
SF2822 Applied nonlinear optimization, final exam
Thursday June 1 2023 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain thoroughly.

Note! Personal number must be written on the title page. Write only one question per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the nonlinear programming problem

(NLP )

minimize 2e(x1−1) + (x2 − x1)2 + x23

subject to −x1x2x3 ≥ −2,
x1 + x3 ≥ 1,
xj ≥ 0, j = 1, 2, 3.

A GAMS model of the problem has been created. The GAMS input file can be found
at the end of the exam, and a partial GAMS output file reads:

S O L V E S U M M A R Y

MODEL nlpmodel OBJECTIVE obj

TYPE NLP DIRECTION MINIMIZE

SOLVER SNOPT FROM LINE 21

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 2 Locally Optimal

**** OBJECTIVE VALUE 1.4559

RESOURCE USAGE, LIMIT 0.043 1000.000

ITERATION COUNT, LIMIT 14 2000000000

EVALUATION ERRORS 0 0

SNOPT 24.8.5 r61358 Released May 10, 2017 DEG x86 64bit/Mac OS X

GAMS/SNOPT, Large Scale Nonlinear SQP Solver

S N O P T 7.2-12.1 (Jun 2013)

P. E. Gill, UC San Diego

W. Murray and M. A. Saunders, Stanford University

Work space estimate computed by solver -- 0.20 MB

EXIT - Optimal Solution found, objective: 1.455938

LOWER LEVEL UPPER MARGINAL

---- EQU objfun -INF . . -1.000

---- EQU cons1 -2.000 -0.106 +INF .

---- EQU cons2 1.000 1.000 +INF 1.134
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LOWER LEVEL UPPER MARGINAL

---- VAR obj -INF 1.456 +INF .

---- VAR x

LOWER LEVEL UPPER MARGINAL

j1 . 0.433 +INF 3.1022E-7

j2 . 0.433 +INF -4.504E-8

j3 . 0.567 +INF .

(a) Use the GAMS output file to give a point x∗ and Lagrange multiplier vector λ∗
that together satisfy the first-order necessary optimality conditions for (NLP ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) Is x∗ a global minimizer to (NLP )? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) Assume that the second constraint is changed to x1 + x3 ≥ 1 + t, where t is
a parameter. For t near zero, give a prediction of the optimal value of the
corresponding nonlinear program as a function of t. . . . . . . . . . . . . . . . . . . . . . (2p)

2. Consider the quadratic program (QP ) defined by

(QP )

minimize 1
2x

THx+ cTx

subject to

(
I

−I

)
x ≥ −

(
e

e

)
,

where I is the identity matrix,

H =


2 1 0

1 2 1

0 1 2

 , c =


2

1

−2

 and e =


1

1

1

 .

(This means that the constraints are given by −1 ≤ xj ≤ 1, j = 1, 2, 3.)

Solve (QP ) by an active-set method, with the initial point x(0) given by x(0) =
(−1 1 0)T and the initial working set given by the constraints that are active at x(0).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

3. Consider the same quadratic program (QP ) as in Question 2.

Assume that we want to solve (QP ) with a primal-dual interior point method. Also
assume that we initially choose x(0) = (0 0 0)T , λ(0) = (2 2 2 2 2 2)T , and µ = 2.

(a) When the constraints are in the form Ax ≥ b, one may introduce slack variables
s and rewrite the constraints as Ax− s = b, s ≥ 0, when applying the interior
method. Explain why this is not necessary for the given initial value x(0). .(2p)
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(b) Formulate the linear system of equations to be solved in the first iteration of
the primal-dual interior point method for the given initial values. Formulate
the general form and then introduce explicit numerical values into the system
of equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

(c) If the linear system of equations of Question 3b are solved, and the steps in the
x-direction and the λ-direction are denoted by ∆x and ∆λ respectively, one
obtains

∆x ≈


−0.3039

−0.1765

0.3627

 , ∆λ ≈



−1.1922

−1.4471

−2.5255

−2.4078

−2.1529

−1.0745


.

Explain why it is not suitable to use the unit step, i.e, why it is not suitable to
let x(1) = x(0) +∆x and λ(1) = λ(0) +∆λ. Also explain how you would choose
x(1) and λ(1). You need not give precise numerical values of x(1) and λ(1), but
you should explain the principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

4. Consider the semidefinite programming problem (P ) defined as

(P )
minimize cTx

subject to G(x) � 0,

where G(x) =
∑n
j=1Ajxj − B for B and Aj , j = 1, . . . , n, are symmetric m ×m-

matrices. The corresponding dual problem is given by

(D)

maximize trace(BY )

subject to trace(AjY ) = cj , j = 1, . . . , n,
Y = Y T � 0.

