Luminescence of excitons &

Highly excited semiconductors

Klara Kiselman

25-10-2023

Chapter 7 & Chapter 8

Classification of luminescence by intensity

Low-fluence (Weak) excitation (0.01- 10 W/cm²): gas-discharge lamp, incandescent lamp,

continuous-wave gas laser

- Recombination of free excitons (FE or X; FE-LO phonon)
- Recombination of a bound exciton (BE): (D⁰-X; A⁰-X; D⁺-X; A⁻X, isoelectronic impurity)
 - Recombination of **donor-acceptor pairs** (D⁰-A⁰)

- Recombination of free hole/electron with neutral donor/acceptor (h-D⁰; e-A⁰; e-h)

 $1 \text{ sun} = 0.1 \text{ mW/cm}^2 = 0.1 \text{ W/cm}^2 = 1 \text{ kW/m}^2$

High-fluence (Strong) excitation (1 kW-10 MW/cm²):

- Luminescence from inelastic collisions of excitons (X-X collisions)
- Luminescence of electron-hole liquid (EHL) or electron-hole plasma (EHP)
- Bose-Einstein condensation of excitons or excitonic molecules

These excitations can occur simultaneously, in these two chapters we focus on low-fluence excitation and neglected luminescence from excitons

Excitons

- Electron and hole not independent, treated as one quasi particle
 - Energy < E_g because of Coulomb interaction
- Three types
 - 1. Frenkel exciton
 - Distance about one unit cell
 - Molecular crystals
 - 2. Charge transfer exciton
 - A bit larger radius
 - Ionic crystals
 - 3. Wannier exciton
 - Separation over many lattice constants
 - Moves freely, delocalized wavefunction (if not bound, we will discuss later)
 - Free excitons

Bound excitons

Wannier exciton

- Radius estimeted to be $a_x = 100^* a_b = 5 \text{ nm}$
- Binding energy estimated to be 13meV
 - Low T needed
- Proper treatment if wavefunction \rightarrow radius and binding energy
- Exitons with kinetic energy
 - Bound exitons have less kinetic energy, localized
- Dispersion relation E(k)
 - Here we do not have a free electron approximation

$$E_{(n)}(\mathbf{K}) = E_{g} - E_{X(n)} + E_{kin} = E_{g} - \frac{(m_{r}/m_{0})}{\varepsilon^{2}} \frac{Ry(H)}{n^{2}} + \frac{\hbar^{2}K^{2}}{2(m_{e} + m_{h})}.$$
(7.5)

Wannier exciton – Absorption spectrum

Direct bandgap

- Dipole approximation $\alpha(h\nu) \approx (h\nu - E_g)^{1/2}, \quad h\nu \ge E_g.$
- T = 0K, no kinteic energy → only vertical transitions (k)
- As in hydrogen atom, absorption line series

$$h\nu = E_{\rm g} - \frac{E_{\rm X}}{n^2}, \quad n = 1, 2, 3, \dots \infty;$$

- Intensity is proportional to $1/n^3$
- Also, enhanced absorption above Eg

Wannier exciton – Absorption Spectrum

Indirect bandgap

• Group veolcity of e and h equal

 $\mathbf{V}_{\mathrm{g}} = \frac{1}{\hbar} \frac{\partial E}{\partial \mathbf{k}}$

- Minimum energy if $K_i = |\mathbf{K}_c \mathbf{K}_v|^2$.
- Onset of absorption $h\nu = E_{gi} E_X + \hbar\omega$
- Transition (1) and (2) equally probable → density of states important

 $[E - (E_{gi} - E_{X(n)})]^{1/2}$

• Note: excitons with non-zero kinetic energy possible!

