
DD2459:	Software	Reliability,	sofRel22	
	

Lab	2:	Black-box	and	Requirements-Based	Testing:		
Sorting	and	Searching	
Answer	all	4	questions.	

	
	
Introduction:		
	
Sorting,	searching	and	membership	are	three	classical	problems	in	computer	science	for	
which	dozens	of	algorithms	exist.	Each	of	these	problems	take	as	input	an	array	of	values	
chosen	from	some	ordered	set	(e.g.	integers,	floating	points).	In	sorting,	we	return	an	output	
array	of	the	same	length,	consisting	of	the	input	array	elements	reordered	into	ascending	
order.	In	searching,	we	take	an	additional	input	value,	which	is	a	value	that	might	occur	in	
the	array.	This	value	is	known	as	the	key.	Searching	returns	an	integer	value	that	should	be	
n	if	the	key	occurs	in	the	input	array,	in	position	n	and	-1	if	it	does	not	occur	anywhere	in	
the	array.	Membership	returns	a	Boolean	value	that	should	be	1	if	the	key	occurs	in	the	input	
array,	and	0	if	it	does	not	occur	anywhere	in	the	array.	
	
It	is	well	known	that	if	we	need	to	do	a	large	number	of	searches	and/or	membership	
queries,	then	it	is	more	efficient	to	pre-sort	the	array	and	then	use	a	so-called	binary	search,	
which	can	run	in	log2	N	time,	where	N	is	the	length	of	the	input	array.	
	
Pseudocode	for	a	binary	search	algorithm	can	be	given	as	follows.		
	
	
	

method BinarySearch(A : array of integer, key : integer) :
integer
begin
 var x, l, r : integer;

l=1; r = A.length();

 repeat
 x = (l+r) div 2;
 if key < A[x] then r=x-1 else l=x+1
 until (key==A[x]) or (l>r)

 if key==A[x] then return x else return -1
end

Algorithm	2:	Binary	Search	
	
	
	
	
	

	
	
	
Exercises.	
1.	Draw	a	condensation	graph	for	Algorithm	2.	
	
2.	Write	appropriate	pre	and	postconditions	using	the	JML	language	(ie.	write	appropriate	
requires-ensures	conditions)	for:		
	
	(i)	sorting,		
	
	
(ii)	searching,	hint	assume	key	is	a	native	data	type	e.g.	int key	(otherwise	must	check	
key	is	also	non-null)	
	
(iii)	membership,		
	
		
(iii)	binary	searching.
	
	
	
3.	Implement	three	programs	(in	your	favorite	programming	language)	to	perform:	
		

(i)	sorting	of	integer	arrays	of	arbitrary	length,		
	

(ii)	membership	queries	on	sorted	arrays	of	arbitrary	length	using	binary	search,	
and		
	
(iii)	membership	queries	on	unsorted	arrays	of	arbitrary	length,	by	combining	
program	(i)	with	program	(ii).	

	
4.	Build	a	random	and	a	pairwise	testing	framework	for	program	(iii),	as	defined	in	the	
course	notes.	This	requires:		

(1)	some	extra	coding	for	random	number	generation,	and	generating	combinations	
of	pairs,		
(2)	writing	these	to	a	file	as	complete	test	cases.		
(3)	you	will	need	to	be	able	to	call	program	(iii)	repeatedly	on	both	files	of	test	cases	
(random	and	pairwise).		
(4)	You	will	need	some	experimentation	to	see	how	large	each	file	needs	to	be	(i.e.	
the	number	of	test	cases)	in	order	to	find	a	specific	mutation	error.	See	further	
instructions	below.	

	
Before	you	write	any	code,	you	should	consider:	is	it	better	to	treat	an	array	input	
variable	of	length	N	(such	as	A in	Algorithm	2)	as	one	variable	or	as	N	individual	
variables?	What	are	the	consequences	for	your	test	results	of	making	either	choice?		
	
Choose	a	modest	array	size	for	sorting	and	searching,	e.g.	N	<=20.	Keep	this	fixed	
throughout	all	testing	experiments.	Rewrite	program	(iii)	in	at	least	6	different	ways	to	
inject	coding	errors	into	it.	(This	is	called	mutation,	and	will	be	studied	in	lecture	7.)	Your	

choices	should	inject	errors	into	program	(iii)	either	by	injecting	into	program	(i)	or	into	
program	(ii).	You	could	also	experiment	with	injecting	integration	errors	between	programs	
(i)	and	(ii).	
	
For	each	injected	error,	compare	the	performance	of	random	testing	and	pairwise	testing	to	
find	that	error.	For	this	comparison	you	can	measure	in	each	case	(random	or	pairwise)	the	
number	of	test	cases	from	file	that	need	to	be	executed	until	the	error	is	found.	Hint:	you	
can	work	much	faster	if	you	can	find	a	way	to	use	your	solution	to	Question	2,	to	write	an	
oracle	that	automatically	judges	each	test	outcome	(pass/fail).	Otherwise	you	will	have	to	
stare	at	the	test	results	and	judge	them	manually	(time	consuming!)	
	

(i) Write	up	your	results	in	a	6	X	2	table,	that	clearly	labels	each	testing	method	
across	the	2	columns,	and	each	injected	error	down	the	6	rows.	In	each	table	
entry	xi,j	for	row	i	and	column	j,	you	should	write	the	average	number	(for	
random)	and	minimum	number	(for	pairwise)	of	test	cases	executed	before	the	
injected	error	is	found.	If	the	error	is	not	found,	or	an	infinite	loop	(timeout)	
occurs	you	can	write	this.		

(ii) Briefly	describe	each	of	your	6	injected	errors,	with	reference	to	the	original	
code.	

(iii) Do	your	results	show	any	variation	in	testing	effort	(i.e.	number	of	test	cases	
executed)	between	injected	errors,	or	injected	locations	(programs	(i)	or	(ii))?	
Try	to	explain	any	phenomena	that	you	observe.		

(iv) Can	you	repeat	the	above	experiment	for	a	much	larger	integer	array	size	N,	say	
N=	100	or	N=500?	What	changes	do	you	observe?	

	
	
Bibliography:		

1. www.pairwise.org	more	info	on	pairwise	testing.	
2. D.E.	Knuth,	Art	of	Computer	Programming	Vol	3:	Sorting	and	Searching,	Addison	

Wesley,	1998.	
3. www.cs.ucf.edu/~leavens/JML/	more	info	on	JML.	

