NC TR1: n4

is a test requirement for control flow coverage (i.e. a list of node names) that specifies
to cover node n4 in a condensation graph for Algorithm 1, attempting to achieve node
coverage (NC).

A test case (i.e. an assignment of values to the program input variables) that satisfies
requirement NC TR1 would be
NC TC1: S1 = 1, s2 = 1, s3 = 1.

1.1 (a) Write a set of test requirements that achieve full node coverage (NC) for the
Triangle Test algorithm.
(b) Write out a minimized set of test cases satisfying the requirements of (a).

1.2. (a) Write out a set of test requirements that achieve full edge coverage (EC) for the
Triangle Test algorithm.
(b) Write out a minimized corresponding set of test cases.
(c) Why are node coverage and edge coverage the same in this example? Carefully
explain your reasoning about this fact.

(Exercise continues on the next page.)

Question 2. In this exercise, you will write out test requirements as logical constraints
on the input variable values s1, s2 and s3 to achieve different levels of logic coverage.

 Worked Example: PC TR1: s1 <= 0 | s2 <= 0 | s3 <= 0

is a test requirement for logic coverage (i.e. a constraint on the input variables of the
program) that makes a predicate at a node (which node?) in a condensation graph for
Question 1, true, in order to achieve full predicate coverage (PC).

Then you must write out a test case that satisfies each requirement. If you can minimize
the set of test cases by eliminating redundant test cases that is a (locally) optimal
solution. A test case satisfying requirement PC TR1 might be:

 PC TC1: s1 = 0, s2 = 0, s3 = 0

which satisfies this test requirement at a boundary.

2.1. (a) Write out a set of test requirements that achieve full predicate coverage (PC) for
the Triangle test algorithm 1. (Recall that non-distributive predicate coverage is
sufficient here.) Write the corresponding set of test cases.

(b) Looking back on your answers to 1.1.(b) node coverage (NC) and 2.1.(a) predicate
coverage (PC) are these always the same for every condensation graph?

(c) Can you modify your condensation graph for Question 1 in some simple way so that
predicate coverage PC and node coverage NC are not the same. You do not have to
preserve the functionality of the program. Verify that your answer is correct by writing
out corresponding test suites for your PC and NC requirements that are different.

2.2. (a) Write out a set of test requirements that achieve full clause coverage (CC) for
the Triangle Test Algorithm, using your condensation graph model.

(b) Write out a corresponding set of test cases.

2.3. (a) Write out a set of test requirements that achieve full restricted active clause
coverage (RACC) (also known as unique cause MCDC) for the Triangle Test Algorithm,
using your condensation graph model.

(b) Write out a corresponding set of test cases.

(Exercise continues on the next page.)

	
Question	3.	Consider the following piece of code:

x = x+1;

 while (x < -100 ⏐ x > 100) {

if (x < -100) then { x = x+1; } else

if (x > 100) then { x = x-1; }

}

return x;  

You can assume that x:int is the single input variable to the above program, and
that ⏐ is the “lazy or” operation

(a) Draw a condensation graph for this code.
(b) Define a minimal set TR of test requirements on the input variable x that would

achieve full (100%) node coverage for this program. Carefully explain why your
test requirement set is actually minimal.

(c) Produce a set TC of test cases that satisfy your test requirements for TR in Part
3.(b).  

(d) Would predicate coverage yield a better test suite than your answer to 3.(c)?
Motivate your answer.  

	
	
	
PTO.	
Question	4.	Self-Assessment	
For	each	of	the	five	sets	of	test	cases	you	have	produced	in	Questions	1	and	2	(i.e.	for	
each	of	the	five	coverage	models	NC,	EC,	PC,	CC,	RACC)	,	answer	the	following	14	self	
assessment	questions.	For	each	coverage	model,	score	1	point	for	a	requirement	
that	is	satisfied	(maximum	possible	is	12	points).		
	
Draw	up	a	table	that	compares	the	total	score	achieved	for	each	of	the	5	coverage	
models.	Which	coverage	model	achieves	the	highest	score	in	your	table?	What	does	
your	table	say	about	the	coverage	models?	

	
(Exercise continues on the next page.)
	
	
	
1.	Do	you	have	a	test	case	that	represents	a	valid	scalene	triangle?	
	
2.	Do	you	have	a	test	case	that	represents	a	valid	equilateral	triangle?	
	
3.	Do	you	have	a	test	case	that	represents	a	valid	isosceles	triangle?	
	
4.	Do	you	have	at	least	three	test	cases	that	represent	valid	isosceles	triangles	such	
that	you	have	tried	all	three	permutations	of	two	equal	sides?	
	
5.	Do	you	have	a	test	case	in	which	one	side	has	a	zero	value?	
	
6.	Do	you	have	a	test	case	in	which	one	side	has	a	negative	value?	
	
7.	Do	you	have	a	test	case	with	three	integers	such	that	the	sum	of	two	is	equal	to	
the	third?	
	
8.	Do	you	have	at	least	three	test	cases	in	category	7	such	that	you	have	tried	all	
three	permutations	where	the	length	of	one	side	is	equal	to	the	sum	of	the	lengths	of	
the	other	two	sides?	
	
9.	Do	you	have	a	test	case	with	three	integers	greater	than	zero	such	that	the	sum	of	
two	numbers	is	less	than	the	third?	
	
10.	Do	you	have	at	least	three	test	cases	in	category	9	such	that	you	have	tried	all	
three	permutations	
	
11.	Do	you	have	a	test	case	in	which	all	sides	are	zero?	
	
12.	Do	you	have	at	least	one	test	case	specifying	non-integer	values	or	does	this	not	
make	sense?	
	
13.	Do	you	have	at	least	one	test	case	specifying	the	wrong	number	of	values	(2	or	
less,	four	or	more)	or	does	this	not	make	sense?	
	
14.	For	each	test	case,	did	you	specify	the	expected	output	from	the	program	in	
addition	to	the	input	values?	
	
Reference:	G.J.	Myers,	The	Art	of	Software	Testing,	John	Wiley	and	Sons,	1979.	
	