Resonant luminesence : direct E_g : free exciton-polaritons

- Absorption != emission
- Strong reabsorption
- Photon-Exciton dispersion curves combined
- Degeneracy lifted : band splitting
- No simple equation

1.514 1.512 1.516 Photon energy (eV)

1.510

Х (n=2)

1.518

 $h\nu_{\rm X-m\,LO} \approx (E_{\rm g} - E_{\rm X}) - m\,\hbar\omega_0, \quad m = 1, 2, 3, \dots$

- Very strong lines, why?
 - Energy of photon < Eg
 - All excitons regardless of **k** can participate
- Lineshape Maxwell-Boltzmann + varriaiton
 - Probability of phonon creation

$$I_{\rm sp}^{(m)}(h\nu) \approx (h\nu - [(E_{\rm g} - E_{\rm X}) - m\hbar\omega_0])^{1/2}$$
$$\times \exp\left[-\frac{h\nu - [(E_{\rm g} - E_{\rm X}) - m\hbar\omega_0]}{k_{\rm B}T}\right]$$
$$W^{(m)}(m\mathbf{q}_{\rm phonon} \approx K_{\rm exc}),$$

 $h\nu_{\rm X-m\,LO} \approx (E_{\rm g} - E_{\rm X}) - m\,\hbar\omega_0, \quad m = 1, 2, 3, \dots$

• Probability of phonon creation

$$I_{\rm sp}^{(m)}(h\nu) \approx (h\nu - [(E_{\rm g} - E_{\rm X}) - m\hbar\omega_0])^{1/2}$$
$$\times \exp\left[-\frac{h\nu - [(E_{\rm g} - E_{\rm X}) - m\hbar\omega_0]}{k_{\rm B}T}\right]$$
$$W^{(m)}(m\mathbf{q}_{\rm phonon} \approx K_{\rm exc}),$$

• $\mathbf{m} = \mathbf{1} \rightarrow \mathbf{phonons}$ with λ similar to linear size of exciton are more probable $W^{(1)}(\mathbf{q}_{phonon} \approx \mathbf{K}_{exc}) \sim K_{exc}^2$.

$$I_{\rm sp}^{(1)}(h\nu) \approx (h\nu - [(E_{\rm g} - E_{\rm X}) - \hbar\omega_0])^{3/2}$$
$$\exp\left[-\frac{h\nu - [(E_{\rm g} - E_{\rm X}) - \hbar\omega_0]}{k_{\rm B}T}\right]$$

10

 $h\nu_{\rm X-m\,LO} \approx (E_{\rm g} - E_{\rm X}) - m\,\hbar\omega_0, \quad m = 1, 2, 3, \dots$

• Probability of phonon creation

$$\begin{split} I_{\rm sp}^{(m)}(h\nu) &\approx (h\nu - [(E_{\rm g} - E_{\rm X}) - m\hbar\omega_0])^{1/2} \\ &\times \exp\left[-\frac{h\nu - [(E_{\rm g} - E_{\rm X}) - m\hbar\omega_0]}{k_{\rm B}T}\right] \\ &W^{(m)}(m\mathbf{q}_{\rm phonon} \approx K_{\rm exc}), \end{split}$$

• $m = 2 \rightarrow$ many possibilities, Maxwell like

$$I_{\rm sp}^{(2)}(h\nu) \approx (h\nu - [(E_{\rm g} - E_{\rm X}) - 2\hbar\omega_0])^{1/2}$$
$$\exp\left[-\frac{h\nu - [(E_{\rm g} - E_{\rm X}) - 2\hbar\omega_0]}{k_{\rm B}T}\right]$$

 $h\nu_{\rm X-m\,LO} \approx (E_{\rm g} - E_{\rm X}) - m\,\hbar\omega_0, \quad m = 1, 2, 3, \dots$

- Free exciton recombination is a **linear** function of excitation intensity
- Aucustic phonons have too small momentum
- Has to be optical ones are they allowed?
 - Symmetry argument : YES

