
Integration of Model Predictive Control,
Payload Deployment, and Computer

Vision on the BlueROV2 for Enhanced
Underwater Autonomy

Mechatronics, Advanced Course
MF2059

Authors:
Awad AlNasrallah

Edvin Aretorn
Oskar Classon
Erik Ebbesen

Albin Gunnarsson
Jacob Holst

Jesper Knobe
Reman Soryani
Simon Spång

December 15, 2024

Abstract

This report documents the development and implementation of a Model
Predictive Control (MPC) framework on the BlueROV2 (BROV) platform
to improve its autonomous underwater capabilities. Conducted as part of
the Mechatronics Capstone Course at the Royal Institute of Technology
(KTH), the project integrates advanced control systems, a payload deployment
mechanism, and computer vision into a cohesive system for underwater
operations.

The MPC was first validated in a Python environment and subsequently
tested in a Unity-based simulations, with the help of Swedish Maritime
Robotics Centre (SMaRC), where it demonstrated effective integration with
mission planning and state estimation. Real-world testing on the BROV
revealed its practical viability, with results highlighting acceptable stability,
and performance. A custom Underwater Locator Beacon (ULB) deployment
mechanism was successfully tested.

Attempts to implement a computer vision pipeline for underwater
image enhancement and 3-Dimensional (3D) reconstruction faced significant
challenges due to poor visibility conditions, which limited its effectiveness.
This underscores the difficulties of underwater imaging and emphasizes the
need for advanced techniques tailored to such environments.

The results demonstrate the feasibility of MPC for underwater navigation
and validate the systems core functionalities, while also identifying key areas
for future improvement, including model refinement and robust solutions for
underwater imaging challenges.

Keywords: Model Predictive Control, BlueROV2, Autonomous Underwater
Vehicles, Computer Vision, Image Enhancement, 3D Reconstruction, SMaRC,
Unity Simulations, Payload Deployment, ULB Deployment Mechanism,
Digital Twin.

i

Acknowledgements
We would like to thank all the people involved in helping forming this project into
what it is. First and foremost, our stakeholders Marina Rantanen Modeer, Louise
Fuchs and Oscar Hermansson at SAAB for support and providing the necessary
hardware. KTH and our examiners for providing us with a budget and support
throughout the entire process.

The good people at SMaRC, including Mart Kartasev, Ignacio Torroba Balmori
and Özer Özkahraman, for not only giving us valuable advice throughout the entire
process, but also providing us with a testing environment in the form of a pool and
their own simulation code base in Unity.

Finally, we would also like to thank Professor Lei Feng, and PhD students Nils
Jörgensen and Kaige Tan for their support and meaningful discussions regarding the
MPC implementation.

We would also like to acknowledge the use of generative AI in the form of
ChatGPT to not only help rapidly develop code, but also help refine the report.

ii

Contents
1 Introduction 1

1.1 Background . 1
1.2 Project Description . 1
1.3 Requirements . 3

1.3.1 Stakeholder Requirements . 3
1.3.2 Technical Requirements . 4

1.4 Delimitations . 4
1.5 Readers Guide . 5

2 State Of The Art 6
2.1 Model Predictive Control . 6

2.1.1 MPC for Non-linear Systems 7
2.1.2 MPC for Reference Tracking 8

2.2 Image Enhancement . 9
2.3 3D Image Reconstruction . 11

3 Methodology 12
3.1 Research Process . 12
3.2 Project Management . 13
3.3 Required Hardware/Software . 13

3.3.1 Hardware . 13
3.3.2 Software . 15

4 Implementation 17
4.1 System Architecture . 17

4.1.1 Information Modelling . 18
4.1.2 ROS Structure . 18
4.1.3 Mission Planner . 19

4.2 System Model . 22
4.2.1 Differential Equations . 22
4.2.2 Restoring Forces . 26
4.2.3 Tether Forces . 27
4.2.4 Thrusters . 27
4.2.5 Model Parameters . 28

4.3 Control . 30
4.3.1 MPC . 30
4.3.2 State Estimation . 34

iii

4.3.3 Control Allocation . 35
4.4 Path Planning . 36

4.4.1 Line-of-Sight (LOS) Guidance System 37
4.4.2 Simple Trajectory Planner and Guidance 39

4.5 Simulation . 41
4.5.1 System Model Implementation 41
4.5.2 Actuators and Sensors Integration 43
4.5.3 Peripherals . 43
4.5.4 ROS Integration . 44
4.5.5 Matlab and Python Simulations 45

