1. (a) The iterations are illustrated in the figure below:

In the first iteration the search direction points at $(61.5)^{T}$, but the step is limited by the constraint $-x_{1}+x_{2} \geq-4$, which is added so that the new point is $\left(\begin{array}{ll}6 & 2\end{array}\right)^{T}$. A zero step is taken, and the multiplier for the constraint $x_{2}=6$ is negative. Thus, this constraint is deleted. The new step points at $(11 / 23 / 2)$, which is feasible. A unit step is taken, and the multiplier for $-x_{1}+x_{2}=-4$ is negative, $-1 / 2$. This constraint is deleted. The new step points at (5 2 $)^{T}$, which is feasible. No constraints are active, so this point is optimal.
(b) In the first iteration the search direction points at $(52)^{T}$, but the step is limited by the constraint $-x_{1} \geq-4$, which is added, and the new point is $(410 / 3)$. The new step points at ($45 / 2$), which is feasible. The multiplier of the constraint is positive, $3 / 2$, so that an optimal solution has been found.
2. (See the course material.)
3. (a) The problem is convex as it can equivalently be stated as the unconstrained convex quadratic problem $\min -x_{1}\left(2-x_{1}\right)=\min x_{1}^{2}-2 x_{1}$. The primal part of the trajectory is obtained as minimizer to the quadratically-penalized problem

$$
\left(P_{\mu}\right) \quad \min \quad-x_{1} x_{2}+\frac{1}{2 \mu}\left(x_{1}+x_{2}-2\right)^{2} .
$$

The first-order optimality conditions of $\left(P_{\mu}\right)$ gives

$$
\begin{aligned}
& -x_{2}(\mu)-\frac{1}{\mu}\left(x_{1}(\mu)+x_{2}(\mu)-2\right)=0, \\
& -x_{1}(\mu)-\frac{1}{\mu}\left(x_{1}(\mu)+x_{2}(\mu)-2\right)=0 .
\end{aligned}
$$

These equations are symmetric in $x_{1}(\mu)$ and $x_{2}(\mu)$. Hence, $x_{1}(\mu)=x_{2}(\mu)$. This means that $-x_{1}(\mu)-\frac{1}{\mu}\left(2 x_{1}(\mu)-2\right)=0$, from which it follows that

$$
x_{1}(\mu)=x_{2}(\mu)=\frac{2}{-\mu+2} .
$$

Since $\left(P_{\mu}\right)$ is a convex problem, this is a global minimizer.
The dual part of the trajectory, i.e. $\lambda(\mu)$, is normally given by $\lambda_{i}(\mu)=-g_{i}(x(\mu)) / \mu$, $i=1, \ldots, m$. Here we only have one constraint, so

$$
\lambda(\mu)=-\frac{x_{1}(\mu)+x_{2}(\mu)-2}{\mu}=-\frac{4 /(2-\mu)-2}{\mu}=-\frac{4}{(2-\mu) \mu}+\frac{2(2-\mu)}{\mu(2-\mu)}=\frac{-2 \mu}{\mu(2-\mu)}=\frac{-2}{2-\mu}
$$

(b) As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$ and $\lambda(\mu) \rightarrow-1$. Let $x^{*}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$ and $\lambda^{*}=1$. Then x^{*} and λ^{*} satisfy the first-order optimality conditions of $(Q P)$. Since $(Q P)$ is a convex problem, this is sufficient for global optimality of $(Q P)$.
(c) We have

$$
x_{1}(\mu)-x_{1}^{*}=x_{2}(\mu)-x_{2}^{*}=\frac{2}{2-\mu}-1=\frac{\mu}{2-\mu}=\frac{1}{2} \mu+o(\mu)
$$

This is as expected. We would expect $\left\|x(\mu)-x^{*}\right\|_{2}$ to be of the order μ near an optimal solution where regularity holds.
4. We have

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{2}\left(x_{1}-2\right)^{2}+\frac{1}{2}\left(x_{2}-3\right)^{2} & g(x) & =1-\frac{1}{2} x_{1}^{2}-\frac{1}{2} x_{2}^{2} \geq 0 \\
\nabla f(x) & =\binom{x_{1}-2}{x_{2}-3}, & \nabla g(x) & =\binom{-x_{1}}{-x_{2}} \\
\nabla^{2} f(x) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & \nabla^{2} g(x) & =\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