- Exciton and phonon dispersion curves don't cross – no polaritons
- Phonons assist: whole populaiton can recombine
- Probability doesn't depend on phonon momnetum → Maxwell-Boltzmann

$$I_{\rm sp(i)}^{(1)}(h\nu) \cong (h\nu - [(E_{\rm gi} - E_{\rm X}) - \hbar\omega])^{1/2} \exp{-\frac{h\nu - [(E_{\rm gi} - E_{\rm X}) - \hbar\omega]}{k_{\rm B}T}}$$

- Which phonon will participate?
 - Selection rules based on symmetry
 - Si: LO, TO, LA, TA but LA and LO degenrate at X
- Impurities in crystals make transitions without phonon possible
- Linear depencence on pump intensity

Classification of luminescence by intensity

Low-fluence (Weak) excitation (0.01- 10 W/cm²): gas-discharge lamp, incandescent lamp,

continuous-wave gas laser

- Recombination of free excitons (FE or X; FE-LO phonon)
- Recombination of a bound exciton (BE): (D⁰-X; A⁰-X; D⁺-X; A⁻X, isoelectronic impurity)
 - Recombination of **donor-acceptor pairs** (D⁰-A⁰)

- Recombination of free hole/electron with neutral donor/acceptor (h-D⁰; e-A⁰; e-h)

 $1 \text{ sun} = 0.1 \text{ mW/cm}^2 = 0.1 \text{ W/cm}^2 = 1 \text{ kW/m}^2$

High-fluence (Strong) excitation (1 kW-10 MW/cm²):

- Luminescence from inelastic collisions of excitons (X-X collisions)
- Luminescence of electron-hole liquid (EHL) or electron-hole plasma (EHP)
- Bose-Einstein condensation of excitons or excitonic molecules

These excitations can occur simultaneously, in these two chapters we focus on low-fluence excitation and neglected luminescence from excitons

Bound Excitons

- Localized, looses kinetic energy
- Extrinsic
- Dominates free excition
 - Large radius: likely to encounter a trap
 - Giant strength from all unit cells within the volume
- PL can give us defects!
- No kinetic energy --> no broadeing with T
- Linear dependency on intensity until saturation
- Lower hv compared to free excition, no kinetic energy

Bound Excitions : shallow impurities

<i>e</i>	.electron,
<i>h</i>	.hole,
$\oplus e$. neutral donor; also D^0 ,
$\ominus h$.neutral acceptor; also A^0 ,
FE	free exciton,
⊕	. ionized donor; also D ⁺ ,
θ	. ionized acceptor; also A ⁻ ,
$\oplus eh$. exciton bound to ionized donor; also (D^+-X) or (D^+, X) ,
\ominus eh	exciton bound to ionized acceptor; also (A^X) or (A^-, X) ,
\oplus eeh	. exciton bound to neutral donor; also (D^0-X) or (D^0, X) ,
\oplus heh	. exciton bound to neutral acceptor; also (A^0-X) or (A^0, X) .

$$\left. \begin{array}{l} \oplus + \mathrm{FE} \to \oplus eh + D_1 \\ \oplus eh \to \oplus + h\nu_{\mathrm{BE}} \end{array} \right\} \quad h\nu_{\mathrm{BE}} = \mathrm{FE} - D_1 \cong (E_{\mathrm{g}} - E_{\mathrm{X}}) - D_1$$

Bound Excitions : shallow impurities

^{D1} • lonized

 \oplus *eh*..... exciton bound to ionized donor; also (D⁺–X) or (D⁺, X), \ominus *eh*.... exciton bound to ionized acceptor; also (A⁻–X) or (A⁻, X),

D1 hard to compute theoretically

- Effective mass
 - Light hole in +eh will break away from the neutral +e
 - Heavy = small kinetic energy
- A—X unlikely holes are usually heavier

• Neutral : stable for any effective mass ratio

 \oplus *eeh*.....exciton bound to neutral donor; also (D⁰–X) or (D⁰, X), \oplus *heh*.....exciton bound to neutral acceptor; also (A⁰–X) or (A⁰, X).

