
DD2459:	Software	Reliability,	sofRel22	
	

Lab	3:	Model-based	Testing	and	
Automated	Test-case	Generation	

Answer	all	4	questions	
	
Introduction:		
	
In	this	lab	we	are	going	to	carry	out	model-based	testing	from	simple	state-machine	models.	
We	will	also	use	a	powerful	model	checker	to	automatically	construct	test	cases	from	test	
requirements.	This	approach	represents	the	state-of-the-art	in	testing	of	embedded	
systems.	
	
We	will	use	a	temporal	logic	model	checker	for	Kripke	structures	known	as	NuSMV	(new	
Symbolic	Model	Verifier).	The	tool	NuSMV	is	a	publicly	available	(GNU	license)	application	
that	contains	powerful	algorithms	that	can	be	used	to	automatically	generate	test	cases	for	
embedded	systems.		
	
On	the	course	home	page	you	will	find	3	files	that	you	need	to	download	besides	this	one.	
The	first	file	“instructions.pdf”	gives	you	the	most	basic	information	you	need	to	get	
NuSMV	up	and	running	on	your	Ubuntu	workstation.	The	second	file	contains	a	case	study	
“bitshift.smv”,	that	was	presented	in	class,	which	you	will	need	to	complete	and	
execute	as	one	exercise.		The	third	file	contains	another	case	study	
“carcontroller.smv”	which	was	also	studied	in	class.	Using	these	two	files	and	the	
course	slides,	you	should	have	enough	information	to	complete	the	lab.	
	
 
	
	
Exercises.	
1.	Recall	the	2-bit	shift	register	discussed	in	the	lecture	notes	(Lecture	6).	UML	
statecharts	are	a	powerful	design	language	for	state	machine	models	of	systems	that	
include	events,	conditions,	actions,	variables	and	assignments.	Draw	a	model	of	the	2-bit	shift	
register	using	these	features	in	the	UML	Statechart	language	(you	can	work	with	UML	
version	2.4	or	higher).		Note:	in	this	question	you	cannot	simply	copy	the	diagram	in	my	
lecture	notes	–	you	must	translate	it	into	UML	using	an	appropriate	combination	of	
UML	variables,	assignments,	conditions,	events	etc.	
	
Hint	1:	you	should	use	a	graphics	tool,	such	as	Powerpoint	or	any	similar	tool.		
Hint	2:	see	Bibliography	reference	5	below.		
	
2.	Consider	the	file	bitshift.smv.	This	file	is	an	incomplete	model	of	the	2-bit	shift	
register.	In	particular,	the	next	state	functions	for	Bit1	and	Bit2	are	missing.	Complete	
these	definitions.	Then	execute	the	file	using	the	command		

NuSMV –bmc bitshift.smv.	
Note	down	carefully	the	output	of	NuSMV,	and	use	it	to	confirm	that	your	completed	
definitions	are	actually	correct.	Which	specific	output	data	confirms	the	correctness	of	your	
definitions?	



	
3.	Consider	the	simple	car-controller	discussed	in	the	lecture	notes.	Download	the	file	
carcontroller.smv	from	the	course	web	page.	You	will	now	generate	three	test	cases	
that	achieve	100%	node	coverage	(NC)	for	the	CC.	We	want	to	be	sure	we	reach	each	node	
(state).	There	are	3	nodes	in	total.	
	

(a) Run	NuSMV	on	the	existing	file	carcontroller.smv	with	the	command		
NuSMV –bmc carcontroller.smv	

Write	down	the	counterexample	to	the	1	NC	trap	property	which	the	tool	
generates.	Clearly	this	achieves	33%	NC!	

	
(b) Extract	from	this	counterexample	a	suitable	test	case,	consisting	of	input	values	

and	output	predictions.	Hint:	you	should	e.g.	transfer	the	sequences	of	values	to	
a	table	of	the	form	
	
	 t	=	0	 t	=	1	 t	=	2	 t	=	3	
inputs	 	 	 	 	
outputs	 	 	 	 	
	
	
Remember	to	store	the	test	requirement	alongside	the	test	case	for	future	
reference.	
	

(c) Write	out	2	additional	trap	properties	needed	for	100%	NC	as	LTL	formulas	so	
that	you	achieve	100%	NC.	Then	execute	the	file	again	and	repeat	step	(b)	above	
to	extract	the	2	additional	test	cases.	You	should	now	have	achieved	100%	NC!	

	
4.	Continuing	with	the	car-controller	example,	we	are	going	to	generate	a	set	of	test	cases	
which	achieve	100%	edge	coverage	(EC).	We	want	to	be	sure	we	traverse	each	edge	
between	any	pair	of	nodes.	There	are	6	edges	in	total.		
	

(a) Run	NuSMV	on	the	existing	file	carcontroller.smv	with	the	command		
NuSMV –bmc carcontroller.smv	

Write	down	the	counterexample	to	the	1	EC	trap	property	which	the	tool	
generates.	Clearly	this	achieves	16%	EC!	

	
(b) Extract	from	this	counterexample	a	suitable	test	case,	consisting	of	input	values	

and	output	predictions.	You	should	e.g.	transfer	the	sequences	of	input	and	
output	values	to	a	table	as	in	(b)	above.	Remember	to	store	the	test	requirement	
alongside	the	test	case	for	future	reference.	
	

(c) Write	out	5	additional	trap	properties	needed	for	100%	EC	as	LTL	formulas	so	
that	you	achieve	100%	EC.	Then	execute	the	file	again	and	repeat	step	(b)	above	
to	extract	the	5	additional	test	cases.	You	should	now	have	achieved	100%	EC!	

	
	
	
Bibliography:		

1. http://nusmv.fbk.eu/	nuSMV	homepage.	



2. http://en.wikipedia.org/wiki/NuSMV	Wikipedia	entry	about	nuSMV	
3. http://en.wikipedia.org/wiki/Linear_Temporal_Logic	Wikipedia	entry	about	LTL	
4. http://www.nada.kth.se/~karlm/sofrel/SNA-TR-2007-P2-04.pdf	G.	Fraser	et	al.,	

Testing	with	Model	Checkers,	a	Survey,	2007.	
5. M.	Seidel	et	al.,	UML@classroom	–	a	recommended	UML	book	which	can	be	

downloaded	from	KTH	library	
https://www.amazon.co.uk/Classroom-Undergraduate-Topics-Computer-
Science/dp/3319127411/ref=sr_1_1?crid=37JQOAZ42LGCM&keywords=uml+class
room&qid=1583401752&sprefix=UML%40%2Caps%2C342&sr=8-1	


