Exercise session 6

Friday Oct 8, 2021

Problems with odd numbers will be solved in class

1- Show that the group velocity can be written as:

$$v_G = \frac{c}{n} + \frac{\lambda c}{n^2} \frac{dn}{d\lambda}$$

- 2- Given the dispersion relation $\omega = ak^2$, compute both the phase and group velocities. (Solution: v = ak, $v_G = 2ak = 2v$)
- 3- An ionized gas or plasma is a dispersive medium for EM waves. Given that the dispersion equation is $\omega^2 = \omega_P^2 + c^2 k^2$, where ω_P is the constant plasma frequency, determine expressions for both the phase and the group velocities and show that $vv_G = c^2$.
- 4- Determine the group velocity of waves when the phase velocity varies inversely with wavelength. (Solution: $v_G = \frac{2a}{\lambda}$)
- 5- A filter passes light with a mean wavelength of $\lambda = 500$ nm. If the emerging wavetrains are roughly $20\lambda_0$ long, what is the frequency bandwidth of the exiting light? (Solution: $3*10^{14}$ Hz)

Q&A session