4.6 ULB Deployment System . 45
4.7 Computer Vision . 46

5 Verification and Validation 47
5.1 Planned Testing Methods . 47
5.2 Reliability and Validity of Testing Methods 48

6 Results 49
6.1 MPC in Python . 49

6.1.1 LOS Guidance System . 49
6.1.2 Trajectory Planner . 50
6.1.3 Computational Delay . 51

6.2 MPC in Unity . 53
6.2.1 Trajectory Planner . 53
6.2.2 LOS Guidance System . 55
6.2.3 Thrusters . 56

6.3 MPC Pool Test . 56
6.4 State Estimation . 57
6.5 Computer Vision . 58

7 Discussion and conclusions 60
7.1 System Model . 60
7.2 Simulation . 60
7.3 MPC . 62
7.4 Guidance System . 63
7.5 State Estimation . 64
7.6 Computer Vision . 66
7.7 Project Management . 66
7.8 Ethics and Sustainability . 67

iv

8 Future work 68
8.1 Parameter Uncertainty . 68
8.2 Disturbance Modelling . 68
8.3 Simulation . 68
8.4 MPC . 69
8.5 Guidance System . 70
8.6 Computer Vision . 70
8.7 Ardusub Modifications . 70
8.8 State Estimation . 71
8.9 AUV . 72

References 73

A Information modelling 78

B Simulink Model 79

v

SUMMARY OF WORK DISTRIBUTION

Name Chapter(s) Notes
Jacob Holst 4.2 4.3.3 6.2.3 7.1 8.1 8.2
Simon Spång 1.4, 4.4.1, 6.1, 7.4, 8.5
Oskar Classon 4.5.4, 4.1.2, 4.5, 6

Albin Gunnarsson 2.2, 3.2, 3.3, 4.1, 4.1.1, 4.1.3
Erik Ebbesen 4.5, 7.2, 8.2, 8.3, 8.4, 8.7, 8.9
Jesper Knobe 1.1, 1.2, 1.3, 1.4, 2.3, 4.7, 5, 6.5, 7.5, 7.6, 7.8, 8.6

Awad AlNasrallah 1.5, 2.1, 4.3.1, 4.4.2, 6.1, 7.3, 8.4
Reman Soryani 1.2, 3.3.1, 4.3.2, 6.4, 7.5, 7.8, 8.8
Edvin Aretorn 4.4.1, 4.6, 6.2.1, 6.2.2, 6.3, 7.4, 7.7

vi

List of Figures
2.1 Underwater light absorption and scattering 10
2.2 The generative learning trilemma . 11
3.1 Standard BlueROV2 Heavy Configuration 14
4.1 Mission . 17
4.2 ROS structure overview . 19
4.3 Mission planner - behaviour tree . 20
4.4 BlueROV2 Body and World Frame Reference [25] 22
4.5 BlueROV2 Heavy Configuration Thruster Orientation [26] 27
4.6 Thruster force in newtons as a function of input value 29
4.7 LOS guidance system . 37
4.8 LOS guidance system in 3D . 38
4.9 Motion profile example for the trajectory planner 40
4.10 System architecture diagram for trajectory planner 40
4.11 A screenshot of the Unity simulation 41
4.12 Robot Operating System (ROS) Structure for Simulation 44
4.13 ULB deployment design . 46
4.14 Example frames from videos used for computer vision. 46
6.1 Line-of-sight (LOS) in Python simulation for different horizon lengths. 50
6.2 Trajectory planner in Python simulation for different horizon lengths. 51
6.3 System response with τdelay = 0.09 and Q = I for MPC with and

without modelling of delay, the reference trajectory is also plotted for
comparison . 52

6.4 System response with τdelay = 0.09 and Q = 10I for MPC with and
without modelling of delay, the reference trajectory is also plotted for
comparison . 53

6.5 Step response to (xref , yref) = (1, 0) using trajectory planner 54
6.6 Step response to (xref , yref) = (1, 1) using trajectory planner 54
6.7 Step response to (xref , yref) = (1, 1) using LOS system 55
6.8 Step response of yaw angle to (xref , yref) = (1, 1) using LOS system . 55
6.9 Thruster response xref = 1 in unity 56
6.10 Step response to (xref , yref) = (1, 1) in pool using trajectory planner . 57
6.11 Motion capture and state estimator comparison 57
6.12 Comparison of original & enhanced frames of the three videos 58
6.13 Point cloud from 3D reconstruction of dummy in GIH-badet. 59
7.1 DVL user interface state estimation in x & y going 2 laps around a

square pool. 65

vii

A.1 Information model . 78

viii

List of Tables
3.1 BlueROV2 hardware components . 15
3.2 BlueROV2 software components . 16
4.1 Equation Variables . 23
4.2 Model Parameters . 29
6.1 Average solving times for different horizon lengths. 50
6.2 Average solving times for different horizon lengths. 51

ix

List of Symbols
The next list describes several symbols that will be later used within the body of the
document

