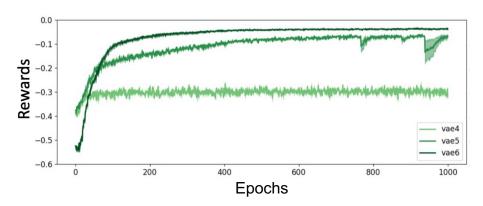
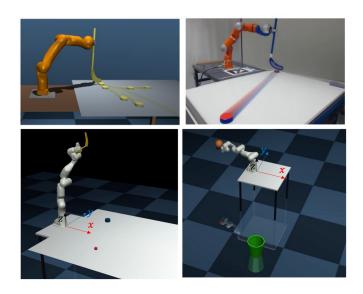


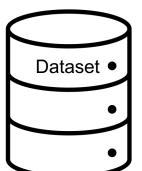
FDD3359 Reinforcement Learning Course Meta Reinforcement Learning

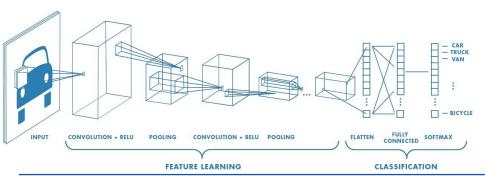

Ali Ghadirzadeh



Reinforcement Learning

- trains a policy from scratch
- is usually very data-inefficient
- does not usually transfer well




Leveraging prior knowledge to speed up solving new tasks

Standard Machine Learning

- A dataset
- A big neural network
- A loss function
- Some GPUs
- Stochastic gradient descent

Few-shot Learning Training set consists of 5 classes

Classify novel test inputs

The Meta-Learning Problem & Black-Box Meta-Learning Prof. Chelsea Finn

Transfer learning via fine-tuning

Parameters pre-trained on \mathcal{D}_a $\phi \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$ training data (typically for many gradient steps) for new task \mathcal{T}_b

meta-testing

Meta Learning Background

Some contents are borrowed from "The Meta-Learning Problem & Black-Box Meta-Learning" by Prof. Chelsea Finn

Supervised Learning

$$\phi_i = f_{ heta}(\mathcal{D}_i^{ ext{tr}})$$
 $\mathbf{y}^{ ext{ts}} = g_{\phi_i}(\mathbf{x}^{ ext{ts}})$

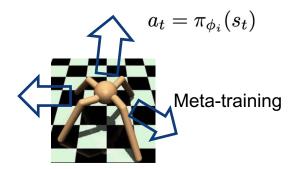
Given 1 example of 5 classes:

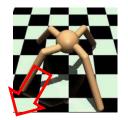
training data $\mathcal{D}_{\mathrm{train}}$

Classify new examples

training

classes



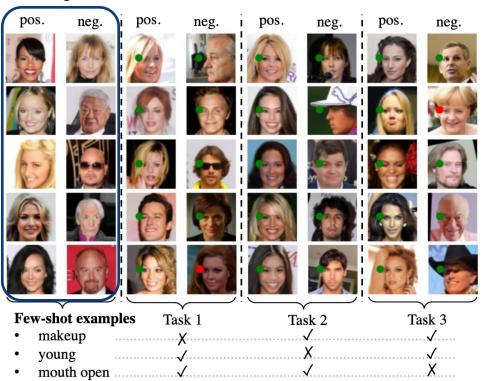

test set \mathbf{X}_{test}

$$\max_{ heta} \sum_{\mathcal{T}_i} \mathcal{L}(f_{ heta}(\mathcal{D}_i^{ ext{tr}}), \mathcal{D}_i^{ ext{test}})$$

