SF2822 Applied nonlinear optimization, final exam
 Thursday June 12023 8.00-13.00
 Brief solutions

1. (a) GAMS has terminated successfully with model status ' Locally Optimal', meaning that a point x^{*} and Lagrange multiplier vector λ^{*} that together satisfy the first-order necessary optimality conditions for $(N L P)$ have been computed. From ''LEVEL'' of '(VAR x'), we obtain the solution

$$
x^{*} \approx\left(\begin{array}{lll}
0.433 & 0.433 & 0.567
\end{array}\right)^{T}
$$

Analogously, the Lagrange multipliers of the constraints are given by ' MARGIN' ' of '(EQU cons1'), ''EQU cons2'), and '(VAR x '), as

$$
\lambda^{*} \approx\left(\begin{array}{lllll}
0.000 & 1.134 & 0.000 & 0.000 & 0.000
\end{array}\right)^{T}
$$

(b) We have $f(x)=2 e^{\left(x_{1}-1\right)}+\left(x_{2}-x_{1}\right)^{2}+x_{3}^{2}=f_{1}\left(x_{1}-1\right)+f_{2}\left(x_{2}-x_{1}\right)+f_{2}\left(x_{3}\right)$, for $f_{1}(y)=2 e^{y}$ and $f_{2}(y)=y^{2}$. Then, $f_{1}^{\prime \prime}(y)=2 e^{y} \geq 0$ and $f_{2}^{\prime \prime}(y)=2 \geq 0$, so that f_{1} and f_{2} are convex functions on \mathbb{R}. As linear tranformations preserve convexity, we obtain f as a sum of three convex functions, hence convex. In addition, $g_{2}(x)=x_{1}+x_{3}-1$, which is linear. Hence, x^{*} and λ_{2}^{*} satisfy the first order necessary optimality conditions for

$$
\begin{array}{lll}
\left(N L P^{\prime}\right) & \text { minimize } f(x) \\
& \text { subject to } g_{2}(x) \geq 0
\end{array}
$$

which is a convex optimization problem. Hence, x^{*} is a global minimizer to $\left(N L P^{\prime}\right)$. As $\left(N L P^{\prime}\right)$ is a relaxation of $(N L P)$ created by omitting constraints that are satisfied at x^{*}, x^{*} is a global minimizer to $(N L P)$ as well.
(c) The expected change in the objective function is given by the Lagrange multiplier, up to first order, hence $1.456+1.134 t$.
2. We may make use of the fact that the problem has only simple bounds. The solutions below are stated for the general form $A x-b$. We first note that H is diagonally dominant, hence positive definite, so that $(Q P)$ is a convex optimization problem.

At iteration k, search direction $p^{(k)}$ and Lagrange multipliers $\lambda_{\mathcal{W}^{(k)}}^{(k+1)}$ are given by

$$
\left(\begin{array}{cc}
H & A_{\mathcal{W}^{(k)}}^{T} \\
A_{\mathcal{W}^{(k)}} & 0
\end{array}\right)\binom{p^{(k)}}{-\lambda_{\mathcal{W}^{(k)}}^{(k+1)}}=-\binom{H x^{(k)}+c}{0}
$$

We have $x^{(0)}=\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T}$. Constraints 1 and 5 are active at $x^{(0)}$, so that $\mathcal{W}^{(0)}=$ $\{1,5\}$. We obtain

$$
\left(\begin{array}{rrrrr}
2 & 1 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & -1 \\
0 & 1 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(0)} \\
p_{2}^{(0)} \\
p_{3}^{(0)} \\
-\lambda_{1}^{(1)} \\
-\lambda_{5}^{(1)}
\end{array}\right)=\left(\begin{array}{r}
-1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right)
$$

which gives

$$
p^{(0)}=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{2}
\end{array}\right), \quad\binom{\lambda_{1}^{(1)}}{\lambda_{5}^{(1)}}=\binom{1}{-\frac{5}{2}} .
$$

The maximum steplength $\alpha_{\max }$ is given by the maximum α such that $A\left(x^{(0)}+\right.$ $\left.\alpha p^{(0)}\right) \geq b$, which gives $\alpha_{\max }=2$, so that $\alpha^{(0)}=1$ which gives $x^{(1)}=\left(\begin{array}{ll}-1 & 1\end{array} 1 / 2\right)^{T}$. As $\lambda_{5}^{(1)}<0$, we let $\mathcal{W}^{(1)}=\mathcal{W}^{(0)} \backslash\{5\}=\{1\}$.
We obtain

$$
\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(1)} \\
p_{2}^{(1)} \\
p_{3}^{(1)} \\
-\lambda_{1}^{(2)}
\end{array}\right)=\left(\begin{array}{r}
-1 \\
-\frac{5}{2} \\
0 \\
0
\end{array}\right),
$$

which gives

$$
p^{(1)}=\left(\begin{array}{r}
0 \\
-\frac{5}{3} \\
\frac{5}{6}
\end{array}\right), \quad \lambda_{1}^{(1)}=-\frac{2}{3} .
$$

