
SF2822 Applied nonlinear optimization, final exam
Thursday June 2 2022 8.00–13.00

Brief solutions

1. (a) The iterations are illustrated in the figure below:

In the first iteration the search direction points at (6 1.5)T , but the step is
limited by the constraint −x1 +x2 ≥ −4, which is added so that the new point
is (6 2)T . A zero step is taken, and the multiplier for the constraint x2 = 6 is
negative. Thus, this constraint is deleted. The new step points at (11/2 3/2),
which is feasible. A unit step is taken, and the multiplier for −x1 + x2 = −4
is negative, −1/2. This constraint is deleted. The new step points at (5 2)T ,
which is feasible. No constraints are active, so this point is optimal.

(b) In the first iteration the search direction points at (5 2)T , but the step is limited
by the constraint −x1 ≥ −4, which is added, and the new point is (4 10/3). The
new step points at (4 5/2), which is feasible. The multiplier of the constraint
is positive, 3/2, so that an optimal solution has been found.

2. (See the course material.)

3. (a) The problem is convex as it can equivalently be stated as the unconstrained
convex quadratic problem min−x1(2− x1) = minx21− 2x1. The primal part of
the trajectory is obtained as minimizer to the quadratically-penalized problem

(Pµ) min −x1x2 + 1
2µ(x1 + x2 − 2)2.

The first-order optimality conditions of (Pµ) gives

−x2(µ)− 1

µ
(x1(µ) + x2(µ)− 2) = 0,

−x1(µ)− 1

µ
(x1(µ) + x2(µ)− 2) = 0.

These equations are symmetric in x1(µ) and x2(µ). Hence, x1(µ) = x2(µ). This
means that −x1(µ)− 1

µ(2x1(µ)− 2) = 0, from which it follows that

x1(µ) = x2(µ) =
2

−µ+ 2
.
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Since (Pµ) is a convex problem, this is a global minimizer.

The dual part of the trajectory, i.e. λ(µ), is normally given by λi(µ) = −gi(x(µ))/µ,
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) = −x1(µ) + x2(µ)− 2

µ
= −4/(2− µ)− 2

µ
= − 4

(2− µ)µ
+

2(2− µ)

µ(2− µ)
=

−2µ

µ(2− µ)
=
−2

2− µ
.

(b) As µ → 0 it follows that x(µ) → (1 1)T and λ(µ) → −1. Let x∗ = (1 1)T and
λ∗ = 1. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have

x1(µ)− x∗1 = x2(µ)− x∗2 =
2

2− µ
− 1 =

µ

2− µ
=

1

2
µ+ o(µ).

This is as expected. We would expect ‖x(µ) − x∗‖2 to be of the order µ near
an optimal solution where regularity holds.

4. We have

f(x) =
1

2
(x1 − 2)2 +

1

2
(x2 − 3)2 g(x) = 1− 1

2
x21 −

1

2
x22 ≥ 0,

∇f(x) =

(
x1 − 2

x2 − 3

)
, ∇g(x) =

(
−x1
−x2

)
,

∇2f(x) =

(
1 0

0 1

)
, ∇2g(x) =

(
−1 0

0 −1

)
.

(a) The point x = (2, 3)> is not feasible and thus JR is wrong.

(b) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min 3
2p

2
1 + 3

2p
2
2 − 2p1 − 2p2

subject to −p2 ≥ −1
2 .

This is a convex QP-problem with a globally optimal solution given by

3p1 − 2 = 0,

3p2 − 2 + λ = 0,

−p2 = −1

2
,

where the constraint is active since otherwise λ = 0 would lead to p2 = 2
3 , which

is infeasible. The solution is given by p1 = 2/3, p2 = 1/2 and λ = 1/2. Hence,

x(1) = x(0) + p =

(
2/3

3/2

)
, λ(1) = λ = 1/2.

5. (a) Consider v1, . . . , vk ∈ Rn be the orthonormal eigenvectors of λ1, . . . , λk respec-

tively. Then, the matrix Y =
(
v1 . . . vk

)
∈ Rn×k is feasible for µ1 since
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Y >Y = Ik holds as the eigenvectors are orthonormal. Moreover, it yields an
objective value of

trace(CY Y >) = trace(Y >CY ) = trace(Y >
(
λ1v1 . . . λkvk

)
)

= trace( Diag (λ1, . . . , λk)) = λ1 + . . .+ λk.

(b) We observe that the matrix Y =
(
v1 . . . vk

)
∈ Rn×k is also feasible for µ2 as

it is:

• positive semidefinite,

• trace(Y Y >) = trace(Y >Y ) = trace(Ik) = k and

• In − Y Y > � 0 since:

Consider an arbitrary vector w =
∑n

i=1 ηivi, then

w>
(
In − Y Y >

)
w = w>w − (Y >w)>Y >w

= (
n∑
i=1

ηivi)
>(

n∑
i=1

ηivi)− (
k∑
i=1

ηiei)
>(

k∑
i=1

ηiei)

=

n∑
i,j=1

ηiηjv
>
i vj −

k∑
i=1

η2i =

n∑
i=k+1

η2i ≥ 0.

Lastly, we know from (a) that trace(CY Y >) = λ1 + . . .+ λk.

(c) The dual program of

max
X
{trace(CX) : trace(X) = k,X � 0}

is
min
y∈R
{ky : yIn − C � 0} .