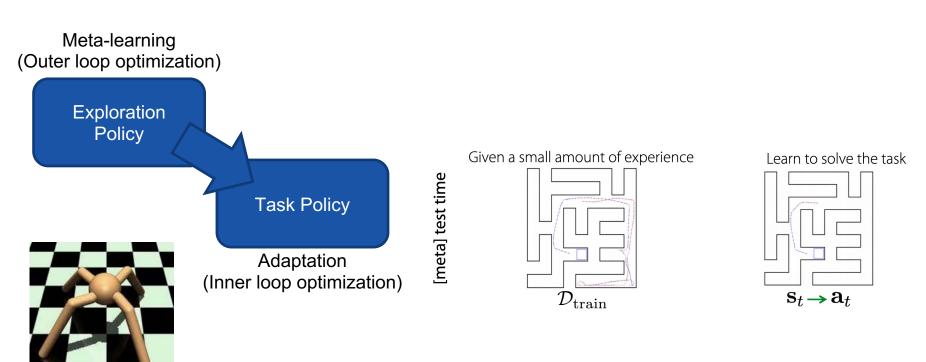
Reinforcement Learning

$$\phi_i = f_{\theta}(\{s_k, a_k, s_{k+1}, r_k\}_{k=0:T})$$

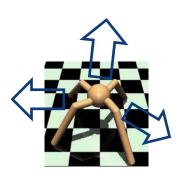
Meta-testing

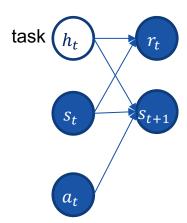

$$\max_{\theta} \sum_{\mathcal{M}_i} \mathbb{E}_{\pi_{\phi_i}}[R(\tau)]$$

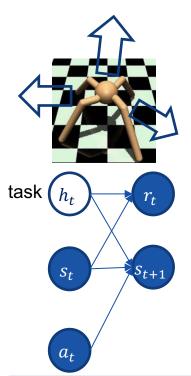
Meta Learning Background

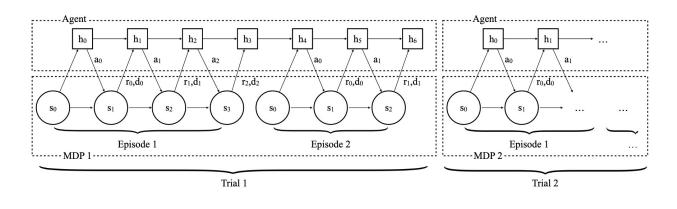

Few-shot Supervised Learning

Training data

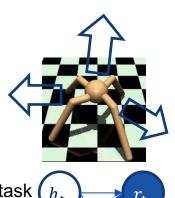

- Probabilistic Formulation
- Active Learning

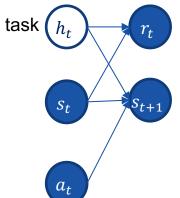



POMDP View


POMDP View

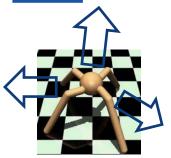
Recurrent Policy Training

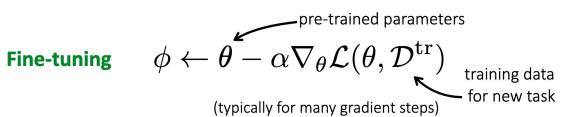

RL²: FAST REINFORCEMENT LEARNING VIA SLOW REINFORCEMENT LEARNING


Yan Duan^{†‡}, John Schulman^{†‡}, Xi Chen^{†‡}, Peter L. Bartlett[†], Ilya Sutskever[‡], Pieter Abbeel^{†‡}