The maximum steplength $\alpha_{\text {max }}$ is given by the maximum α such that $A\left(x^{(1)}+\right.$ $\left.\alpha p^{(1)}\right) \geq b$, which gives $\alpha_{\max }=3 / 5$, where the maximum is attained for constraint 6 , so that $\alpha^{(1)}=3 / 5$ which gives $x^{(2)}=(-101)^{T}$ and $\mathcal{W}^{(2)}=\mathcal{W}^{(1)} \cup\{6\}=\{1,6\}$.
We obtain

$$
\left(\begin{array}{rrrrr}
2 & 1 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(2)} \\
p_{2}^{(2)} \\
p_{3}^{(2)} \\
-\lambda_{1}^{(3)} \\
-\lambda_{6}^{(3)}
\end{array}\right)=\left(\begin{array}{r}
0 \\
-1 \\
0 \\
0 \\
0
\end{array}\right),
$$

which gives

$$
p^{(2)}=\left(\begin{array}{r}
0 \\
-\frac{1}{2} \\
0
\end{array}\right), \quad\binom{\lambda_{1}^{(3)}}{\lambda_{6}^{(3)}}=\binom{-\frac{1}{2}}{\frac{1}{2}} .
$$

The maximum steplength $\alpha_{\max }$ is given by the maximum α such that $A\left(x^{(2)}+\right.$ $\left.\alpha p^{(2)}\right) \geq b$, which gives $\alpha_{\max }=2$, so that $\alpha^{(2)}=1$ which gives $x^{(1)}=(-1-1 / 21)^{T}$. As $\lambda_{1}^{(3)}<0$, we let $\mathcal{W}^{(3)}=\mathcal{W}^{(2)} \backslash\{1\}=\{6\}$.
We obtain

$$
\left(\begin{array}{rrrr}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(3)} \\
p_{2}^{(3)} \\
p_{3}^{(3)} \\
-\lambda_{6}^{(4)}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
0
\end{array}\right),
$$

which gives

$$
p^{(3)}=\left(\begin{array}{r}
\frac{1}{3} \\
-\frac{1}{6} \\
0
\end{array}\right), \quad \lambda_{6}^{(4)}=\frac{2}{3} .
$$

The maximum steplength $\alpha_{\max }$ is given by the maximum α such that $A\left(x^{(3)}+\right.$ $\left.\alpha p^{(3)}\right) \geq b$, which gives $\alpha_{\max }=2$, so that $\alpha^{(3)}=1$ which gives $x^{(4)}=(-2 / 3-$ $2 / 31)^{T}$. In addition, we have $\lambda_{\mathcal{W}^{(3)}}^{(4)} \geq 0$, so that $x^{(4)}$ is optimal.
3. (a) In this case, $x^{(0)}=0$, so that $A x^{(0)}=0>b$, since b has all components -1 . Therefore, if s is introduced as $s=A x-b$, we may let $s^{(0)}=A x^{(0)}-b$, and then $A x^{(k)}-s^{(k)}=b$ will be maintained at all Newton iterations, since this is a linear constraint. Therefore, we may use $A x-b$ directly.
(b) The linear system of equations takes the form

$$
\left(\begin{array}{cc}
H & -A^{T} \\
\operatorname{diag}\left(\lambda^{(0)}\right) A & \operatorname{diag}\left(A x^{(0)}-b\right)
\end{array}\right)\binom{\Delta x}{\Delta \lambda}=-\binom{H x^{(0)}+c-A^{T} \lambda^{(0)}}{\operatorname{diag}\left(A x^{(0)}-b\right) \operatorname{diag}\left(\lambda^{(0)}\right) e-\mu^{(0)} e},
$$

where e is the vector of ones. Insertion of numerical values gives

$$
\left(\begin{array}{rrrrrrrrr}
2 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & -1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta \lambda_{1} \\
\Delta \lambda_{2} \\
\Delta \lambda_{3} \\
\Delta \lambda_{4} \\
\Delta \lambda_{5} \\
\Delta \lambda_{6}
\end{array}\right)=\left(\begin{array}{r}
-2 \\
-1 \\
2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

(c) The unit step is accepted only if $-e<x^{(0)}+\Delta x<e$ and $\lambda^{(0)}+\Delta \lambda>0$. Since $\lambda^{(0)}+\Delta \lambda \ngtr 0$, the unit step is not accepted. We may for example let $\alpha^{(0)}=0.99 \alpha_{\max }$, where $\alpha_{\max }$ is the maximum step, to maintain $x^{(0)}+\alpha \Delta x \geq 0$ and $\lambda^{(0)}+\alpha \Delta \lambda \geq 0$, i.e., $\alpha_{\max }=-\lambda_{3}^{(0)} /\left(\Delta \lambda_{3}\right)$. Then $x^{(1)}=x^{(0)}+\alpha^{(0)} \Delta x$ and $\lambda^{(1)}=\lambda^{(0)}+\alpha^{(0)} \Delta \lambda$.
4. (See the course material.)
5. (a) The QP subproblem becomes
$(Q P)$