 $h\nu_{\rm BE} = {\rm FE} - E_{\rm BX} = (E_{\rm g} - E_{\rm X}) - E_{\rm BX}$ Direct $h\nu_{\rm BE} = {\rm FE} - E_{\rm BX} = (E_{\rm gi} - E_{\rm X} - \hbar\omega) - E_{\rm BX}$ Indirect

Bound Excitions : shallow impurities

- Here: $D1 > E_{BX}$
 - D1(D⁺-X) emission more redshifted than E_{BX}(D⁰⁻X)
- This is material dependent

Bound Excitons : shallow impurities

- Hayne's rule
 - Not only effective masses, also atom itself!
 - Si: a = 0, b = 0.1

 $E_{\rm BX} = a + b E_{\rm D}$

Bound multiexciton complexes

Shift of emission line by sum of all binding energies

$$\begin{array}{l} \oplus e + \operatorname{FE} \to \oplus e(eh) + E_{\mathrm{BX}}^{(1)} \\ \oplus e(eh) - E_{\mathrm{BX}}^{(1)} + \operatorname{FE} \to \oplus e(2eh) + E_{\mathrm{BX}}^{(2)} \\ \oplus e(2eh) - \left(E_{\mathrm{BX}}^{(1)} + E_{\mathrm{BX}}^{(2)}\right) + \operatorname{FE} \to \oplus e(3eh) + E_{\mathrm{BX}}^{(3)} \\ \vdots \\ \oplus e\left((m-1)\ eh\right) - \sum_{i=1}^{(m-1)} E_{\mathrm{BX}}^{(j)} + \operatorname{FE} \to \oplus e(m\ eh) + E_{\mathrm{BX}}^{(m)}. \end{tabular}$$
(7.24a)

- Intensity decreases for higher m
- More probable in indirect because longer lifetime

Quantitative analysis of shallow imputities in Si

• BE/FE

• Challenges:

- Detector range
- High S/N
- High resolution
- Need low excitation

Table 7.2	Spectral positions of luminescence lines (TO-replicas) due
o excitons be	bund at various impurities in Si; $T = 4.2 \mathrm{K}^{*)}$

Impurity	Туре	Wavelength (nm)
 P	SD	1135.13
As	SD	1135.97
Sb	SD	1135.04
Bi	SD	1138.32
Li	ID	1133.74
В	SA	1134.39
Al	SA	1135.60
Ga	SA	1136.15
In	SA	1144.83
Tl	SA	1177.59
С	Ι	1164.36
free exciton	_	1129.76

*) SD stands for a substitutional donor, ID interstitial donor, SA substitutional acceptor, I isoelectronic impurity.

Bound Excitons : isoelectric impurities

- Impurities from the same group
 - Same number of valence electrons
 - N for P in GaP & I for Br in AgBr
- Electronegativity
- Lineshape
 - Short range forces : no broadening
 - Exciton-phonon interaction
 - Weak --> narrow line (small reaction from surrounding lattice)
 - Strong --> broader line (larger ineraction with surroinding lattice)
- Effective enhancement!

Bound Excitons : isoelectric impurities

- Why such effective enhancement?
 - Trapping
 - No Auger recombination
 - Strong localization in x -> strong delocalization in k
 - $\Delta x \Delta k \le 1/2$
 - Can stretch all the way to the direct Eg!

$$z_{\rm ef} = \frac{\rm Iod_{LO} \, (BE)}{\rm I_{TO} \, (FE)} \, \frac{\tau_{\rm Iod}}{\tau_{\rm FE}} \approx 10^4 \, \times \, \left(10^3/3\right) \cong 3 \, \times 10^6 (!)$$

Self trapped excitons

- Strong exciton phonon interaction
- A moving exciton polarize its surroundings (hole is the heavier, drives)
 - → moves slower → more polarization → slows down even more → more polarization → stands still = localized
 - Local energy minima

