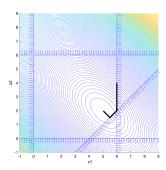


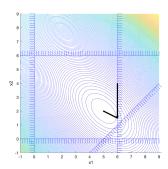
SF2822 Applied nonlinear optimization, final exam Wednesday August 20 2025 8.00-13.00 **Brief solutions**

1. (a) The iterations are illustrated in the figure below:



In the first iteration the search direction points at $(6 \ 3/2)^T$, but the step is limited by the constraint $-x_1 + x_2 \ge -4$, which is added to the working set so that the new point is $(6\ 2)^T$. A zero step is taken, and the multiplier of the constraint $-x_1 = -6$ is negative, -3. Therefore, this constraint is deleted from the working set. The new step points at $(11/2 \ 3/2)$, which is feasible. A unit step is taken, and the multiplier for $-x_1 + x_2 = -4$ is negative, -1/2. Therefore, this constraint is deleted from the working set. The new step points at $(5\ 2)^T$, which is feasible. A unit step is taken. No constraints are active, so this point is optimal.

(b) The iterations are illustrated in the figure below:



In the first iteration the search direction points at $(6 \ 3/2)^T$, which is feasible, so that a unit step is taken. The multiplier of the constraint $-x_1 = -6$ is negative, -3/2. This constraint is deleted from the working set. The new step points at $(5\ 2)^T$, which is feasible. A unit step is taken. No constraints are active, so this point is optimal.

(a) Problem (QP) is a convex quadratic program. 2.

The primal part of the trajectory is obtained as minimizer to the barriertransformed problem

$$(P_{\mu})$$
 min $\frac{1}{2}x_1^2 + x_2^2 - \mu \ln(x_1 + x_2 - 3)$

under the implicit condition that $x_1 + x_2 - 3 > 0$. The first-order optimality conditions of (P_{μ}) gives

$$x_1(\mu) - \frac{\mu}{x_1(\mu) + x_2(\mu) - 3} = 0,$$

$$2x_2(\mu) - \frac{\mu}{x_1(\mu) + x_2(\mu) - 3} = 0.$$

$$2x_2(\mu) - \frac{\mu}{x_1(\mu) + x_2(\mu) - 3} = 0.$$

Subtraction of the second equation from the first gives $x_1(\mu) = 2x_2(\mu)$. Hence, we may let $x_2(\mu) = t$, $x_1(\mu) = 2t$. The equation then becomes

$$2t - \frac{\mu}{3t - 3} = 0,$$

so that

$$6t^2 - 6t - \mu = 0$$
, i.e., $t^2 - t - \frac{\mu}{6} = 0$.

Therefore

$$t = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{\mu}{6}}.$$

The implicit constraint 3t - 3 > 0 implies that the plus sign must be chosen, so that

$$x_1(\mu) = 1 + 2\sqrt{\frac{1}{4} + \frac{\mu}{6}}, \quad x_2(\mu) = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\mu}{6}}.$$

The dual part of the trajectory, i.e. $\lambda(\mu)$, is given by $\lambda_i(\mu) = \mu/g_i(x(\mu))$, i = 1, ..., m. Here we only have one constraint, so

$$\lambda(\mu) = \frac{\mu}{3\left(\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\mu}{6}}\right) - 3} = 1 + 2\sqrt{\frac{1}{4} + \frac{\mu}{6}} = 1 + \sqrt{1 + \frac{2\mu}{3}}.$$

- (b) As $\mu \to 0$ it follows that $x(\mu) \to (2\ 1)^T$ and $\lambda(\mu) \to 2$. Let $x^* = (2\ 1)^T$ and $\lambda^* = 2$. Then x^* and λ^* satisfy the first-order optimality conditions of (QP). Since (QP) is a convex problem, this is sufficient for global optimality of (QP).
- (c) We have

$$\lambda(\mu) - \lambda^* = -1 + \sqrt{1 + \frac{2\mu}{3}} = \frac{\mu}{3} + o(\mu).$$

This is what we would expect. We have a regular point at which strict complementarity holds and then $\lambda(\mu) - \lambda^*$ is expected to be proportional to μ for small values of μ .

