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(a)

SF2822 Applied nonlinear optimization, final exam
Wednesday August 16 2023 8.00-13.00
Brief solutions

The objective function is f(z) = e* + x129 + J;% — 2x013 + x§ —3x1 — x9 — T3.
Differentiation gives

et + 19— 3 ert 1 0
Viz)=| o1 +200-225—-1 |, V@)= 1 2 -2
—2x9 4 223 — 1 0 -2 2

In particular, V£(Z) = (=1 -1 -1)T. With gi(2) = —2? — 23 — 22 + 4 we get
91(Z) = 2, which mean that constraint 1 is inactive at Z. Since Vf(Z) # 0,
constraint 2 must be active for T to possibly satisfy the first-order necessary
optimality conditions. These conditions require the existence of a A2 such that
Vf(Z) = a)y and a’Z 4+ 3 = 0 with Xy > 0.
The condition V f(Z) = a)o takes the form

-1 al
-1 - as 5\2.
-1 as

and it can not be fulfilled with Ao = 0. Hence, Ay > 0, and we obtain a1 = as =
az = —1/5\2. The condition a’& + 3 = 0 gives —2/5\2 +3 =0 so0 that \y = 2/3.
Hence, a = (-3/2 -3/2 —3/2)T.

If a = (=3/2 -3/2 —3/2)T, then 7 fulfils the first-order necessary optimality

conditions together with A = (0 2/3)7.

As we only have one active linear constraint at  we obtain

1 1 0
VZLEN=Vf@)=]1 2 -2
0 -2 2

Since Ay > 0, we also have that A, (%) = A4(Z) = a, where we can let
a’ = (B N) for B=—~1and N = (—1 —1). We then obtain a matrix whose
columns form a basis for the null space of A4 (Z) as

BN -1 -1
Z4(%) = ( / ) =l 1 0],
0 1

which gives

2@V (@024 (7) = ( L ‘g) ,

for which an LDLT-factorization gives

()= D6 )6

As dyp = —1 < 0, Z,(2)'V2f(Z)Z, () is not positive semidefinite. By strict
complementarity, A4 (Z) = Aa(Z), so that Z,(Z) = Z4(Z). Therefore, & does
not fulfil the second-order necessary optimality conditions and is therefore not
a local minimizer.
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2.  We have

1, 1
fla) = saf + sa3, 9(x) = x1 + 22 + 75 + 2,

. T . 1
Vf<x>—<x2>, Vgu)—(l”m),

10 0 0
cr-(10). (1 0)

(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min %p% + %pg
subject to p1 4+ p2 = —2.

This is a convex QP-problem with a globally optimal solution given by

pl_Azoa
pQ_AZOa
p1+p2 = —2.

The solution is given by p1 = —1, po = —1 and A = —1, which agrees with the
printout from the SQP-solver.

(b) We can see that V2 f(z) is positive definite and V2g(x) is positive semidefinite,
independently of x. Moreover )\ is non-positive in all iterations. This implies
that the solution to each QP subproblem is optimal also for the case when the
equality constraint is changed to a less than or equal constraint. Hence, the
iterates would not change at all if the constraint was changed as suggested.

(¢c) The inequality-constrained problem is a convex problem, and in addition a

relaxation of the original problem. Hence we get convergence towards a global
minimizer of this problem, which is also a global minimizer of (N LP).

3. We may make use of the fact that the problem has only simple bounds.

Constraint 1 and 2 are in the working set at the initial point, i.e., 1 and x5 are set
to zero. The search direction is given by
0 0 . 0
h33p:(3 ) = —(hgg.%'é ) =+ 03), 1.e. 3p:(3 ) = —4,
so that p(® = (0 0 —4/3)”. The maximum steplength is given by amax = 3/4,
so that a(®) = 3/4 which gives () = (0 0 0)7. All three constraints are active, so
pM) =0 and 2? = (M. The multipliers are given by A = Hz(? + ¢ = ¢. Since

)\52) < 0, constraint 1 is deleted from the working set. The search direction is given
by

hpl? = AP qe 2pP =2,

so that p?) = (10 0)”. The maximum steplength is infinite, so that a® =1 which
gives (3 = (1 0 0)T. The multipliers are given by \®) = Hz®) 4 ¢ = (01 —1)T.
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5.

Since )\:())3) < 0, constraint 3 is deleted from the working set. The search direction is
given by

h b\ (PP (AP . 2 -2\ () 0
hay h O N W O e N O A U A R
31 has D3 3 D3

so that p(® = (1 0 1)”. The maximum steplength is infinite, so that a(3) = 1 which
gives (Y = (2 0 1)”. The multipliers are given by A = Hz® 4 ¢ = (0 2 0)T.
Since \(4) > 0, an optimal solution has been found.

(See the course material.)

(a)

The function f(y) = y2 has derivative f’(y) = 0 for y < 0 and f'(y) = 2y for
y > 0. Hence, f’(y) is continuous with f’(0) = 0. The second derivative is given
by f”(y) =0 for y < 0 and f"(y) = 2 for y > 0. Hence, f” is discontinuous at
y = 0. As a consequence, the objective function has discontinuous Hessian at
points where pzTa: = u; for some ¢ € U or pZTx =1; for some i € L.

Consider a fixed  and minimize over y in (QP). We want to show that y; =
(pTx —wi)4, i €U, and y; = (I; — plx)+, i € L. Assume that plz — u; < 0 for
some i € U. Then, y; = 0, since y; = 0 is the the minimizer of y?. Similarly,
if plx —wu; > 0, the optimal choice of y; is y; = plz — w4, as y? is a strictly
increasing function for y; > 0. Hence, y; = (plx —u;)+, i € U, as required. The
argument for ¢ € £ is analogous.

We may write the Lagrangian function as

l(xayvAﬂ?) = %2934‘%21/12—2)\@(%—103}64-%) _Z)\z(yz‘i‘psz_lz) -

el el iel el
for Lagrange multipliers \; > 0,7 € Y U L, and n > 0. Let P, be the matrix
whose rows comprise p! , i € Z, and analogously for P.. Let subscripts "¢ and
"L" respectively denote the vectors with components in the two sets. Also, let
Ay = diag(Ny), Yy = diag(yu), A = diag(\p), Yz = diag(ye), X = diag(z)
and N = diag(n). For a positive barrier parameter p, the perturbed first-order
optimality conditions may be written

Py — Pide —n =0,
yu — Ay =0,
yc —Ac =0,

Ay (yu — Puz + uy) = pe,
Ar(ye + Prx —lg) = pe,
Nz = pe.
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