
SF2822 Applied nonlinear optimization, final exam
Wednesday August 20 2025 8.00–13.00

Brief solutions

1. (a) The iterations are illustrated in the figure below:

In the first iteration the search direction points at (6 3/2)T , but the step is
limited by the constraint −x1 + x2 ≥ −4, which is added to the working set
so that the new point is (6 2)T . A zero step is taken, and the multiplier of
the constraint −x1 = −6 is negative, -3. Therefore, this constraint is deleted
from the working set. The new step points at (11/2 3/2), which is feasible.
A unit step is taken, and the multiplier for −x1 + x2 = −4 is negative, −1/2.
Therefore, this constraint is deleted from the working set. The new step points
at (5 2)T , which is feasible. A unit step is taken. No constraints are active, so
this point is optimal.

(b) The iterations are illustrated in the figure below:

In the first iteration the search direction points at (6 3/2)T , which is feasible,
so that a unit step is taken. The multiplier of the constraint −x1 = −6 is
negative, −3/2. This constraint is deleted from the working set. The new step
points at (5 2)T , which is feasible. A unit step is taken. No constraints are
active, so this point is optimal.

2. (a) Problem (QP ) is a convex quadratic program.

The primal part of the trajectory is obtained as minimizer to the barrier-
transformed problem

(Pµ) min 1
2x

2
1 + x22 − µ ln(x1 + x2 − 3)

under the implicit condition that x1 + x2 − 3 > 0. The first-order optimality
conditions of (Pµ) gives

x1(µ)− µ

x1(µ) + x2(µ)− 3
= 0,

2x2(µ)− µ

x1(µ) + x2(µ)− 3
= 0.
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Subtraction of the second equation from the first gives x1(µ) = 2x2(µ). Hence,
we may let x2(µ) = t, x1(µ) = 2t. The equation then becomes

2t− µ

3t− 3
= 0,

so that

6t2 − 6t− µ = 0, i.e., t2 − t− µ

6
= 0.

Therefore

t =
1

2
±
√

1

4
+
µ

6
.

The implicit constraint 3t − 3 > 0 implies that the plus sign must be chosen,
so that

x1(µ) = 1 + 2

√
1

4
+
µ

6
, x2(µ) =

1

2
+

√
1

4
+
µ

6
.

The dual part of the trajectory, i.e. λ(µ), is given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ

3
(
1
2 +

√
1
4 + µ

6

)
− 3

= 1 + 2

√
1

4
+
µ

6
= 1 +

√
1 +

2µ

3
.

(b) As µ → 0 it follows that x(µ) → (2 1)T and λ(µ) → 2. Let x∗ = (2 1)T and
λ∗ = 2. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have

λ(µ)− λ∗ = −1 +

√
1 +

2µ

3
=
µ

3
+ o(µ).

This is what we would expect. We have a regular point at which strict com-
plementarity holds and then λ(µ)− λ∗ is expected to be proportional to µ for
small values of µ.

3. (a) Since (NLP ′) is formed by perturbing the first constraint of (NLP ) from h(x) ≥
0 to h(x) ≥ 1/4, sensitivity analysis gives the estimate

f(x̃) +
1

4
λ̃1 = f(x̃) +

1

2
=

11

2
.

(b) The QP-subproblem takes the general form

minimize 1
2p
T∇2

xxL(x(0), λ(0))p+∇f(x(0))Tp

subject to A(x(0))p ≥ −g(x(0)).

We obtain

∇2
xxL(x(0), λ(0)) = ∇2f(x(0))− λ(0)1 ∇

2h(x(0))

=

(
4 −2

−2 2

)
− 2

(
−1 −1

−1 −1

)
=

(
6 0

0 4

)
,
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g(x(0)) =

(
h(x(0))− 1

4

x(0)

)
=


−1

4

2

2

 ,

A(x(0)) =

(
∇h(x(0))T

I

)
=


1 0

1 0

0 1

 .
Insertion of numerical values gives

minimize 3p21 + 2p22 + 2p1

subject to p1 ≥ 1
4 ,

p1 ≥ −2,
p2 ≥ −2.

This is a separable problem, so that minimization can be done with respect
to p1 and p2 independently. We obtain p1 = 1/4 and p2 = 0 with Lagrange
multipliers λ1 = 7/2, λ2 = 0 and λ3 = 0. Consequently,

x(1) = x(0) + p =

(
9
4

2

)
, λ(1) = λ =


7
2

0

0

 .

4. (See the course material.)