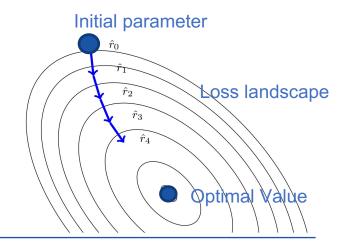
POMDP View

Latent-Variable Policy Training

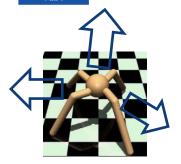

Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables


Kate Rakelly 1* Aurick Zhou 1* Deirdre Quillen 1 Chelsea Finn 1 Sergey Levine 1

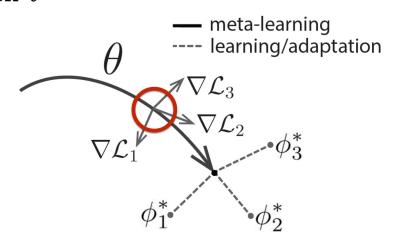
$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_{1} \longrightarrow \begin{array}{c} \phi \\ & \rightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1}) \\ \vdots \\ & \vdots \\ & \vdots \\ & & \downarrow \end{array} \longrightarrow \begin{array}{c} q_{\phi}(\mathbf{z}|\mathbf{c}) \\ & & \downarrow \\ & & \downarrow \end{array} \longrightarrow \begin{array}{c} Q_{\theta}(\mathbf{s}, \mathbf{a}, \mathbf{z}) \\ & & \downarrow \\ &$$


Optimization-Based Meta-Learning

How to improve learning efficiency?


- Parameter Initialization θ
- Learning rate α
- Loss function £
- Training data \mathcal{D}^{tr}

Optimization-Based Meta-Learning


Some contents are borrowed from "Optimization-Based Meta-Learning" by Prof. Chelsea Finn

Meta-learning $\min_{\theta} \sum_{\mathrm{task}\ i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\mathrm{tr}}), \mathcal{D}_i^{\mathrm{ts}})$

heta parameter vector being meta-learned

 ϕ_i^* optimal parameter vector for task i

Model-Agnostic Meta-Learning

PROMP: PROXIMAL META-POLICY SEARCH

Optimization-Based Meta-Learning

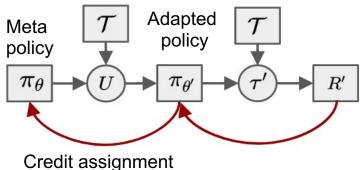
Jonas Rothfuss*

UC Berkeley, KIT jonas.rothfuss@gmail.com Dennis Lee*, Ignasi Clavera* UC Berkeley

{dennis188,iclavera}@berkelev.edu

Pieter Abbeel UC Berkeley, Covariant.ai pabbeel@cs.berkeley.edu

Tamim Asfour Karlsruhe Inst. of Technology (KIT) asfour@kit.edu

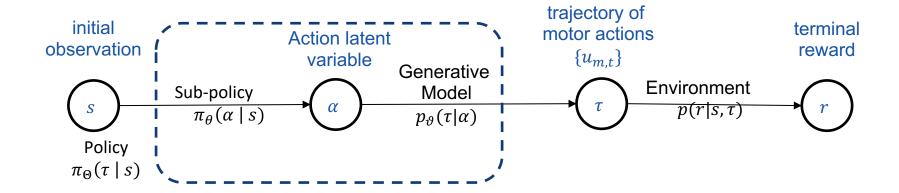


RL Objective

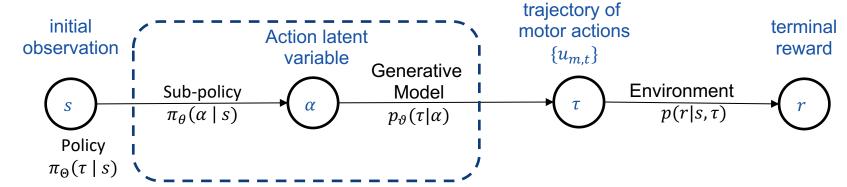
$$J = \mathbb{E}_{ au \sim \pi_{\theta}}[au]$$

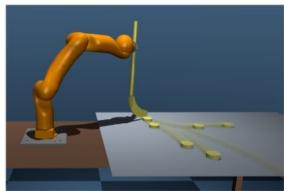
Policy Gradient

$$\nabla_{\theta} J_i(\theta) = E_{\tau \sim \pi_{\theta}, \mathcal{T}_i} \left[\left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) \right) \left(\sum_t r_i(\mathbf{s}_t, \mathbf{a}_t) \right) \right]$$


