1. (a) The objective function $f(x)=e^{x_{1}}+e^{x_{2}}-x_{2}+x_{1} x_{2}+x_{2}^{2}-2 x_{2} x_{3}+x_{3}^{2}$ yields the following gradient $\nabla f(x)$ and Hessian H_{f}

$$
\nabla f(x)=\left(\begin{array}{c}
e^{x_{1}}+x_{2} \\
e^{x_{2}}-1+x_{1}+2 x_{2}-2 x_{3} \\
-2 x_{2}+2 x_{3}
\end{array}\right), \quad H_{f}=\left(\begin{array}{ccc}
e^{x_{1}} & 1 & 0 \\
1 & e^{x_{2}}+2 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

In particular, we obtain $\nabla f(\tilde{x})=(1,-2,2)^{\top}$. Moreover, since $g_{1}(\tilde{x})=10-0^{3}-$ $0^{4}-1^{5}=9>0$, we have that Constraint 1 is not active in \tilde{x}. As $\nabla f(\tilde{x}) \neq 0$, Constrain 2 needs to be active with non-negative Lagrange multipliers for \tilde{x} in order to satisfy the first order necessary optimality constraints, i.e., we obtain: $a \lambda_{2}=\nabla f(\tilde{x})$ with $\lambda_{2} \geq 0$ and $a^{\top} \tilde{x}=2$.
Since $a \lambda_{2}=\nabla f(\tilde{x})$ can not be fulfilled with $\lambda_{2}=0$, we obtain $a=\frac{1}{\lambda_{2}} \nabla f(\tilde{x})$. Hence, we obtain $2=a^{\top} \tilde{x}=\frac{1}{\lambda_{2}} \nabla f(\tilde{x})^{\top} \tilde{x}=2 \lambda_{2}$. Thus, we obtain $\lambda_{2}=1$ and $a=\nabla f(\tilde{x})=(1,-2,2)^{\top}$.
(b) We check the second-order necessary optimality conditions. Since the only active constraint is linear, we have that $H_{g_{2}}=0$ and thus

$$
\nabla_{x x}^{2} \mathcal{L}(\tilde{x}, \tilde{\lambda})=\nabla^{2} f(\tilde{x})=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 3 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

In addition, we have that $A_{A}(\tilde{x})=a^{\top}$, where we choose the first entry as the invertible basis, i.e. $B=1, N=(-2,2)$. Thus, we obtain the following basis of null $A_{A}(\tilde{x})$:

$$
Z_{A}(\tilde{x})=\binom{-B^{-1} N}{I}=\left(\begin{array}{cc}
2 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

which leads to

$$
Z_{A}(\tilde{x})^{\top} \nabla_{x x}^{2} \mathcal{L}(\tilde{x}, \tilde{\lambda}) Z_{A}(\tilde{x})=\left(\begin{array}{cc}
11 & -8 \\
-8 & 6
\end{array}\right) .
$$

Since the determinant of $Z_{A}(\tilde{x})^{\top} \nabla_{x x}^{2} \mathcal{L}(\tilde{x}, \tilde{\lambda}) Z_{A}(\tilde{x})$ is negative and $Z_{A}(\tilde{x})^{\top} \nabla_{x x}^{2} \mathcal{L}(\tilde{x}, \tilde{\lambda}) Z_{A}(\tilde{x})$ is a 2×2 matrix, we observe that $Z_{A}(\tilde{x})^{\top} \nabla_{x x}^{2} \mathcal{L}(\tilde{x}, \tilde{\lambda}) Z_{A}(\tilde{x}) \nsucceq 0$. Hence, \tilde{x} does not satisfy the second-order necessary optimality conditions and is therefore not a local minimum.
2. (See the course material.)
3. No constraints are active at the initial point. Hence, the working set is empty, i.e., $\mathcal{W}=\emptyset$. Since $H=I$ and $c=(1,1)^{\top}$, we obtain $p^{(0)}=-\left(H x^{(0)}+c\right)=-x^{(0)}-c=$ $(-1,-5)^{\top}$. The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{1}{7},
$$

where the minimum is attained for $i=1$. Consequently, $\alpha^{(0)}=1 / 7$ so that

$$
x^{(1)}=x^{(0)}+\alpha^{(0)} p^{(0)}=\binom{0}{4}+\frac{1}{7}\binom{-1}{-5}=\binom{-1 / 7}{23 / 7}
$$

with $\mathcal{W}=\{1\}$. The solution to the corresponding equality-constrained quadratic program is given by

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
p_{1}^{(1)} \\
p_{2}^{(1)} \\
-\lambda_{1}^{(2)}
\end{array}\right)=-\left(\begin{array}{c}
6 / 7 \\
30 / 7 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(1)}=\left(\begin{array}{ll}
\frac{54}{35} & -\frac{108}{35}
\end{array}\right)^{T}
$$

The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{20}{27},
$$

where the minimum is attained for $i=2$. Consequently, $\alpha^{(1)}=20 / 27$ so that

$$
x^{(2)}=x^{(1)}+\alpha^{(1)} p^{(1)}=\binom{-1 / 7}{23 / 7}+\frac{20}{27}\binom{54 / 35}{-108 / 35}=\binom{1}{1}
$$

with $\mathcal{W}=\{1,2\}$. The solution to the corresponding equality-constrained quadratic program is given by