Classification of luminescence by intensity

Low-fluence (Weak) excitation (0.01- 10 W/cm²): gas-discharge lamp, incandescent lamp,

continuous-wave gas laser

- Recombination of free excitons (FE or X; FE-LO phonon)
- Recombination of a bound exciton (BE): (D⁰-X; A⁰-X; D⁺-X; A⁻X, isoelectronic impurity)
 - Recombination of **donor-acceptor pairs** (D⁰-A⁰)

- Recombination of free hole/electron with neutral donor/acceptor (h-D⁰; e-A⁰; e-h)

 $1 \text{ sun} = 0.1 \text{ mW/cm}^2 = 0.1 \text{ W/cm}^2 = 1 \text{ kW/m}^2$

High-fluence (Strong) excitation (1 kW-10 MW/cm²):

- Luminescence from inelastic collisions of excitons (X-X collisions)
- Luminescence of electron-hole liquid (EHL) or electron-hole plasma (EHP)
- Bose-Einstein condensation of excitons or excitonic molecules

These excitations can occur simultaneously, in these two chapters we focus on low-fluence excitation and neglected luminescence from excitons

Highly Excited Semiconductors

- Until now only $0.01 10W/cm^2$
- Now: 1k-1MW/cm²
 - Pulsed laser
- New emission lines:
 - Radiative decay of excitonic molecules (=biexcitons) M
 - Collissions between excitons **P**
 - Luminescence of electron hole liquid or electron hole plasma
 - Bose Enistein condensation of excitons or biexcitons

Highly Excited Semiconductors

- When power is increased the concentration of free excitons increase
- When the mean separation is about two times the separation between electron and hole → interaction
- Reality: density not homogenous but rapid decrease from surface
 - Two photon excitation
- Indirect $E_g \rightarrow$ lower threshold
- Mechanical threshold!

Excitonic molecules / Biexcitons

- Fusion of two excitons into one quasi-particle
- Stability depends on ratio between effective masses
- Typical values 0.5-0.1 \rightarrow E_b = 0.1E_x
 - Less resistant to thermal dissociation
 - 1.3-50K needed
- Radiative recombination:
 - Biexcition \rightarrow free exciton (n=1 state) and one photon
 - M line

Direct semiconductor

• Fermi's golden rule

$$I_{\rm sp}^{\rm M}(h\nu) \sim \rho_{\rm M}(h\nu) f_{\rm M}(h\nu) |M_{\rm M}|^2$$

- M_M independent of hv
- Effective temperature $T_{\rm M}$
- Population factor f_M : Even n umber of fermions : total spin integer : bosons : don't have to take population factor into account
- Inverse Maxwell-Boltzmann distribution
- Recombining exciton takes a recoil k

$$I_{\rm sp}^{\rm M}(h\nu) \cong [(E_{\rm g} - E_{\rm X} - E_{\rm B}) - h\nu]^{1/2}$$
$$\exp\{-[(E_{\rm g} - E_{\rm X} - E_{\rm B}) - h\nu]/k_{\rm B}T_{\rm M}\}$$

$$\begin{cases} 2 (E_{g} - E_{X}) - E_{B} = h \nu_{M} + (E_{g} - E_{X}) \\ h \nu_{M} = (E_{g} - E_{X}) - E_{B} \end{cases}$$

Direct semiconductor

- Fermi's golden rule
- M_M independent of hv
- Effective temperature T_M
- Population factor f_M : Even n umber of fermions : total spin integer : bosons : don't have to take population factor into account
- Inverse Maxwell-Boltzmann distribution
- Recombining exciton takes a recoil k

$$I_{\rm sp}^{\rm M}(h\nu) \cong \left[(E_{\rm g} - E_{\rm X} - E_{\rm B}) - h\nu \right]^{1/2}$$
$$\exp\left\{ - \left[(E_{\rm g} - E_{\rm X} - E_{\rm B}) - h\nu \right] / k_{\rm B} T_{\rm M} \right\}$$

$$2 (E_{g} - E_{X}) - E_{B} = h \nu_{M} + (E_{g} - E_{X})$$
$$h \nu_{M} = (E_{g} - E_{X}) - E_{B}$$