δ ROV volume

η = [x, y, z, ϕ, θ, ψ] World-frame position vector

ûk Predicted input vector at time step k

û∗k Optimal predicted input vector at time step k

x̂k Predicted state vector at time step k

x̂∗k Optimal predicted state vector at time step k

κt Lumped constant terms for linearized model at time t

xp = [xp, yp, zp] Way point vector

xref = [xlos, ylos, zlos, ϕlos, θlos, ψlos] Line-of-Sight reference vector

ν = [u, v, w, p, q, r] body-frame velocity vector

ρ Water density

τ Thruster force input vector

τdelay Time delay

τtet Tether force vector

a(t) Acceleration profile generated by trajectory planner

Ac Continuous time state matrix

At Discrete time state matrix linearized at time t

B Buoyancy force

Bc Continuous time Input matrix

Bt Discrete time input matrix linearized at time t

x

Bdelay,t Discrete time delayed input matrix linearized at time t

C Output matrix

C(v) Corioliscentripetal matrix

CA(v) Corioliscentripetal added mass matrix

Crb(v) Corioliscentripetal rigid body matrix

D Damping linear matrix

D(v) Damping matrix

Dn(v) Damping non-linear matrix

F (Vi) Thruster individual force

g Gravitational constant

g(η) Restoring forces vector

h Sampling time

Ix Rotational inertia around x axis

J(η) World to body velocity transform matrix

J1 World to body translational velocity transform matrix

J2 World to body rotational velocity transform matrix

k Sampling instance

M Inertia matrix

m Mass of BlueRov2

MA Inertia added mass matrix

Mrb Inertia rigid body matrix

N MPC Horizon length

Q Refernce deviation cost matrix

xi

R Control increment cost matrix

r(t) Reference profile generated by trajectory planner

rs Reference point

T Thruster to body transfrom matrix

t Time

v(t) Velocity profile generated by trajectory planner

Vi Thruster individual control input

W Gravitational force

xb Buoyancy moment arm in x direction

Xu Linear damping in x axis

Xu̇ Added mass inertia in x axis

δûk Predicted input increment vector at time step k

δû∗k Optimal predicted input increment vector at time step k

rk Reference point at time step k

uk Input vector at time step k

x =
[
η, ν
]

State vector

xk State vector at time step k

xt =
[
ηt, νt

]
State vector at time t

RDV Ldisplacement DVL distance from CoG

vbody Linear body velocities

vDV L Linear DVL velocities

ρL Radius of Line-of-Sight-sphere

ρs Radius of sphere-of-acceptance

xii

Glossary
3D 3-Dimensional. i, iii, vii, 1, 3, 4, 11, 12, 46, 58, 59, 66

AI Artificial Intelligence. ii

AUV Autonomous Underwater Vehicle. v, 1, 10, 30, 36, 67, 71, 72

BROV BlueROV2. i, vii, ix, 1, 3, 4, 11–18, 21–23, 27, 30, 34, 35, 39, 44, 46, 47, 60,
61, 63, 64, 67–72

BT Behaviour Tree. 20

CoG Centre of Gravity. xii, 34

DoF Degrees of Freedom. 14, 15, 18, 35

DVL Doppler Velocity Logger. vii, 3, 13–15, 18, 34, 39, 63, 65, 66, 71

FHOCP Finite Horizon Optimal Control Problem. 32

FSM Finite State Machine. 19, 20

GAN Generative Adversarial Network. 10, 11, 46, 66

GCS Ground Control Station. 18

GPS Global Positioning System. 71

HMI Human Machine Interface. 18

IMU Inertial measurement unit. 14, 15, 18, 34, 65, 71

KTH Royal Institute of Technology. i, ii, 1

LOS Line-of-Sight. iv, vii, x, xii, 37–39, 49, 53, 55, 56, 62–64, 70

LTV Linear Time Varying. 8, 69

MIMO Multi-Input Multi-Output. 6

xiii

MPC Model Predictive Control. i–iv, vii, xi, 1–8, 12, 13, 17, 18, 21, 22, 30–34, 36,
39–41, 43, 45, 47, 49, 51–53, 56, 60–64, 68–70

MVS Multi-View Stereo. 11, 46

NED North, East, Down. 42

PID Proportional-Integral-Derivative. 1

PWM Pulse Width Modulation. 18, 27, 35, 36, 43, 46, 62, 69, 70

ROS Robot Operating System. iii, iv, vii, 12, 15, 16, 18–21, 34, 43, 44, 46, 63

ROV Remotely Operated Vehicle. x, 1, 12, 37–39, 57, 60, 67, 68, 71, 72

RPM Revolutions Per Minute. 43, 44

RUF Right, Up, Forward. 42

SfM Structure from Motion. 11, 46

SLAM Simultaneous localization and mapping. 71

SMaRC Swedish Maritime Robotics Centre. i, ii, 1, 13, 41, 43

SOTA State Of The Art. iii, 5, 6, 11, 37

SQP Sequential Quadratic Programming. 7

ULB Underwater Locator Beacon. i, iv, vii, 43, 45–47

ZOH Zero-Order hold. 31

xiv

1 Introduction
The following section gives an introduction to the project. It includes the background
to the project, the project description and requirements and finally, a readers guide.