3. (a) Since (NLP') is formed by perturbing the first constraint of (NLP) from $h(x) \ge 0$ to $h(x) \ge 1/4$, sensitivity analysis gives the estimate

$$f(\tilde{x}) + \frac{1}{4}\tilde{\lambda}_1 = f(\tilde{x}) + \frac{1}{2} = \frac{11}{2}.$$

(b) The QP-subproblem takes the general form

minimize
$$\frac{1}{2}p^T \nabla^2_{xx} \mathcal{L}(x^{(0)}, \lambda^{(0)}) p + \nabla f(x^{(0)})^T p$$

subject to $A(x^{(0)}) p \ge -q(x^{(0)})$.

We obtain

$$\nabla_{xx}^{2} \mathcal{L}(x^{(0)}, \lambda^{(0)}) = \nabla^{2} f(x^{(0)}) - \lambda_{1}^{(0)} \nabla^{2} h(x^{(0)})$$

$$= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} - 2 \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix},$$

$$g(x^{(0)}) = \begin{pmatrix} h(x^{(0)}) - \frac{1}{4} \\ x^{(0)} \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \\ 2 \\ 2 \end{pmatrix},$$
$$A(x^{(0)}) = \begin{pmatrix} \nabla h(x^{(0)})^T \\ I \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Insertion of numerical values gives

minimize
$$3p_1^2 + 2p_2^2 + 2p_1$$

subject to $p_1 \ge \frac{1}{4}$,
 $p_1 \ge -2$,
 $p_2 \ge -2$.

This is a separable problem, so that minimization can be done with respect to p_1 and p_2 independently. We obtain $p_1 = 1/4$ and $p_2 = 0$ with Lagrange multipliers $\lambda_1 = 11/2$, $\lambda_2 = 0$ and $\lambda_3 = 0$. Consequently,

$$x^{(1)} = x^{(0)} + p = \begin{pmatrix} \frac{9}{4} \\ 2 \end{pmatrix}, \quad \lambda^{(1)} = \lambda = \begin{pmatrix} \frac{11}{2} \\ 0 \\ 0 \end{pmatrix}.$$

- 4. (See the course material.)
- The second-order sufficient optimality conditions for (NLP_1) imply that **5**.
 - (i) $g(x^*) \ge 0,$
 - (ii) $\nabla f(x^*) = A(x^*)^T \lambda^*$ for some $\lambda^* \ge 0$, (iii) $\lambda_i^* g_i(x^*) = 0, i = 1, \dots, m$, and

 - (iv) $Z_{+}(x^{*})^{T} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) Z_{+}(x^{*}) \succ 0,$

where $A_{+}(x^{*})$ contains the rows of $A(x^{*})$ for which λ^{*} has positive components, and $Z_{+}(x^{*})$ is a matrix whose columns form a basis for null $(A_{+}(x^{*}))$.

We may write (NLP_2) as

$$(NLP_2)$$
 minimize $\widetilde{f}(z,x)$ subject to $\widetilde{g}(z,x) \geq 0$,

with

$$\widetilde{f}(z,x) = z, \quad \widetilde{g}(z,x) = \begin{pmatrix} z - f(x) \\ q(x) \end{pmatrix}.$$

Associated with (NLP_2) , we may define the Lagrangian function

$$\tilde{\mathcal{L}}(z, x, \mu, \eta) = z - \mu(z - f(x)) - \eta^T g(x),$$

where μ is the Lagrange multiplier associated with $z - f(x) \geq 0$ and η are the Lagrange multipliers associated with $g(x) \geq 0$.

We now want to find z^* , μ^* and η^* so that the second-order sufficient optimality conditions (i)-(iv) hold, but associated with (NLP₂). This means that we want to find z^* , μ^* and η^* such that

(i')
$$\left(\begin{array}{c} z^* - f(x^*) \\ g(x^*) \end{array} \right) \ge \left(\begin{array}{c} 0 \\ 0 \end{array} \right),$$

(ii')
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\nabla f(x^*) & A(x^*)^T \end{pmatrix} \begin{pmatrix} \mu^* \\ \eta^* \end{pmatrix}$$
 for some $\mu^* \ge 0$ and $\eta^* \ge 0$, (iii') $\mu^*(z^* - f(x^*)) = 0$, $\eta^*_i g_i(x^*) = 0$, $i = 1, \dots, m$, and