$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{\mathcal{T} \sim
ho(\mathcal{T})} \left[\mathbb{E}_{oldsymbol{ au} \sim P_{\mathcal{T}}(oldsymbol{ au} | heta)} \left[
abla_{ heta} J_{ ext{post}}(oldsymbol{ au}, oldsymbol{ au}') +
abla_{ heta} J_{ ext{pre}}(oldsymbol{ au}, oldsymbol{ au}')
ight]
ight] \end{aligned}$$

$$\nabla_{\theta} J_{\text{post}}(\boldsymbol{\tau}, \boldsymbol{\tau}') = \underbrace{\nabla_{\theta'} \log \pi_{\theta'}(\boldsymbol{\tau}') R(\boldsymbol{\tau}')}_{\nabla_{\theta'} J^{\text{outer}}} \underbrace{\left(I + \alpha R(\boldsymbol{\tau}) \nabla_{\theta}^{2} \log \pi_{\theta}(\boldsymbol{\tau})\right)\right)}_{\text{transformation from } \theta' \text{ to } \theta}$$


$$\nabla_{\theta} J_{\mathrm{pre}}^{I}(\boldsymbol{\tau}, \boldsymbol{\tau}') = \alpha \nabla_{\theta} \log \pi_{\theta}(\boldsymbol{\tau}) \bigg(\underbrace{\left(\nabla_{\theta} \log \pi_{\theta}(\boldsymbol{\tau}) R(\boldsymbol{\tau})\right)^{\top}}_{\nabla_{\theta} J^{\mathrm{inner}}} \underbrace{\left(\nabla_{\theta'} \log \pi_{\theta'}(\boldsymbol{\tau}') R(\boldsymbol{\tau}')\right)}_{\nabla_{\theta'} J^{\mathrm{outer}}} \bigg)$$


RL with Generative Models

Options:

- · Learn a general model
- · Learn a learning agent

Arndt et al., ICRA20 Meta Reinforcement Learning for Sim-to-real Domain Adaptation.

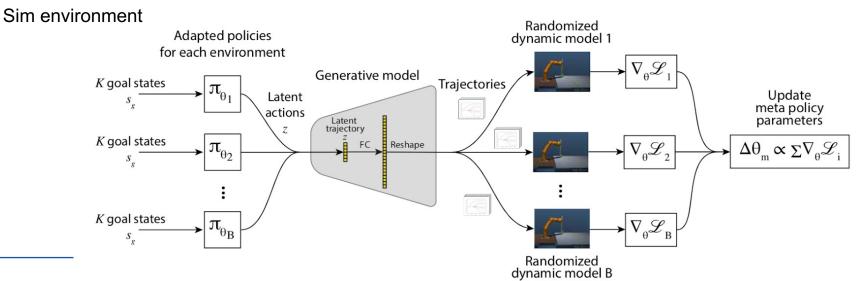
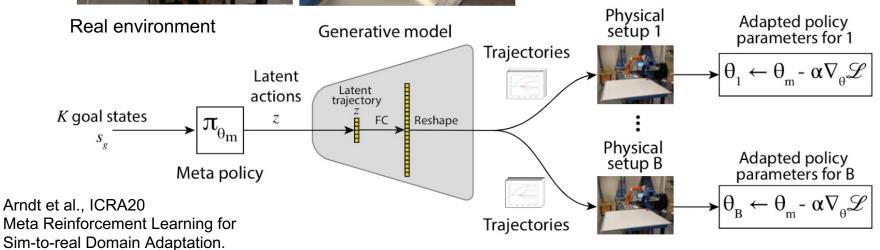
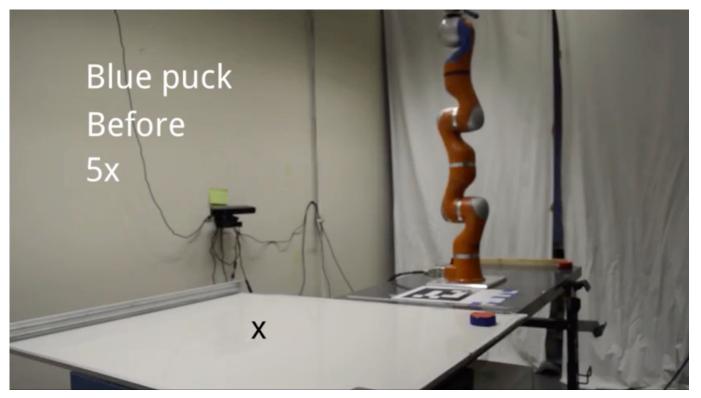
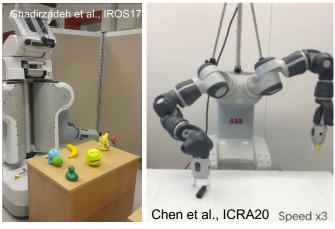
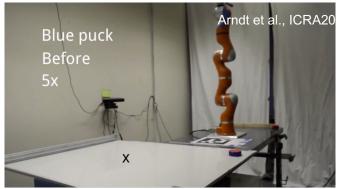

