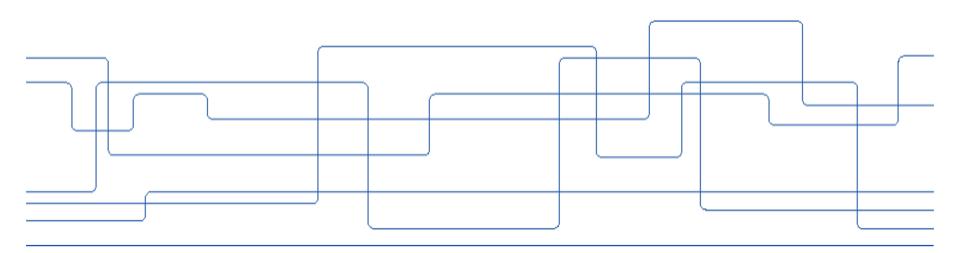
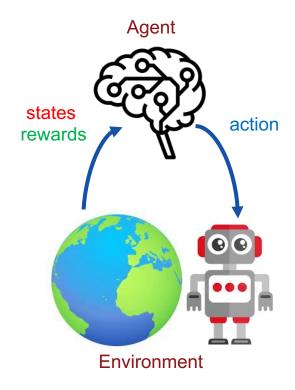


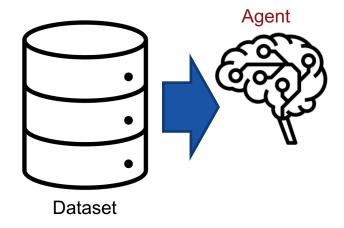
FDD3359 Reinforcement Learning Course Offline RL

Ali Ghadirzadeh



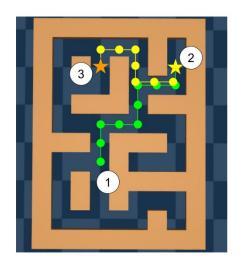
A basic reinforcement learning agent Al interacts with its environment in discrete time steps. At each time t, the agent receives the current state s_t and reward r_t . It then chooses an action a_t from the set of available actions, which is subsequently sent to the environment. The environment moves to a new state s_{t+1} and the reward r_{t+1} associated with the transition (s_t, a_t, s_{t+1}) is determined. The goal of a reinforcement learning agent is to learn a policy: $\pi: A \times S \to [0,1]$, $\pi(a,s) = \Pr(a_t = a \mid s_t = s)$ which maximizes the expected cumulative reward.

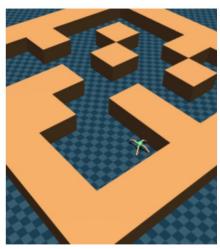


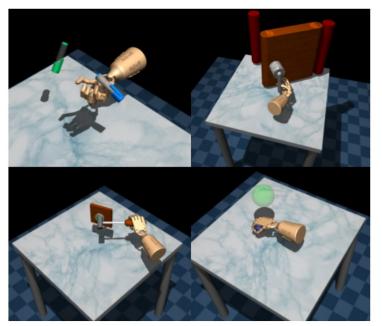


Maze2D and AntMaze

The maze environments are designed to test the ability of agents to recombine existing data in novel ways. For example, if an agent sees trajectories 1-2 and 2-3, it can form a shortest path from 1-3. Two robots are available - a simple ball and the "Ant" robot from the Gym benchmark.





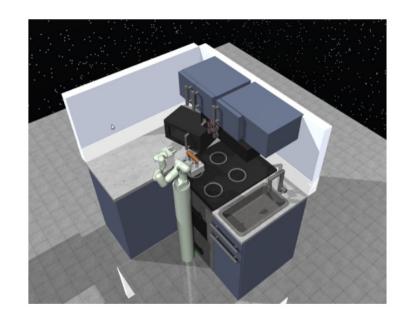


Adroit

The <u>Adroit domain</u> includes motion-captured human data on a realistic, high-DoF robotic hand. A variety of challenging tasks from the <u>original paper</u> are included, including pen twirling, opening a door, using a hammer, and relocating an object.