(iii')
$$\mu^*(z^* - f(x^*)) = 0, \ \eta_i^* q_i(x^*) = 0, \ i = 1, \dots, m, \text{ and}$$

(iv')
$$\tilde{Z}_{+}(z^{*}, x^{*})^{T} \nabla_{z,x}^{2} \tilde{\mathcal{L}}(z^{*}, x^{*}, \mu^{*}, \eta^{*}) \tilde{Z}_{+}(z^{*}, x^{*}) \succ 0,$$

where $\tilde{Z}_{+}(z^{*},x^{*})$ is a matrix whose columns form a basis for null($\tilde{A}_{+}(z^{*},x^{*})$), with $\tilde{A}_{+}(z^{*},x^{*})$ defined as the matrix comprising the rows of

$$\begin{pmatrix} 1 & -\nabla f(x^*)^T \\ 0 & A(x^*) \end{pmatrix}$$

for which the associated components of the multipliers μ^* and η^* of (ii') are positive.

We now verify these conditions. For (i') to hold, we must have $z^* \geq f(x^*)$, since $g(x^*) \ge 0$ holds by (i).

For (ii'), the first equation reads $1 = \mu^*$. Hence, $\mu^* = 1$ must hold. With $\mu^* = 1$, the second block of equations reads

$$0 = -\nabla f(x^*) + A(x^*)^T \eta^*,$$

which holds for $\eta^* = \lambda^*$ by (ii). Since $\mu^* = 1 > 0$ and $\lambda^* \ge 0$ by (ii), (ii') holds.

Since $\mu^* > 0$, (iii') holds if $z^* = f(x^*)$, since (iii) implies that $\eta_i^* g_i(x^*) = 0$, i = 0 $1, \ldots, m$, if $\eta^* = \lambda^*$. In addition, since $z^* = f(x^*)$, (i') holds.

Finally, to verify (iv'), taking the derivatives gives

$$\nabla^2_{z,x} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) = \begin{pmatrix} \nabla^2_{zz} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) & \nabla^2_{zx} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) \\ \nabla^2_{zz} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) & \nabla^2_{xx} \tilde{\mathcal{L}}(z^*, x^*, \mu^*, \eta^*) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) \end{pmatrix}.$$

Since $\mu^* > 0$ and $\eta^* = \lambda^*$, we obtain

$$\tilde{A}_{+}(z^{*}, x^{*}) = \begin{pmatrix} 1 & -\nabla f(x^{*})^{T} \\ 0 & A_{+}(x^{*}) \end{pmatrix} = \begin{pmatrix} 1 & -\lambda_{+}^{*T} A_{+}(x^{*}) \\ 0 & A_{+}(x^{*}) \end{pmatrix}.$$

Note that $\operatorname{rank}(\tilde{A}_{+}(z^{*}, x^{*})) = \operatorname{rank}(A_{+}(x^{*})) + 1$, since the first row of $\tilde{A}_{+}(z^{*}, x^{*})$ is not linearly dependent on the other rows. Hence, $\operatorname{null}(\tilde{A}_{+}(z^{*}, x^{*}))$ and $\operatorname{null}(A_{+}(x^{*}))$ have the same dimension. Since

$$\begin{pmatrix} 1 & -\lambda_+^{*T} A_+(x^*) \\ 0 & A_+(x^*) \end{pmatrix} \begin{pmatrix} 0 \\ Z_+(x^*) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ we may let } \tilde{Z}_+(z^*, x^*) = \begin{pmatrix} 0 \\ Z_+(x^*) \end{pmatrix}.$$

Then,

$$\tilde{Z}_{+}(z^{*}, x^{*})^{T} \nabla_{z,x}^{2} \tilde{\mathcal{L}}(z^{*}, x^{*}, \mu^{*}, \eta^{*}) \tilde{Z}_{+}(z^{*}, x^{*})$$

$$= \begin{pmatrix} 0 & Z_{+}(x^{*})^{T} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) \end{pmatrix} \begin{pmatrix} 0 \\ Z_{+}(x^{*}) \end{pmatrix}$$

$$= Z_{+}(x^{*})^{T} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) Z_{+}(x^{*}) \succ 0,$$

as required, where (iv) has been used in the last step. This means that the second-order sufficient optimality conditions hold for (NLP_2) with $z^* = f(x^*)$, $\mu^* = 1$ and $\eta^* = \lambda^*$.