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(k)}, \lambda^{(k)}\right) p+\nabla f\left(x^{(k)}\right)^{T} p \\
\text { subject to } & A\left(x^{(k)}\right) p \geq-g\left(x^{(k)}\right) .
\end{array}
$$

Assume that there exists an x such that $g_{i}(x) \geq 0$. Then, if g_{i} is concave, we have

$$
0 \geq-g_{i}(x) \geq-g_{i}\left(x^{(k)}\right)-\nabla g_{i}\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right) .
$$

Repeating for $i=1, \ldots, m$ gives

$$
0 \geq-g(x) \geq-g\left(x^{(k)}\right)-A\left(x^{(k)}\right)\left(x-x^{(k)}\right)
$$

which implies

$$
A\left(x^{(k)}\right)\left(x-x^{(k)}\right) \geq-g\left(x^{(k)}\right)
$$

so that $x-x^{(k)}$ is feasible to the SQP subproblem.
(b) Linearization of the objective function in $\left(N L P^{\prime}\right)$ gives

$$
f\left(x^{(k)}+p\right)+M e^{T}\left(u^{(k)}+q\right) \approx f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{T} p+M e^{T} u^{(k)}+M e^{T} q
$$

where e is the vector of ones. Since u only appears linearly in $\left(N L P^{\prime}\right)$, the quadratic part of the objective function in $\left(Q P^{\prime}\right)$ is identical to that in the objective function of the QP subproblem associated with $(N L P)$. The objective function therefore becomes

$$
\frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(k)}, \lambda^{(k)}\right) p+\nabla f\left(x^{(k)}\right)^{T} p+M e^{T} q
$$

Setting a linearization of the constraints feasible in $\left(N L P^{\prime}\right)$ gives

$$
\begin{array}{r}
g\left(x^{(k)}+p\right)+u^{(k)}+q \approx g\left(x^{(k)}\right)+A\left(x^{(k)}\right) p+u^{(k)}+q \geq 0 \\
u^{(k)}+q \geq 0
\end{array}
$$

The QP subproblem associated with $\left(N L P^{\prime}\right)$ at iteration k may consequently be written as

$$
\begin{array}{lll}
& \text { minimize } & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(k)}, \lambda^{(k)}\right) p+\nabla f\left(x^{(k)}\right)^{T} p+M e^{T} q \\
\left(Q P^{\prime}\right) \quad \text { subject to } & A\left(x^{(k)}\right) p+q \geq-g\left(x^{(k)}\right)-u^{(k)} \\
& q \geq-u^{(k)}
\end{array}
$$

If in addition $u^{(k)}=0,\left(Q P^{\prime}\right)$ takes the form

$$
\begin{array}{ll}
& \text { minimize } \quad \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(k)}, \lambda^{(k)}\right) p+\nabla f\left(x^{(k)}\right)^{T} p+M e^{T} q \\
\left(Q P^{\prime}\right) & \text { subject to } A\left(x^{(k)}\right) p+q \geq-g\left(x^{(k)}\right)
\end{array}
$$

$$
q \geq 0
$$

The first-order necessary optimality conditions for $\left(Q P^{\prime}\right)$ then become

$$
\begin{aligned}
\nabla_{x x}^{2} \mathcal{L}\left(x^{(k)}, \lambda^{(k)}\right) p+\nabla f\left(x^{(k)}\right) & =A\left(x^{(k)}\right)^{T} \lambda \\
M e & =\lambda+\eta \\
A\left(x^{(k)}\right) p+q & \geq-g\left(x^{(k)}\right) \\
\lambda & \geq 0 \\
\left(A\left(x^{(k)}\right) p+q+g\left(x^{(k)}\right)\right)^{T} \lambda & =0 \\
q & \geq 0 \\
\eta & \geq 0 \\
q^{T} \eta & =0
\end{aligned}
$$

Now assume that $M e-\lambda>0$. Then, $\eta>0$, since $\eta=M e-\lambda$. But then, the complementarity condition $q^{T} \eta=0$ and nonnegativity of q gives $q=0$. Then, the optimality conditions take the form

$$
\begin{aligned}
\nabla_{x x}^{2} \mathcal{L}\left(x^{(k)}, \lambda^{(k)}\right) p+\nabla f\left(x^{(k)}\right) & =A\left(x^{(k)}\right)^{T} \lambda \\
A\left(x^{(k)}\right) p & \geq-g\left(x^{(k)}\right) \\
\lambda & \geq 0 \\
\left(A\left(x^{(k)}\right) p+g\left(x^{(k)}\right)\right)^{T} \lambda & =0
\end{aligned}
$$

which are exactly the optimality conditions of the QP subproblem associated with $(N L P)$. Therefore, based on the optimality conditions we conclude that $q^{(k)}=0$ in addition to $p^{(k)}$ and $\lambda^{(k+1)}$ being optimal solution and Lagrange multipliers respectively of the corresponding QP subproblem associated with (NLP).