FrankKitchen

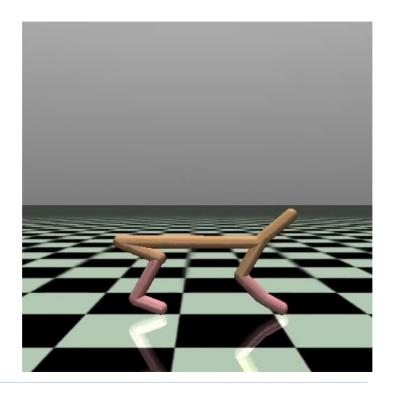
The FrankaKitchen domain is based on the <u>Adept environment</u>. This domain offers a challenging manipulation problem in an unstructured environment with many possible tasks to perform.



Offline RL? D4RL

Gym

Several OpenAI Gym benchmark tasks are included with data collected by a variety of pre-trained RL agents. This includes the Hopper, HalfCheetah, and Walker environments.



Why offline RL

Why offline RL

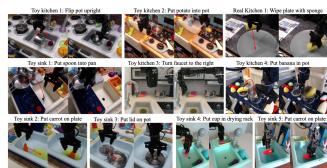
"Place Grapes in Ceramic Bowl"

"Place Bottle In Tray"

"Push Purple Bowl Across The

"Wipe Tray With Sponge"

BC-Z dataset



RoboNet

Bridge Dataset

Why offline RL?



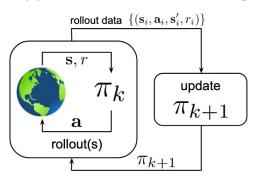
Off-policy Reinforcement Learning

Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

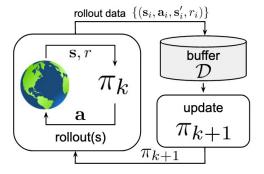
Sergey Levine^{1,2}, Aviral Kumar¹, George Tucker², Justin Fu¹

UC Berkeley, ²Google Research, Brain Team

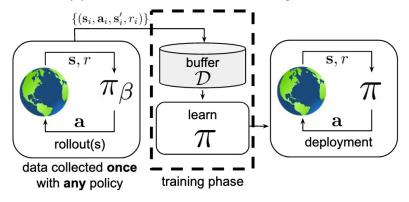
(a) online reinforcement learning



(b) off-policy reinforcement learning



(c) offline reinforcement learning

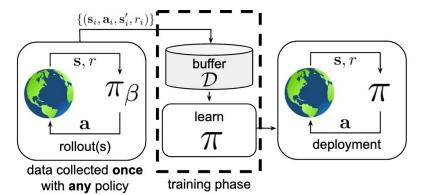


Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

Sergey Levine^{1,2}, Aviral Kumar¹, George Tucker², Justin Fu¹

¹UC Berkeley, ²Google Research, Brain Team

Actor-Critic RL



$$\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_j\}$$

Critic Update

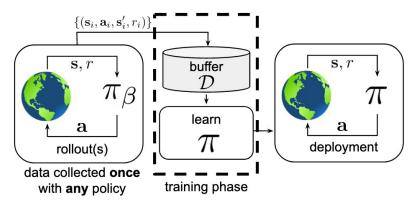
$$\mathcal{T}^{\pi}Q(s,a) = \mathbb{E}_{s'}[r + \gamma Q(s',\pi(s'))].$$

Critic Update

$$\phi \leftarrow \operatorname{argmax}_{\phi} \mathbb{E}_{s \in \mathcal{B}}[Q_{\theta}(s, \pi_{\phi}(s))]$$

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \mathbb{E}_{ au \sim p_{\pi}(au \mid \mathbf{s}_t, \mathbf{a}_t)} \left[\sum_{t'=t}^{H} \gamma^{t'-t} r(\mathbf{s}_t, \mathbf{a}_t)
ight]$$

Policy Constraints Methods



Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

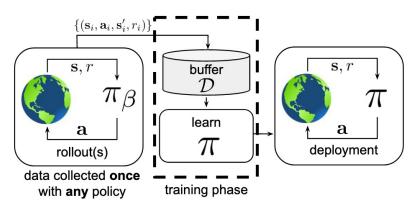
Sergey Levine^{1,2}, Aviral Kumar¹, George Tucker², Justin Fu¹

¹UC Berkeley, ²Google Research, Brain Team

$$\hat{Q}_{k+1}^{\pi} \leftarrow \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}' \sim \pi_k(\mathbf{a}' | \mathbf{s}')} [\hat{Q}_k^{\pi}(\mathbf{s}', \mathbf{a}')] \right) \right)^2 \right]$$

$$\pi_{k+1} \leftarrow \arg\max_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a} | \mathbf{s})} [\hat{Q}_{k+1}^{\pi}(\mathbf{s}, \mathbf{a})] \right] \text{ s.t. } D(\pi, \pi_{\beta}) \leq \epsilon.$$

