Homework for exercise session 1

Wednesday Aug 31 ${ }^{\text {st }}, 2022$
Problems with odd numbers will be solved in class

1- Consider a plane electromagnetic wave (in SI units) given by the expression $E_{x}=0, E_{z}=0, E_{y}=2 \cos \left(2 \pi 10^{14}(t-x / c)+\pi / 2\right)$
a. What is the frequency, wavelength, direction of motion, amplitude, initial phase angle, and polarization of the wave.
b. Write and expression for the magnetic flux density

```
f= 10E4 Hz
omega=0.66*pi*10E4 1/s
lambda= 3 micrometer
x direction of motion
E0=2 V/m
Initial angle = pi/2
Polarization in y direction
B0= E0/c Tesla
```

2- light bulb puts out 20 Watts of radiant energy (most of it IR). Assume it to be a point source and calculate the irradiance 1 meter.

Irradiance 5/pi Watt/meter ${ }^{2}$

3- A 550-nm harmonic EM-wave whose electric field is in the z direction is traveling in the y-direction in vacuum.
a- What is the frequency of the wave?
b- Determine both ω and k for this wave.
c- If the electric field amplitude is $600 \mathrm{~V} / \mathrm{m}$, what is the amplitude of the magnetic field
d- Write an expression for both $E(t)$ and $B(t)$ given that each is zero at $x=0$ and t $=0$.
Put in all the appropriate units.
$\mathrm{f}=5.45 \mathrm{E} 14 \mathrm{~Hz}$
omega= 3.43E15 $1 / \mathrm{s}$
$\mathrm{k}=1.14 \mathrm{E} 71 /$ meter
$\mathrm{Ez}=\sin \left(1.14 \mathrm{E} 7^{*} \mathrm{y}-3.43 \mathrm{E} 15^{*} \mathrm{t}\right)$
$\mathrm{Bx}=\mathrm{Ez} / \mathrm{c}$
4- What is the momentum of a $10^{19} \mathrm{X}$-ray photon?
$\mathrm{P}=2.2 \mathrm{E}-23 \mathrm{~kg}$. meter $/$ second
5- A 500-nm lightwave in vacuum enters a glass plate of index 1.60 and propagates perpendicularly across it. How many waves span the glass if it's 1.00 cm thick?

Number of wavelengths 3.2E4

6- A plane. harmonic. linearly polarized lightwave has an electric field intensity given by

$$
E_{y}=2 \cos \left(\pi 10^{15}\left(t-\frac{x}{0.65 c}\right)\right)
$$

While traveling in a piece of glass. Find
a. The frequency of the light
b. Its wavelength
c. The index of refraction of the glass.

```
F= 5E14 Hz
Lambda air= 600 nm
Lambda material = 390 nm
n=1.54
```

7- A candle that is 6.00 cm tall is standing 10 cm from a thin concave lens whose focal length is -30 cm . Determine the location of the image and describe it in detail.
$\mathrm{Si}=-7.5 \mathrm{~cm}$, upright image, virtual
Length of the image 4.5 cm

8- Locate the image of an object placed 1.2 m from the vertex of a gypsy's crystal ball, which has a $20-\mathrm{cm}$ diameter $(\mathrm{n}=1.5)$.
$\mathrm{Si}=6.95 \mathrm{~cm}$, real image, distance measured from the other side of the sphere.
9- Two positive lenses with focal lengths of 0.30 m and 0.50 m are separated by 0.20 m . A small butterfly rests on the central axis 0.50 m in front of the first lens. Locate the resulting image with respect to the second lens.
$\mathrm{Si}=26 \mathrm{~cm}$, on the right side of the second lens, real image

10- A meniscus concave glass ($n=1.5$) thin lens has radii of curvature of +20.0 cm and +10.0 cm . If an object is placed 20.0 cm in front of the lens, show that the image distance will be -13.3 cm .
$\mathrm{Si}=-13.3 \mathrm{~cm}$
11-The image of a red rose formed by a concave spherical mirror on a screen 100 cm away. If the rose is 25 cm from the mirror, determine its radius of curvature.

12-Design an eye of a robot using a concave spherical mirror such that the image of the object 1 m tall and 10 m away fills its 1 cm square photosensitive detector (which is movable for focusing purposes). Where should this detector be located with respect to the mirror? What should be the focal length of the mirror? Draw a ray diagram
$\mathrm{f}=9.9 \mathrm{~cm}$
13- Locate the image of a paper clip 100 cm away from a convex spherical mirror having a radius of curvature of 80 cm
$\mathrm{Si}=-28.57$, virtual image
14- We consider a concave spherical mirror with 4 m radius of curvature and 2 m diameter. An object with 1 m height is placed at different positions:
a- The object is placed 10 m from the mirror. Make a drawing of the object and mirror, the object is a vertical arrow perpendicular to the optical axis. Where is the image? Draw the relevant rays.
b- The object is now placed 3 m from the mirror, draw this case. Where is the image?
c- The object is finally placed 1 m from the mirror. Draw this case.
d - What is the size of the image for cases a, b and c ?
a- $\mathrm{Si}=2.5$ meter, real, inverter, scaled down by 0.25
b- $\mathrm{Si}=6$ meter, real, inverted, scaled up by 2
c- $\mathrm{Si}=-2$, virtual, upright, scaled up by 2
15- You are asked to design a little curved mirror for a dentist to be fixed at the end of a shaft and to be used in the mouth of a patient. The requirements are (1) that the image is erect as seen by the dentist and (2) that when held 1.5 cm from a tooth the mirror produces an image twice life-size
a- Should the mirror be concave or convex?
b- Should the image be real or virtual?
c- What should be the focal length?
d- What should be the radius of curvature?
a- Concave
b- Virtual image
c- $f=3 \mathrm{~cm}$
d- $R=-6 \mathrm{~cm}$

Supporting information

Image formation from single refractive spherical surface

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

Thin lens equation

$$
\begin{gathered}
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\left(n_{l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
\end{gathered}
$$

TABLE 5.1 Sign Convention for Spherical Refracting Surfaces and Thin Lenses* (Light Entering from the Left)

s_{o}, f_{o}	+ left of V
x_{o}	+ left of F_{o}
s_{i}, f_{i}	+ right of V
x_{i}	+ right of F_{i}
R	+ if C is right of V
y_{o}, y_{i}	+ above optical axis

*This table anticipates the imminent introduction of a few quantities not yet spoken of.

Image magnification

$$
M_{T} \equiv \frac{y_{i}}{y_{o}}
$$

$$
M_{T}=-\frac{s_{i}}{s_{o}}
$$

Spherical mirror equation

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=-\frac{2}{R}
$$

TABLE 5.4	Sign Convention for Spherical Mirrors	
Quantity		
	+	-
s_{o}	Left of V, real object	Right of V, virtual object
s_{i}	Left of V, real image	Right of V, virtual image
f	Concave mirror	Convex mirror
R	C right of V, convex	C left of V, concave
y_{o}	Above axis, erect object	Below axis, inverted object
y_{i}	Above axis, erect image	Below axis, inverted image

