Proposals for master thesis projects, Spring 2024

Thesis project title	Short description
Path Planning for UAVs on Cellular Networks (Supervisors: Fernando dos Santos Barbosa)	The main goal is to develop a path planning algorithm for unmanned aerial vehicles (UAVs) that accounts for the challenges and risks encountered when operating over a city, which might include network connectivity, distribution of people, weather, battery consumption and risk of accidents. We envision using a mix of novel machine- learning and AI tools together with traditional planning algorithms, such as RRT and A* to address this problem.
Safe Reinforcement Learning with Control Barrier Functions (Supervisors: Adam Miksits, Fernando dos Santos Barbosa)	When training and deploying reinforcement learning (RL) agents for real robots, it is essential to ensure safety. Ericsson Research has recently studied shielding and trust region policies to achieve safety on both a simulated and a real robot. To bridge the gap between simulation and reality, we also used domain randomization during RL training. This thesis will try other methods, such as control barrier functions, to achieve safety during training and deployment, and compare the methods with respect to safety and other performance metrics.
Discrete-time Control Barrier Functions for Safe Navigation of Networked Mobile Robots (Supervisors: Adam Miksits, Fernando dos Santos Barbosa)	To improve robot flexibility and reduce costs, control algorithms are being moved from the robot to the edge/cloud. In this case, it is important to ensure robot safety despite possible network interruptions. This thesis project will investigate how discrete-time control barrier functions could be used to achieve safety guarantees under network outages.
Visual Servoing with Compressed Images (Supervisors: David Umsonst, Andre Mateus, Jose Pedro)	Visual Servoing is a popular control algorithm that uses images as sensor inputs to move robots to a desired pose. In this thesis, we want to investigate how the control performance changes when visual servoing is offloaded to a remote server and compressed images are used to determine the control commands.
Manipulation-on-the-Move over the Network (Supervisors: Mina Ferizbegovic, Roberto Castro Sundin, David Umsonst)	In this thesis, we investigate a smooth package delivery problem consisting of two robots - a mobile robot delivering a package to a robotic manipulator. We want the manipulator to

	smoothly pick up the package, while the mobile
	robot drives by For that we would like to extend
	existing Manipulation-on-the-Move algorithms to
	a networked control setup and compare it to our
	inhouse developed algorithms
Multi vata Cantual avan tha Naturauk	Control algorithms can often be divided into high
Wulti-rate Control over the Network	Control algorithms can often be divided into high-
(Supervisors: Fernando dos Santos Barbosa,	, mid- and low-level controllers, where the low-
David Umsonst)	level runs at very high frequency, and mid- and
	high-level controllers at lower frequencies. In this
	thesis, we will investigate the effects of
	distributing these layers among device, edge and
	cloud, over the network. The main goal of this
	thesis is to determine if safety and tracking
	performance can still be guaranteed when the
	network suffers outages.
Network-aware 3D scene graph representation	3D scene graphs offer a powerful way to
(Supervisors: Alejandra Hernandez Silva, Clara	represent the environment through a hierarchical
Gomez Blazquez, Jose Araujo)	layered structure that collects varied information
	such as objects, rooms, 3D structures, etc.,
	valuable to allow robots/devices to perceive,
	plan, and interact intelligently in the real world.
	In this project, we will integrate network
	information into a 3D scene graph representation
	and exploit this new information to improve
	robotic tasks such as path planning to best adapt
	to network conditions
Leveraging room information for enhanced loop	Semantic understanding of the environment is a
closure detection	fundamental requirement for robotic systems
(Supervisors: Alejandra Hernandez Silva, Clara	and XR glasses 3D scene granhs constitute a
Gomez)	hierarchical representation of the surroundings
	that integrates geometric and semantic
	information at multiple levels of abstraction 3D
	scene graphs are becoming an essential
	component of Simultaneous Localization and
	Manning (SLAM) systems. This thosis aims to
	integrate computic room information into a 2D
	scope graph and take advantage of this new
	scene graph and take advantage of this new
	Information in the SLAW loop-closure detection
	strategy to reduce localization errors.