Learning a dynamic task efficiently?

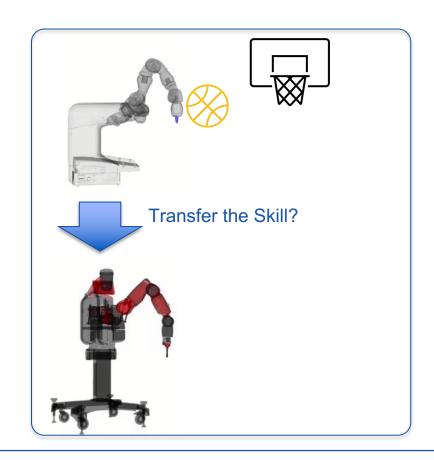
TABLE I: Randomized parameters


Parameter	Minimum	Maximum
x linear friction (μ_x)	0.15	0.95
y linear friction (μ_y)	$0.7\mu_x$	$1.3\mu_x$
Torsional friction (μ_{τ})	0.001	0.05
Rotational friction $x (\mu_{rx})$	0.01	0.3
Rotational friction $y (\mu_{ry})$	0.01	0.3
Puck mass	50g	500g
Initial puck position	$\epsilon \sim \mathcal{N}($	0, 0.02)

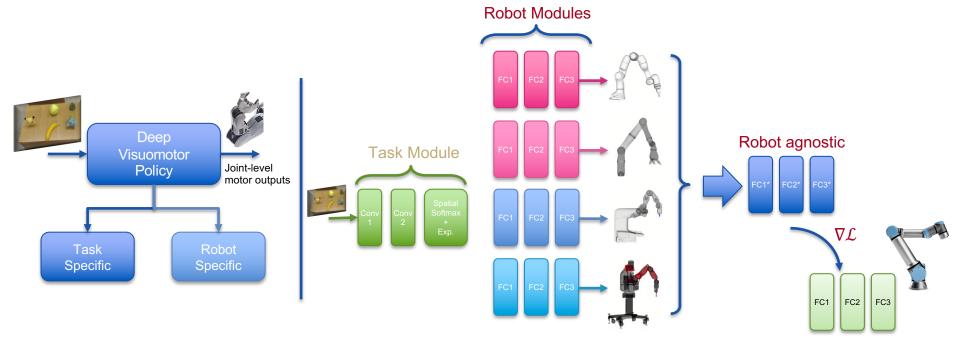








Multi-robot RL



Few-shot adaptation using meta-learning

Multi-robot learning

100 rand. robots based on Kinova

100 rand. robots based on YuMi

100 rand. robots based on Franka

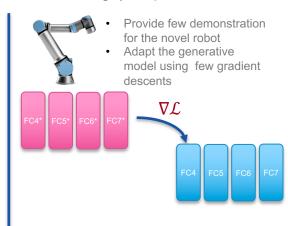
100 rand. robots based on Baxter

In total 400 different robots in simulation

Initial Training on One Robot

- Adversarial feature training for generalizable robotic visuomotor control. Chen et al., ICRA20
- Data-efficient visuomotor policy training using reinforcement learning and generative models, Ghadirzadeh et al., arXiv20