Policy Constraints Methods



Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

Sergey Levine^{1,2}, Aviral Kumar¹, George Tucker², Justin Fu¹

¹UC Berkeley, ²Google Research, Brain Team

$$\begin{aligned} \hat{Q}_{k+1}^{\pi} \leftarrow \arg\min_{Q} \\ \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}' \sim \pi_k(\mathbf{a}'|\mathbf{s}')} [\hat{Q}_k^{\pi}(\mathbf{s}', \mathbf{a}')] - \alpha \gamma D(\pi_k(\cdot|\mathbf{s}'), \pi_{\beta}(\cdot|\mathbf{s}')) \right) \right)^2 \right] \end{aligned}$$

 $\pi_{k+1} \leftarrow \arg\max_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} [\hat{Q}_{k+1}^{\pi}(\mathbf{s}, \mathbf{a})] - \alpha D(\pi(\cdot|\mathbf{s}), \pi_{\beta}(\cdot|\mathbf{s})) \right].$

Advantage Weighted Actor Critic

$$\pi_{k+1} = \underset{\pi \in \Pi}{\operatorname{arg \, max}} \, \mathbb{E}_{\mathbf{a} \sim \pi(\cdot|\mathbf{s})}[A^{\pi_k}(\mathbf{s}, \mathbf{a})]$$
s.t.
$$D_{\mathrm{KL}}(\pi(\cdot|\mathbf{s})||\pi_{\beta}(\cdot|\mathbf{s})) \le \epsilon$$

$$\int_{\mathbf{a}} \pi(\mathbf{a}|\mathbf{s}) d\mathbf{a} = 1.$$

$$V^{\pi}(\mathbf{s}_t) = \mathbb{E}_{ au \sim p_{\pi}(au|\mathbf{s}_t)} \left[\sum_{t'=t}^{H} \gamma^{t'-t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$
 $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \mathbb{E}_{ au \sim p_{\pi}(au|\mathbf{s}_t, \mathbf{a}_t)} \left[\sum_{t'=t}^{H} \gamma^{t'-t} r(\mathbf{s}_t, \mathbf{a}_t) \right]. \qquad A(s, a) = Q_{\phi}(s, a) - V(s)$

Advantage Weighted Actor Critic

$$\mathcal{L}(\pi, \lambda, \alpha) = \mathbb{E}_{\mathbf{a} \sim \pi(\cdot | \mathbf{s})} [A^{\pi_k}(\mathbf{s}, \mathbf{a})] + \lambda (\epsilon - D_{\mathrm{KL}}(\pi(\cdot | \mathbf{s}) || \pi_{\beta}(\cdot | \mathbf{s}))) + \alpha (1 - \int_{\mathbf{a}} \pi(\mathbf{a} | \mathbf{s}) d\mathbf{a}).$$

$$rac{\partial \mathcal{L}}{\partial \pi} = A^{\pi_k}(\mathbf{s}, \mathbf{a}) - \lambda \log \pi_{eta}(\mathbf{a}|\mathbf{s}) + \lambda \log \pi(\mathbf{a}|\mathbf{s}) + \lambda - lpha.$$

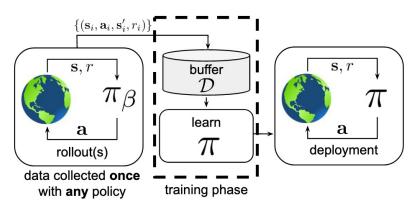
Advantage Weighted Actor Critic

$$\pi^*(\mathbf{a}|\mathbf{s}) = rac{1}{Z(\mathbf{s})} \pi_eta(\mathbf{a}|\mathbf{s}) \exp\left(rac{1}{\lambda} A^{\pi_k}(\mathbf{s},\mathbf{a})
ight).$$

$$\underset{\theta}{\operatorname{arg\,min}} \ \mathbb{E}_{\rho_{\pi_{\beta}}(\mathbf{s})} \left[D_{\mathrm{KL}}(\pi^{*}(\cdot|\mathbf{s})||\pi_{\theta}(\cdot|\mathbf{s})) \right]$$

$$= \operatorname*{arg\,min}_{\theta} \ \mathop{\mathbb{E}}_{\rho_{\pi_{\beta}}(\mathbf{s})} \left[\mathop{\mathbb{E}}_{\pi^{*}(\cdot | \mathbf{s})} [-\log \pi_{\theta}(\cdot | \mathbf{s})] \right]$$

