Fractal Geometry Assignment 3
 Due on Tuesday, April 5th

Liviana Palmisano

March 29, 2022

Question 1. Let F be the set obtained by a Cantor-type construction in which each interval is replaced by two intervals, one of a quarter of the length at the left-hand end and one of half the length at the right-hand end. Thus, E_{0} is the interval $[0,1], E_{1}$ consists of the intervals $[0,1 / 4]$ and $[1 / 2,1]$, and so on. Find the iterated function system (IFS) with attractor F, and thus find the Hausdorff and box dimensions of F.

Question 2.

[Part I] Describe the attractors of the following IFSs on \mathbb{R}.
(i) $S_{1}(x)=\frac{1}{4} x, S_{2}(x)=\frac{1}{4} x+\frac{3}{4}$,
(ii) $S_{1}(x)=\frac{1}{2} x, S_{2}(x)=\frac{1}{2} x+\frac{1}{2}$,
[Part II] Find a pair of similarity transformations on \mathbb{R} for which the interval $[0,1]$ is the attractor. How many such pairs of transformations you can find?

Question 3. Let $S_{1}, S_{2}:[0,1] \rightarrow[0,1]$ be given by $S_{1}(x)=x /(2+x), S_{2}(x)=2 /(2+x)$. Show that the attractor F of this IFS satisfies $0.52<\operatorname{dim}_{H} F<0.81$.

Question 4. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be continuous functions such that the box dimension of their graphs exist. Show that $\operatorname{dim}_{B} \operatorname{graph}(f+g)$ equals the greater of $\operatorname{dim}_{B} \operatorname{graph} f$ and dim_{B} graph g, provided that these dimensions are unequal. Give an example to show that this condition is necessary.