Meta-learning on all 400 robots


- Collect sequence of motor outputs for each robot using, e.g., RRT* planner
- Obtain initialization over generative model parameters by meta-learning

motor outputs $\tau = \{u_{1:m,t+1:t+T}\}$

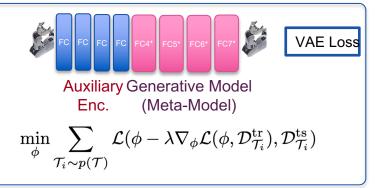
Auxiliary Generative Model Enc. (Meta-Model)

Meta-testing (adapt to novel robots)

Model-Agnostic Meta-Learning (MAML)

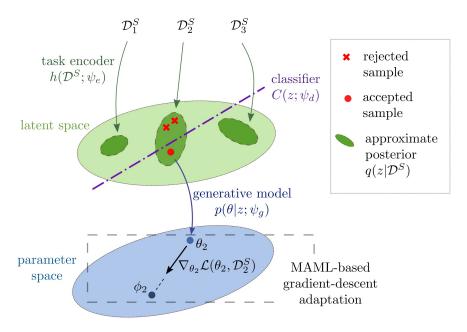
100 rand. robots based on YuMi

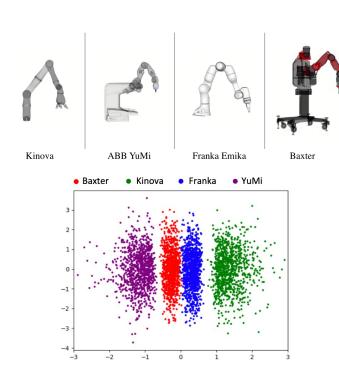
100 rand. robots based on Franka



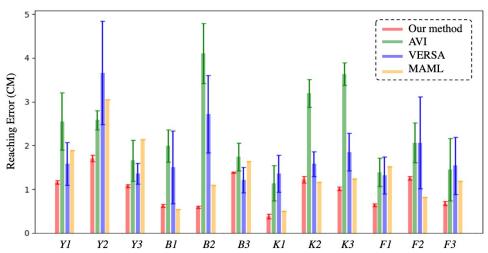
100 rand. robots based on Baxter

For every **robot** *i* in dataset

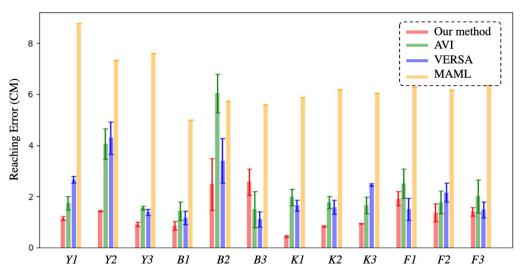

- Collect sequences of motor data
- Split the data and add to
 - Support dataset $\mathcal{D}_{T_i}^{tr}$
 - Query dataset $\mathcal{D}_{T_i}^{ts}$



Conditional and Probabilistic MAML



Ghadirzadeh, Poklukar, Chen, Yao, Azizpour, Björkman, Finn & Kragic Few-shot learning with weak supervision, ICLR workshop on Learning to Learn, 2021


Experiments 1: meta-training and -testing on one platform (100 robots)

The average reaching error (in cm) of the adapted policies. Y stands for YuMi, B for Baxter, K for Kinova, and F for Franka.

Experiments 2: meta-training and -testing on all platforms (400 robots)

The average reaching error (in cm) of the adapted policies. Y stands for YuMi, B for Baxter, K for Kinova, and F for Franka.