Policy Constraints Methods



Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

Sergey Levine^{1,2}, Aviral Kumar¹, George Tucker², Justin Fu¹

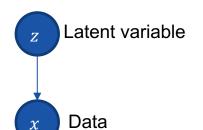
¹UC Berkeley, ²Google Research, Brain Team

$$\hat{Q}_{k+1}^{\pi} \leftarrow \arg\min_{Q} \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}' \sim \pi_k(\mathbf{a}' | \mathbf{s}')} [\hat{Q}_k^{\pi}(\mathbf{s}', \mathbf{a}')] \right) \right)^2 \right]$$

$$\pi_{k+1} \leftarrow \arg\max_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a} \sim \pi(\mathbf{a} | \mathbf{s})} [\hat{Q}_{k+1}^{\pi}(\mathbf{s}, \mathbf{a})] \right] \text{ s.t. } D(\pi, \pi_{\beta}) \leq \epsilon.$$

Generative Models - Background

The variational lower bound



Maximize the loglikelihood of the data

$$\log p(x) = \log \int p(x, z) dz$$

$$= \log \int_{z} p(x, z) \frac{q(z)}{q(z)} dz$$

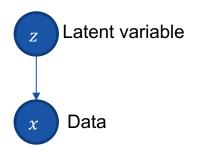
$$= \log \int_{z} p(x|z) p(z) \frac{q(z|x)}{q(z|x)} dz$$

Jensen's inequality

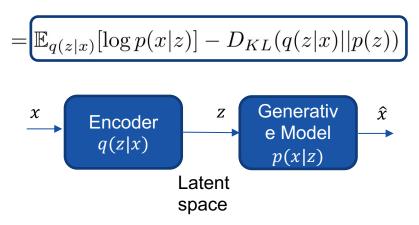
$$\geq \mathbb{E}_{q(z|x)}[\log p(x|z)] - \mathbb{E}_{q(z)}[\log \frac{q(z)}{p(z)|x}]$$

$$= \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{KL}(q(z|x)||p(z))$$

Generative Models - Background



Maximize the variational lower bound



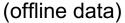
Variational Autoencoder Networks

Generative Models - Background

Z Latent variable

x Data

Offline RL with Generative Models



$$\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_j\}$$

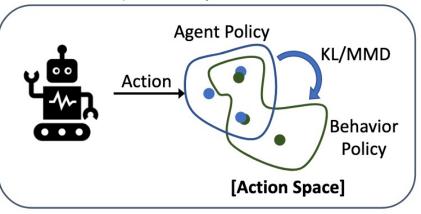
Learn the distribution (Low-level policy)

M. C.

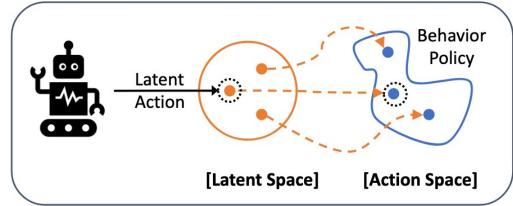
Online policy training (High-level policy)

Policy in the Latent Action Space (PLAS)

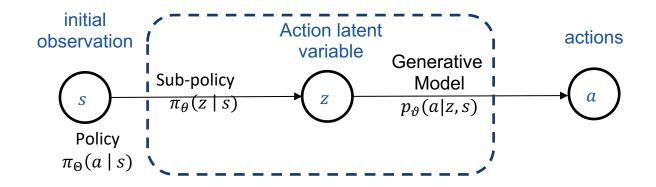
Explicit Policy Constrint



Implicit Policy Constrint using Generative Models



Policy in the Latent Action Space (PLAS)



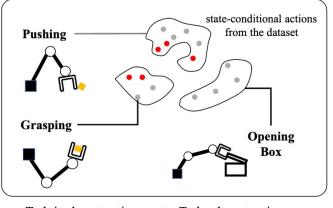
$$\nabla_{\vartheta} J(\vartheta) = \mathbb{E}_{s \sim \mathcal{D}} [\nabla_{a} Q(a, s)|_{a = \pi_{\vartheta}(s, z)}$$
$$\nabla_{z} \pi_{\theta}(s, z)|_{z = \pi_{\vartheta}(s)} \nabla_{\vartheta} \pi_{\vartheta}(s)]$$