A barrier transformation of (P ) for a fixed positive barrier parameter µ gives the
problem

(Pµ) minimize cTx− µ ln(det(G(x))).

(a) Show that the first-order necessary optimality conditions for (Pµ) are equivalent
to the system of nonlinear equations

cj − trace(AjY ) = 0, j = 1, . . . , n,

G(x)Y − µI = 0,

assuming that G(x) � 0 and Y � 0 are kept implicitly. . . . . . . . . . . . . . . . . . . (5p)

(b) Show that a solution x(µ) and Y (µ) to the system of nonlinear equations, such
that G(x(µ)) � 0 and Y (µ) � 0, is feasible to (P ) and (D) respectively with
duality gap mµ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
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(c) In linear programming, when G(x) and Y are diagonal, it is not an issue how
the equation G(x)Y − µI = 0 is written. The linearizations of G(x)Y − µI = 0
and Y G(x)− µI = 0 are then identical. Explain why this is in general not the
case for semidefinite programming and how it can be handled. . . . . . . . . . . (2p)

Remark: For a symmetric matrix M we above use M � 0 and M � 0 to denote
that M is positive definite and positive semidefinite respectively. You may use the
relations

∂ ln(det(G(x)))

∂xj
= trace(AjG(x)−1) for j = 1, . . . , n,

without proof.

5. Consider the nonlinear optimization problem (NLP ) given by

(NLP )
minimize
x∈IRn

f(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m,

where f and gi, i = 1, . . . ,m, are twice continuously differentiable.

(a) We want to solve (NLP ) by sequential quadratic programming. For a given
point x(k), with x(k) ∈ IRn, and Lagrange multiplier vector estimate λ(k), with
λ(k) ∈ IRm, formulate the SQP subproblem, i.e., the quadratic programming
problem to be solved in the SQP method. In addition, show that if (NLP )
is feasible and gi, i = 1, . . . ,m, are concave functions on IRn, then the SQP
subproblem is feasible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Hint: If ϕ : IRn → IR is convex and differentiable on IRn, then ϕ(u) ≥ ϕ(v) +
∇ϕ(v)T(u− v) for all u, v in IRn.

(b) In order to create regularity and bound the multipliers, one may consider a
reformulation of (NLP ) according to

(NLP ′)

minimize
x∈IRn,u∈IRm

f(x) +M
∑m
i=1 ui

subject to gi(x) + ui ≥ 0, i = 1, . . . ,m,
ui ≥ 0, i = 1, . . . ,m,

where M is a large positive (fixed) number and u are so-called elastic variables.
Denote the Lagrange multipliers of the constraints g(x) + u ≥ 0 by λ and
denote the Lagrange multipliers of the constraints u ≥ 0 by η. Assume that
we want to solve (NLP ′) by sequential quadratic programming. Formulate the
QP subproblem (QP ′) for given x(k), u(k), λ(k) and η(k). Let p and q denote
the variables corresponding to change in x and u respectively.

Assume that ∇2
xxL(x(k), λ(k)) is positive semidefinite. Let p(k), q(k) denote

the optimal solution to (SQP ′) and let λ(k+1), η(k+1) denote the corresponding

Lagrange multipliers. Show that if u(k) = 0 and M > maxi=1,...,m{λ(k+1)
i }, then

q(k) = 0 in addition to p(k) and λ(k+1) being optimal solution and Lagrange
multipliers respectively of the corresponding QP subproblem associated with
(NLP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Note: According to the convention of the book we define the Lagrangian L(x, λ) as
L(x, λ) = f(x)−λTg(x), where f(x) the objective function and g(x) is the constraint
function.

Good luck!
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GAMS file for Question 1:

sets

j / j1*j3 /;

variables

obj

x(j) ;

equations

objfun

cons1

cons2 ;

objfun .. 2*exp(x("j1")-1)+power(x("j2")-x("j1"),2)+power(x("j3"),2) =l= obj;

cons1 .. -prod(j,x(j)) =g= -2;

cons2 .. x("j1")+x("j3") =g= 1;

x.lo(j) = 0;

model nlpmodel / all /;

solve nlpmodel using nlp minimizing obj;