Indirect semiconductor

- Phonon assistance
- Can't use joint density of states

 $I_{\rm in}^{\rm M}(h\nu) \cong \int \rho_{\rm M}(\epsilon_{\rm M}) f_{\rm M}(\epsilon_{\rm M}) \rho_{\rm X}(\epsilon_{\rm X}) f_{\rm X}(\epsilon_{\rm X}) \left| M_{\rm in}^{\rm M} \right|^2 d\epsilon_{\rm M}$

- Parabolic approximation of densities of states
- Lower integtion limit $\overline{h\nu} = h\nu + \hbar\omega E_0$.
- Bosons in groundstate : ignore f_x

 $f_{\rm M}(\epsilon_{\rm M}) \approx \exp(-\epsilon_{\rm M}/k_{\rm B}T_{\rm M})$

• Matrix element not constant: changes with k

$$I_{\rm in}^{\rm M}(h\nu) \approx \int_{\overline{h\nu}}^{\infty} \sqrt{\epsilon_{\rm M}} \sqrt{\epsilon_{\rm M}} - \overline{h\nu} f_{\rm M}(\epsilon_{\rm M}) f_{\rm X}(\epsilon_{\rm X}) \left| M_{\rm in}^{\rm M} \right|^2 d\epsilon_{\rm M}.$$

Intensity dependence

- Expect quadratic depence: two excitons have to be created
- n = 1.4 1.6 in experiments $I^{\rm M} \sim I_{\rm ex}^n$
- Model with characteristic material dependent excitation intensity $I^{M} \approx \operatorname{const}(\sqrt{1 + I_{ex}/I_{0}} - 1)^{2}$

Binding energy

- Direct: difference between FE and BE
- Indirect: Same but use fit of EM to get energy position at dispersion curve minimum
- Also: themordynamic by FE and M position as function of temperature
 - M line drops quicker than FE line when T increases, lower binding energy

Summary

- Free excitons
 - Direct bandgap: FE or X or FE-LO phonon
 - FE polariton or (optical) phonon assisted
 - Indirect bandgap:
 - Phonon assisted
 - Linear function of excitation intensity
- Bound excitons
 - Shallow impurities (donors/acceptors)
 - Narrow line
 - Isoelectric impurities
 - Narrow line if low electron-phonon coupling
 - No temperature broadening
 - Linear function of excitation intensity until saturation
 - Lower hv but stronger intensity
- Biexcitons (Excitonic molecules)
 - Superlinear function of intensity
 - Sort of inverse Maxwell-Boltzmann distribution

Classification of luminescence by intensity

Low-fluence (Weak) excitation (0.01- 10 W/cm²): gas-discharge lamp, incandescent lamp,

continuous-wave gas laser

- Recombination of free excitons (FE or X; FE-LO phonon)
- Recombination of a bound exciton (BE): (D⁰-X; A⁰-X; D⁺-X; A⁻X, isoelectronic impurity)
 - Recombination of **donor-acceptor pairs** (D⁰-A⁰)

- Recombination of free hole/electron with neutral donor/acceptor (h-D⁰; e-A⁰; e-h)

 $1 \text{ sun} = 0.1 \text{ mW/cm}^2 = 0.1 \text{ W/cm}^2 = 1 \text{ kW/m}^2$

High-fluence (Strong) excitation (1 kW-10 MW/cm²):

- Luminescence from inelastic collisions of excitons (X-X collisions)
- Luminescence of electron-hole liquid (EHL) or electron-hole plasma (EHP)
- Bose-Einstein condensation of excitons or excitonic molecules

These excitations can occur simultaneously, in these two chapters we focus on low-fluence excitation and neglected luminescence from excitons