Latent-Variable Advantage-Weighted Policy Optimization

Prior distribution

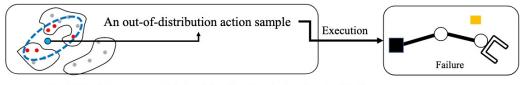
Task-irrelevant latent actions

Learning from heterogenous datasets

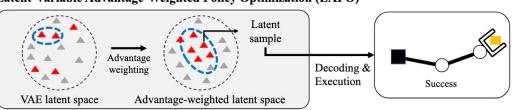


Task-irrelevant actions • Task-relevant actions

Action Space Policy Learning



Latent-Variable Advantage-Weighted Policy Optimization (LAPO)



Task-relevant latent actions

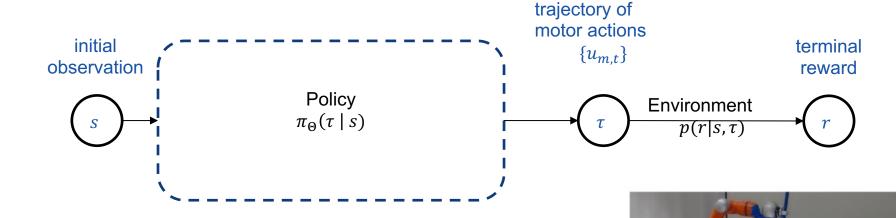
--- Posterior distribution Target Task: Object relocation

$$\pi^*(a|s) \propto \pi_{\beta}(a|s) \exp(A(s,a)/\lambda)$$

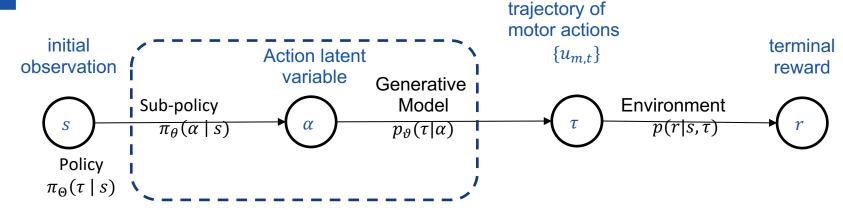
$$\omega = \exp(A(s,a)/\lambda)$$

$$\max_{\pi_{ heta},q_{\psi}} \mathbb{E}_{s,a \sim \mathcal{D}}[\omega \, \mathbb{E}_{q_{\psi}(z|s,a)}[\, \log(\pi_{ heta}(a|s,z)) \, -$$

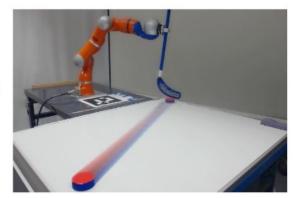
$$eta\, \mathrm{D_{KL}}(q_{\psi}(z|s,a)\,||\,p(z))\,]$$

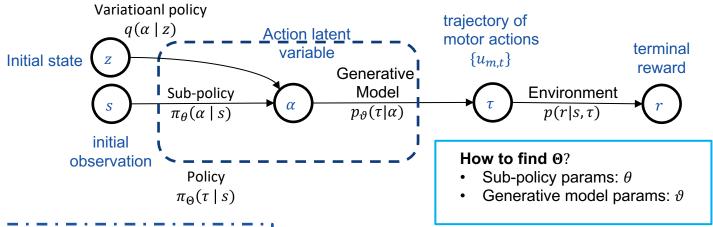


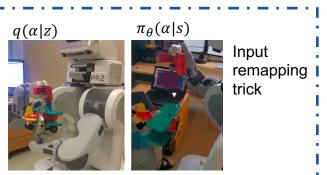
$$\log p(r|s,\Theta) = \log \int p(r|s,\tau)\pi_{\Theta}(\tau|s)d\tau$$



$$\log p(r|s,\Theta) = \log \int p(r|s, p_{\vartheta}(\tau|\alpha)) \pi_{\theta}(\alpha|s) d\alpha$$