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 2 & 1 \\
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
p_{1}^{(2)} \\
p_{2}^{(2)} \\
-\lambda_{1}^{(3)} \\
-\lambda_{2}^{(3)}
\end{array}\right)=-\left(\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(2)}=\left(\begin{array}{ll}
0 & 0
\end{array}\right)^{T}, \quad \lambda^{(3)}=\left(\begin{array}{ll}
2 / 3 & 2 / 3
\end{array}\right)^{T}
$$

As $p^{(2)}=0$ and $\lambda^{(3)} \geq 0$, the optimal solution has been found. Hence, $x^{(2)}$ is optimal.
4. We have

$$
\begin{array}{rlrl}
f(x) & =2\left(x_{1}-1\right)^{2}+\left(x_{2}-2\right)^{2} & g(x) & =3-x_{1}^{2}-x_{2}^{2} \geq 0 \\
\nabla f(x) & =\binom{4\left(x_{1}-1\right)}{2\left(x_{2}-2\right)}, & \nabla g(x) & =\binom{-2 x_{1}}{-2 x_{2}} \\
\nabla^{2} f(x) & =\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right), & \nabla^{2} g(x) & =\left(\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right) .
\end{array}
$$

The first QP-subproblem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) p+\nabla f\left(x^{(0)}\right)^{T} p \\
\text { subject to } & \nabla g\left(x^{(0)}\right)^{T} p \geq-g\left(x^{(0)}\right),
\end{array}
$$

Insertion of numerical values gives

$$
\begin{array}{ll}
\operatorname{minimize} & 2 p_{1}^{2}+p_{2}^{2}+4 p_{1}-2 p_{2} \\
\text { subject to } & -4 p_{1}-2 p_{2} \geq 2
\end{array}
$$

We now utilize the fact that the subproblem is of dimension two with only one constraint. The subproblem is convex, since it is a quadratic program with positive definite Hessian. Moreover, its unconstrained minimizer $p=(-1,1)^{\top}$ is feasible. Evaluating the gradient at the optimal point of the quadratic program gives

$$
\left(\begin{array}{ccc}
4 & 0 & -4 \\
0 & 2 & -2
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
p_{2} \\
-\lambda^{+}
\end{array}\right)=\binom{-4}{2}
$$

so that $\lambda=0$. Consequently, we obtain

$$
x^{(1)}=\binom{2}{1}+\binom{-1}{1}=\binom{1}{2}, \quad \lambda^{(1)}=0
$$

5. (a) The Hessian of the objective function is given by

$$
\nabla^{2} f(x)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & e^{x_{3}}
\end{array}\right)
$$

We observe, that $\nabla^{2} f(x) \succeq 0$ since $e^{x_{3}}>0$ for every $x_{3} \in \mathbb{R}$ implying the convexity of f. It remains to be shown, that F is convex, which due to the fact that $g_{2}(x)=x_{1}-1$ is linear, boils down to the question whether

$$
g_{1}(x)=x_{3}-x_{2}^{2} / x_{1}
$$

is concave. Consider the Hessian:

$$
\nabla^{2} g_{1}(x)=\left(\begin{array}{ccc}
-2 x_{2}^{2} / x_{1}^{3} & 2 x_{2} / x_{1} & 0 \\
2 x_{2} / x_{1}^{2} & -2 / x_{1} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

In order to show that $-\nabla^{2} g_{1}(x) \succeq 0$, we apply the hint. First, we observe that $2 / x_{1}>0$ as $x_{1} \geq 1>0$, which leads to the following argument

$$
-\nabla^{2} g_{1}(x) \succeq 0 \Leftrightarrow \frac{2 x_{2}^{2}}{x_{1}^{3}}-\left(-\frac{2 x_{2}}{x_{1}^{2}}\right) \frac{x_{1}}{2}\left(-\frac{2 x_{2}}{x_{1}^{2}}\right) \geq 0
$$

However, the latter statement holds, as we have

$$
\frac{2 x_{2}^{2}}{x_{1}^{3}}-\left(-\frac{2 x_{2}}{x_{1}^{2}}\right) \frac{x_{1}}{2}\left(-\frac{2 x_{2}}{x_{1}^{2}}\right)=\frac{2 x_{2}^{2}}{x_{1}^{3}}-\frac{2 x_{2}}{x_{1}^{2}} \frac{x_{2}}{x_{1}}=0
$$

and thus we have that $(N L P)$ is a convex program.
(b) We consider

$$
\begin{array}{lll}
& \text { minimize } & x_{3} \\
(N L P 2) & \text { subject to } & x_{3} \geq \frac{x_{2}^{2}}{x_{1}} \\
& x_{1} \geq 1
\end{array}
$$

For $x_{1}>0$ we obtain

$$
x_{3} \geq \frac{x_{2}^{2}}{x_{1}} \quad \Leftrightarrow x_{3}-\frac{x_{2}^{2}}{x_{1}} \geq 0 \quad \Leftrightarrow\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq 0
$$

where Hint 2 has been used in the last step with $A=x_{1}, B=x_{2}$ and $C=x_{3}$. Hence, $(N L P 2)$ is equivalent to the semidefinite program

$$
\begin{array}{ll}
\operatorname{minimize} & x_{3} \\
\text { subject to } & \left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq 0 \\
& x_{1} \geq 1
\end{array}
$$