(a) The point $x=(2,3)^{\top}$ is not feasible and thus JR is wrong.
(b) Insertion of numerical values in the expressions above gives the first QP-problem according to

$$
\begin{array}{ll}
\min & \frac{3}{2} p_{1}^{2}+\frac{3}{2} p_{2}^{2}-2 p_{1}-2 p_{2} \\
\text { subject to } & -p_{2} \geq-\frac{1}{2}
\end{array}
$$

This is a convex QP-problem with a globally optimal solution given by

$$
\begin{aligned}
3 p_{1}-2 & =0 \\
3 p_{2}-2+\lambda & =0 \\
-p_{2} & =-\frac{1}{2}
\end{aligned}
$$

where the constraint is active since otherwise $\lambda=0$ would lead to $p_{2}=\frac{2}{3}$, which is infeasible. The solution is given by $p_{1}=2 / 3, p_{2}=1 / 2$ and $\lambda=1 / 2$. Hence,

$$
x^{(1)}=x^{(0)}+p=\binom{2 / 3}{3 / 2}, \quad \lambda^{(1)}=\lambda=1 / 2
$$

5. (a) Consider $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ be the orthonormal eigenvectors of $\lambda_{1}, \ldots, \lambda_{k}$ respectively. Then, the matrix $Y=\left(\begin{array}{lll}v_{1} & \ldots & v_{k}\end{array}\right) \in \mathbb{R}^{n \times k}$ is feasible for μ_{1} since
$Y^{\top} Y=I_{k}$ holds as the eigenvectors are orthonormal. Moreover, it yields an objective value of

$$
\begin{aligned}
\operatorname{trace}\left(C Y Y^{\top}\right)= & \operatorname{trace}\left(Y^{\top} C Y\right)=\operatorname{trace}\left(Y^{\top}\left(\begin{array}{lll}
\lambda_{1} v_{1} & \ldots & \lambda_{k} v_{k}
\end{array}\right)\right) \\
& =\operatorname{trace}\left(\quad \operatorname{Diag} \quad\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)=\lambda_{1}+\ldots+\lambda_{k}
\end{aligned}
$$

(b) We observe that the matrix $Y=\left(\begin{array}{lll}v_{1} & \ldots v_{k}\end{array}\right) \in \mathbb{R}^{n \times k}$ is also feasible for μ_{2} as it is:

- positive semidefinite,
- $\operatorname{trace}\left(Y Y^{\top}\right)=\operatorname{trace}\left(Y^{\top} Y\right)=\operatorname{trace}\left(I_{k}\right)=k$ and
- $I_{n}-Y Y^{\top} \succeq 0$ since:

Consider an arbitrary vector $w=\sum_{i=1}^{n} \eta_{i} v_{i}$, then

$$
\begin{aligned}
w^{\top}\left(I_{n}-Y Y^{\top}\right) w & =w^{\top} w-\left(Y^{\top} w\right)^{\top} Y^{\top} w \\
= & \left(\sum_{i=1}^{n} \eta_{i} v_{i}\right)^{\top}\left(\sum_{i=1}^{n} \eta_{i} v_{i}\right)-\left(\sum_{i=1}^{k} \eta_{i} e_{i}\right)^{\top}\left(\sum_{i=1}^{k} \eta_{i} e_{i}\right) \\
= & \sum_{i, j=1}^{n} \eta_{i} \eta_{j} v_{i}^{\top} v_{j}-\sum_{i=1}^{k} \eta_{i}^{2}=\sum_{i=k+1}^{n} \eta_{i}^{2} \geq 0
\end{aligned}
$$

Lastly, we know from (a) that trace $\left(C Y Y^{\top}\right)=\lambda_{1}+\ldots+\lambda_{k}$.
(c) The dual program of

$$
\max _{X}\{\operatorname{trace}(C X): \operatorname{trace}(X)=k, X \succeq 0\}
$$

is

$$
\min _{y \in \mathbb{R}}\left\{k y: y I_{n}-C \succeq 0\right\}
$$