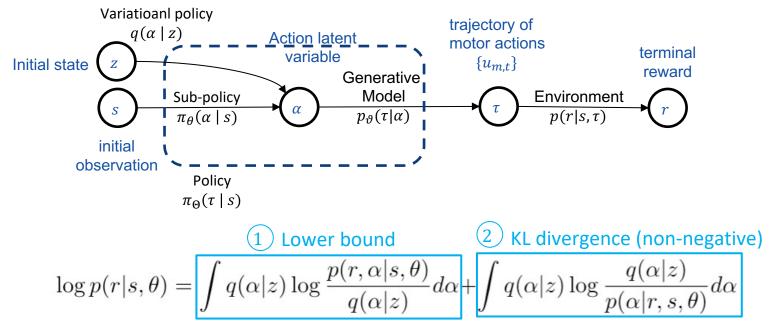






$$\log p(r|s,\theta) = \log p(r|s,\theta) \int \frac{\log q(\alpha|z)}{\log q(\alpha|z)} q(\alpha|z) d\alpha$$

Ghadirzadeh et al., Data-efficient visuomotor policy training using reinforcement learning and generative models.



Maximize reward log-likelihood iteratively in two steps:

- 1. Maximize the lower-bound by minimizing the KL divergence term (update $q(\alpha|z)$)
- 2. Maximize the lower bound directly (update θ)

- 1 Lower bound 2 KL divergence (non-negative)

$$\log p(r|s,\theta) = \int q(\alpha|z) \log \frac{p(r,\alpha|s,\theta)}{q(\alpha|z)} d\alpha + \int q(\alpha|z) \log \frac{q(\alpha|z)}{p(\alpha|r,s,\theta)} d\alpha$$

- Expectation step
 - Minimize the KL-divergence term by optimizing the variational policy $q(\alpha|z)$

$$q = \underset{q'}{\operatorname{argmin}} \quad \int q'(\alpha|z) \log \frac{q'(\alpha|z)}{\pi_{\theta}(\alpha|s)} d\alpha \quad - \quad \int q'(\alpha|z) \log p(r|\alpha, s) d\alpha \quad + \quad \log p(r|s, \theta) \int q'(\alpha|z) d\alpha$$

$$q = \underset{q'}{\operatorname{argmin}} D_{KL}(q'(\alpha|z) \mid\mid \pi_{\theta}(\alpha|s)) - \mathbb{E}_{q'(\alpha|z)}[\log p(r|\alpha,s)]$$

Trust region

Reward seeking

- 1 Lower bound 2 KL divergence (non-negative)

$$\log p(r|s,\theta) = \int q(\alpha|z) \log \frac{p(r,\alpha|s,\theta)}{q(\alpha|z)} d\alpha + \int q(\alpha|z) \log \frac{q(\alpha|z)}{p(\alpha|r,s,\theta)} d\alpha$$

- Maximization step
 - Maximize the lower bound directly by updating the policy parameters θ

$$\theta = \underset{\theta'}{\operatorname{argmax}} \int q(\alpha|z) \log \frac{p(r,\alpha|s,\theta')}{q(\alpha|z)} d\alpha$$

$$= \underset{\theta'}{\operatorname{argmax}} \int q(\alpha|z) \log \frac{p(r|\alpha,s)\pi_{\theta'}(\alpha|s)}{q(\alpha|z)} d\alpha$$

$$\theta = \underset{\theta'}{\operatorname{argmin}} D_{KL}(|q(\alpha|z)|||\pi_{\theta'}(\alpha|s)|)$$

Supervised Learning

$$= \underset{\theta'}{\operatorname{argmax}} \int q(\alpha|z) \log \frac{\pi_{\theta'}(\alpha|s)}{q(\alpha|z)} d\alpha + \int q(\alpha|z) \log p(r|\alpha, s) d\alpha$$

- (1) Lower bound (2) KL divergence (non-negative)

$$\log p(r|s,\theta) = \int q(\alpha|z) \log \frac{p(r,\alpha|s,\theta)}{q(\alpha|z)} d\alpha + \int q(\alpha|z) \log \frac{q(\alpha|z)}{p(\alpha|r,s,\theta)} d\alpha$$

Expectation step

$$q = \overline{\underset{q'}{\operatorname{argmin}} \, D_{KL}(\; q'(\alpha|z) \mid\mid \pi_{\theta}(\alpha|s) \;)} - \overline{\mathbb{E}_{q'(\alpha|z)}[\log p(r|\alpha,s)]}$$
 Trust region Reward seeking

Maximization step

$$\theta = \operatorname*{argmin}_{\theta'} D_{KL}(\ q(\alpha|z) \mid\mid \pi_{\theta'}(\alpha|s)\)$$

Supervised Learning

