
SF2822 Applied nonlinear optimization, final exam
Thursday June 1 2023 8.00–13.00

Brief solutions

1. (a) GAMS has terminated successfully with model status ‘‘Locally Optimal’’,
meaning that a point x∗ and Lagrange multiplier vector λ∗ that together satisfy
the first-order necessary optimality conditions for (NLP ) have been computed.
From ‘‘LEVEL’’ of ‘‘VAR x’’, we obtain the solution

x∗ ≈
(

0.433 0.433 0.567
)T

.

Analogously, the Lagrange multipliers of the constraints are given by ‘‘MARGIN’’

of ‘‘EQU cons1’’, ‘‘EQU cons2’’, and ‘‘VAR x’’, as

λ∗ ≈
(

0.000 1.134 0.000 0.000 0.000
)T

.

(b) We have f(x) = 2e(x1−1) + (x2 − x1)2 + x23 = f1(x1 − 1) + f2(x2 − x1) + f2(x3),
for f1(y) = 2ey and f2(y) = y2. Then, f ′′1 (y) = 2ey ≥ 0 and f ′′2 (y) = 2 ≥ 0, so
that f1 and f2 are convex functions on IR. As linear tranformations preserve
convexity, we obtain f as a sum of three convex functions, hence convex. In
addition, g2(x) = x1 +x3− 1, which is linear. Hence, x∗ and λ∗2 satisfy the first
order necessary optimality conditions for

(NLP ′)
minimize f(x)

subject to g2(x) ≥ 0,

which is a convex optimization problem. Hence, x∗ is a global minimizer to
(NLP ′). As (NLP ′) is a relaxation of (NLP ) created by omitting constraints
that are satisfied at x∗, x∗ is a global minimizer to (NLP ) as well.

(c) The expected change in the objective function is given by the Lagrange multi-
plier, up to first order, hence 1.456 + 1.134t.

2. We may make use of the fact that the problem has only simple bounds. The solutions
below are stated for the general form Ax − b. We first note that H is diagonally
dominant, hence positive definite, so that (QP ) is a convex optimization problem.

At iteration k, search direction p(k) and Lagrange multipliers λ
(k+1)

W(k) are given by

(
H AT

W(k)

AW(k) 0

)(
p(k)

−λ(k+1)

W(k)

)
= −

(
Hx(k) + c

0

)
.

We have x(0) = (−1 1 0)T . Constraints 1 and 5 are active at x(0), so that W(0) =
{1, 5}. We obtain



2 1 0 1 0

1 2 1 0 −1

0 1 2 0 0

1 0 0 0 0

0 −1 0 0 0





p
(0)
1

p
(0)
2

p
(0)
3

−λ(1)1

−λ(1)5


=



−1

−2

1

0

0


,

1
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which gives

p(0) =


0

0
1
2

 ,
 λ

(1)
1

λ
(1)
5

 =

(
1

−5
2

)
.

The maximum steplength αmax is given by the maximum α such that A(x(0) +
αp(0)) ≥ b, which gives αmax = 2, so that α(0) = 1 which gives x(1) = (−1 1 1/2)T .

As λ
(1)
5 < 0, we let W(1) =W(0)\{5} = {1}.

We obtain
2 1 0 1

1 2 1 0

0 1 2 0

1 0 0 0




p
(1)
1

p
(1)
2

p
(1)
3

−λ(2)1

 =


−1

−5
2

0

0

 ,

which gives

p(1) =


0

−5
3
5
6

 , λ
(1)
1 = −2

3
.

The maximum steplength αmax is given by the maximum α such that A(x(1) +
αp(1)) ≥ b, which gives αmax = 3/5, where the maximum is attained for constraint
6, so that α(1) = 3/5 which gives x(2) = (−1 0 1)T and W(2) =W(1) ∪ {6} = {1, 6}.
We obtain

2 1 0 1 0

1 2 1 0 0

0 1 2 0 −1

1 0 0 0 0

0 0 −1 0 0





p
(2)
1

p
(2)
2

p
(2)
3

−λ(3)1

−λ(3)6


=



0

−1

0

0

0


,

which gives

p(2) =


0

−1
2

0

 ,
 λ

(3)
1

λ
(3)
6

 =

(
−1

2
1
2

)
.

The maximum steplength αmax is given by the maximum α such that A(x(2) +
αp(2)) ≥ b, which gives αmax = 2, so that α(2) = 1 which gives x(1) = (−1 −1/2 1)T .

As λ
(3)
1 < 0, we let W(3) =W(2)\{1} = {6}.

We obtain
2 1 0 0

1 2 1 0

0 1 2 −1

0 0 −1 0




p
(3)
1

p
(3)
2

p
(3)
3

−λ(4)6

 =


1
2

0
1
2

0

 ,



SF2822 Solutions to final exam June 1 2023 Page 3 of 5

which gives

p(3) =


1
3

−1
6

0

 , λ
(4)
6 =

2

3
.

The maximum steplength αmax is given by the maximum α such that A(x(3) +
αp(3)) ≥ b, which gives αmax = 2, so that α(3) = 1 which gives x(4) = (−2/3 −
2/3 1)T . In addition, we have λ

(4)

W(3) ≥ 0, so that x(4) is optimal.