5. The second-order sufficient optimality conditions for (NLP1) imply that
(i) g(x∗) ≥ 0,
(ii) ∇f(x∗) = A(x∗)Tλ∗ for some λ∗ ≥ 0,
(iii) λ∗i gi(x∗) = 0, i = 1, . . . ,m, and
(iv) Z+(x∗)T∇2

xxL(x∗, λ∗)Z+(x∗) � 0,

where A+(x∗) contains the rows of A(x∗) for which λ∗ has positive components, and
Z+(x∗) is a matrix whose columns form a basis for null(A+(x∗)).
We may write (NLP2) as

(NLP2)
minimize f̃(z, x)

subject to g̃(z, x) ≥ 0,

with

f̃(z, x) = z, g̃(z, x) =

(
z − f(x)

g(x)

)
.

Associated with (NLP2), we may define the Lagrangian function

L̃(z, x, µ, η) = z − µ(z − f(x))− ηTg(x),

where µ is the Lagrange multiplier associated with z − f(x) ≥ 0 and η are the
Lagrange multipliers associated with g(x) ≥ 0.
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We now want to find z∗, µ∗ and η∗ so that the second-order sufficient optimality
conditions (i)–(iv) hold, but associated with (NLP2). This means that we want to
find z∗, µ∗ and η∗ such that

(i’)

(
z∗ − f(x∗)
g(x∗)

)
≥
(

0

0

)
,

(ii’)

(
1

0

)
=

(
1 0

−∇f(x∗) A(x∗)T

)(
µ∗

η∗

)
for some µ∗ ≥ 0 and η∗ ≥ 0,

(iii’) µ∗(z∗ − f(x∗)) = 0, η∗i gi(x∗) = 0, i = 1, . . . ,m, and

(iv’) Z̃+(z∗, x∗)T∇2
z,xL̃(z∗, x∗, µ∗, η∗)Z̃+(z∗, x∗) � 0,

where Z̃+(z∗, x∗) is a matrix whose columns form a basis for null(Ã+(z∗, x∗)), with
Ã+(z∗, x∗) defined as the matrix comprising the rows of(

1 −∇f(x∗)T

0 A(x∗)

)

for which the associated components of the multipliers µ∗ and η∗ of (ii’) are positive.

We now verify these conditions. For (i’) to hold, we must have z∗ ≥ f(x∗), since
g(x∗) ≥ 0 holds by (i).

For (ii’), the first equation reads 1 = µ∗. Hence, µ∗ = 1 must hold. With µ∗ = 1,
the second block of equations reads

0 = −∇f(x∗) +A(x∗)Tη∗,

which holds for η∗ = λ∗ by (ii). Since µ∗ = 1 > 0 and λ∗ ≥ 0 by (ii), (ii’) holds.

Since µ∗ > 0, (iii’) holds if z∗ = f(x∗), since (iii) implies that η∗i gi(x∗) = 0, i =
1, . . . ,m, if η∗ = λ∗. In addition, since z∗ = f(x∗), (i’) holds.

Finally, to verify (iv’), taking the derivatives gives

∇2
z,xL̃(z∗, x∗, µ∗, η∗) =

(
∇2
zzL̃(z∗, x∗, µ∗, η∗) ∇2

zxL̃(z∗, x∗, µ∗, η∗)
∇2
xzL̃(z∗, x∗, µ∗, η∗) ∇2

xxL̃(z∗, x∗, µ∗, η∗)

)
=

(
0 0

0 ∇2
xxL(x∗, λ∗)

)
.

Since µ∗ > 0 and η∗ = λ∗, we obtain

Ã+(z∗, x∗) =

(
1 −∇f(x∗)T

0 A+(x∗)

)
=

(
1 −λ∗+TA+(x∗)
0 A+(x∗)

)
.

Note that rank(Ã+(z∗, x∗)) = rank(A+(x∗)) + 1, since the first row of Ã+(z∗, x∗)) is
not linearly dependent on the other rows. Hence, null(Ã+(z∗, x∗)) and null(A+(x∗))
have the same dimension. Since(

1 −λ∗+TA+(x∗)
0 A+(x∗)

)(
0

Z+(x∗)

)
=

(
0

0

)
, we may let Z̃+(z∗, x∗) =

(
0

Z+(x∗)

)
.

Then,

Z̃+(z∗, x∗)T∇2
z,xL̃(z∗, x∗, µ∗, η∗)Z̃+(z∗, x∗)

=
(

0 Z+(x∗)T
)( 0 0

0 ∇2
xxL(x∗, λ∗)

)(
0

Z+(x∗)

)
= Z+(x∗)T∇2

xxL(x∗, λ∗)Z+(x∗) � 0,
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as required, where (iv) has been used in the last step. This means that the second-
order sufficient optimality conditions hold for (NLP2) with z∗ = f(x∗), µ∗ = 1 and
η∗ = λ∗.