3. (a) In this case, x(0) = 0, so that Ax(0) = 0 > b, since b has all components −1.
Therefore, if s is introduced as s = Ax − b, we may let s(0) = Ax(0) − b, and
then Ax(k) − s(k) = b will be maintained at all Newton iterations, since this is
a linear constraint. Therefore, we may use Ax− b directly.

(b) The linear system of equations takes the form(
H −AT

diag(λ(0))A diag(Ax(0) − b)

)(
∆x

∆λ

)
= −

(
Hx(0) + c−ATλ(0)

diag(Ax(0) − b) diag(λ(0))e− µ(0)e

)
,

where e is the vector of ones. Insertion of numerical values gives

2 1 0 −1 0 0 1 0 0

1 2 1 0 −1 0 0 1 0

0 1 2 0 0 −1 0 0 1

2 0 0 1 0 0 0 0 0

0 2 0 0 1 0 0 0 0

0 0 2 0 0 1 0 0 0

−2 0 0 0 0 0 1 0 0

0 −2 0 0 0 0 0 1 0

0 0 −2 0 0 0 0 0 1





∆x1

∆x2

∆x3

∆λ1

∆λ2

∆λ3

∆λ4

∆λ5

∆λ6



=



−2

−1

2

0

0

0

0

0

0



.

(c) The unit step is accepted only if −e < x(0) + ∆x < e and λ(0) + ∆λ > 0.
Since λ(0) + ∆λ 6> 0, the unit step is not accepted. We may for example let
α(0) = 0.99αmax, where αmax is the maximum step, to maintain x(0) +α∆x ≥ 0

and λ(0) + α∆λ ≥ 0, i.e., αmax = −λ(0)3 /(∆λ3). Then x(1) = x(0) + α(0)∆x and
λ(1) = λ(0) + α(0)∆λ.

4. (See the course material.)

5. (a) The QP subproblem becomes

(QP )
minimize 1

2p
T∇2

xxL(x(k), λ(k))p+∇f(x(k))Tp

subject to A(x(k))p ≥ −g(x(k)).

Assume that there exists an x such that gi(x) ≥ 0. Then, if gi is concave, we
have

0 ≥ −gi(x) ≥ −gi(x(k))−∇gi(x(k))T(x− x(k)).
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Repeating for i = 1, . . . ,m gives

0 ≥ −g(x) ≥ −g(x(k))−A(x(k))(x− x(k)),

which implies

A(x(k))(x− x(k)) ≥ −g(x(k)),

so that x− x(k) is feasible to the SQP subproblem.

(b) Linearization of the objective function in (NLP ′) gives

f(x(k) + p) +MeT(u(k) + q) ≈ f(x(k)) +∇f(x(k))Tp+MeTu(k) +MeTq,

where e is the vector of ones. Since u only appears linearly in (NLP ′), the
quadratic part of the objective function in (QP ′) is identical to that in the
objective function of the QP subproblem associated with (NLP ). The objective
function therefore becomes

1
2p

T∇2
xxL(x(k), λ(k))p+∇f(x(k))Tp+MeTq.

Setting a linearization of the constraints feasible in (NLP ′) gives

g(x(k) + p) + u(k) + q ≈ g(x(k)) +A(x(k))p+ u(k) + q ≥ 0,

u(k) + q ≥ 0.

The QP subproblem associated with (NLP ′) at iteration k may consequently
be written as

(QP ′)

minimize 1
2p

T∇2
xxL(x(k), λ(k))p+∇f(x(k))Tp+MeTq

subject to A(x(k))p+ q ≥ −g(x(k))− u(k),
q ≥ −u(k).

If in addition u(k) = 0, (QP ′) takes the form

(QP ′)

minimize 1
2p

T∇2
xxL(x(k), λ(k))p+∇f(x(k))Tp+MeTq

subject to A(x(k))p+ q ≥ −g(x(k)),
q ≥ 0.

The first-order necessary optimality conditions for (QP ′) then become

∇2
xxL(x(k), λ(k))p+∇f(x(k)) = A(x(k))Tλ,

Me = λ+ η,

A(x(k))p+ q ≥ −g(x(k)),

λ ≥ 0,

(A(x(k))p+ q + g(x(k)))Tλ = 0,

q ≥ 0,

η ≥ 0,

qTη = 0.

Now assume that Me− λ > 0. Then, η > 0, since η = Me− λ. But then, the
complementarity condition qTη = 0 and nonnegativity of q gives q = 0. Then,
the optimality conditions take the form

∇2
xxL(x(k), λ(k))p+∇f(x(k)) = A(x(k))Tλ,

A(x(k))p ≥ −g(x(k)),

λ ≥ 0,

(A(x(k))p+ g(x(k)))Tλ = 0,
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which are exactly the optimality conditions of the QP subproblem associated
with (NLP ). Therefore, based on the optimality conditions we conclude that
q(k) = 0 in addition to p(k) and λ(k+1) being optimal solution and Lagrange
multipliers respectively of the corresponding QP subproblem associated with
(NLP ).