1.1 Background
Underwater archaeology has become an increasingly popular discipline in the past
two decades due to commercial and industrial interests in the exploration and
preservation of the seabed [1]. However, the exploration and investigation of
underwater sites presents an array of challenges that differ from their terrestrial
counterpart. Sites are often situated in deep water and can be inaccessible and
dangerous to human divers due to for example high pressures, cold temperatures
and strong currents [2]. Technological advancements have allowed underwater
archaeologists to overcome some of these obstacles by utilizing underwater vehicles
such as Remotely Operated Vehicle (ROV) for deep-sea archaeological missions.

The project explores the possibilities of the BlueROV2 (BROV), an affordable and
widely-used ROV platform, to be implemented as an AUV to autonomously navigate
around an underwater site while simultaneously deploying underwater payloads and
capturing images of the site for 3-Dimensional (3D) mapping. Currently, the BROV
has path-following capabilities using Proportional-Integral-Derivative (PID) control.
The stakeholder mentioned that this control algorithm lacks precision and robustness,
hence the implementation of Model Predictive Control (MPC) was explored. MPC
was also chosen since it has shown promising results for autonomous underwater
applications [3] combined with the stakeholder’s desire to test its performance.

1.2 Project Description
The nine month long project has been conducted at Royal Institute of Technology
(KTH) as a part of the Mechatronics Capstone Course. The platform used in this
project has been the BlueROV2 Heavy configuration. The stakeholder of the project
is SAAB underwater systems, who requested Model Predictive Control (MPC) to be
implemented on the platform combined with image enhancement, 3D-reconstruction
of underwater sites, an information model of the entire system and development of
a manipulator for underwater usage. A collaboration has also been started together
with the Swedish Maritime Robotics Centre (SMaRC) at KTH which will provide
the project with digital and physical resources and assistance.

The project will provide the stakeholder with valuable insights into technology
that can be used for ROVs and AUVs, especially focusing on the aspect of Model

1

Predictive Control, as the advancements in the field combined with the increased
available computing power in embedded processors now make control algorithms
with heavier computational load, such as MPC, more viable for real-time application.
[4][5][6].

This is a research-orientated project with soft requirements which does not
diminish the value of the final product [7]. The project is meant to serve as a
vessel to increase the knowledge within the field, and any effort that yields results
that can serve as a foundation for future work will hold significant value for the
stakeholder. Nevertheless, the team has made sure to establish clear requirements
to ensure focused and purposeful efforts throughout the project.

The team consists of final year master students in mechatronics with a
background in applied controls system design, embedded systems and interdisciplinary
systems. Since the project involves several disciplines that need to be integrated into
one platform as a complete system, the profile of the team suits the task at hand.

2

1.3 Requirements
The requirements for this project are categorized into two main groups: stakeholder
requirements and technical requirements.

• Stakeholder requirements reflect the needs and expectations set by SAAB,
the project’s primary stakeholder.

• Technical requirements are defined by the project team to ensure the system
fulfils the stakeholder’s needs.

The following conventions are used to differentiate between types of requirements:

• Shall: Denotes mandatory requirements that must be met.

• Should: Refers to desirable but non-essential requirements.

• Will: Provides additional contextual information to clarify the project’s
objectives.

1.3.1 Stakeholder Requirements

The following stakeholder requirements must be met by the project:

• The robot shall use MPC for navigation.

• The project shall assess the viability of MPC for underwater navigation.

• The systems information flow shall be modelled.

• A mechanical system shall be designed, developed and implemented on the
BROV.

• Images should be captured and enhanced.

• 3D image reconstruction should be utilized to reconstruct key objects.

• A BlueROV2 will be used to conduct the study.

• A Doppler Velocity Logger (DVL) will be used to measure the state of the
BROV

• The work will focus on underwater archaeology applications.

• The project will aim to transition to autonomous navigation for underwater
robots.

3

1.3.2 Technical Requirements

The technical requirements are as follows:

• A simulation of the BROV shall be developed.

• The simulation will be used to verify the viability of the controller and other
system components.

• A safety mechanism should be in place to stop the robot during testing.

1.4 Delimitations
Due to the complexity of the system and the environment of the sea, delimitations
have been made to create a more feasible project. Since the main scope of
this project is to explore the design and implementation of MPC as the control
strategy for the BROV, together with the implementation of image enhancement
and 3D-reconstruction for underwater sites, the following delimitations have been
made.

• All development and most testing will be done in a pool to reduce the influences
of the environment. Influences such as currents and bad visibility.

• The system parameters describing the BROV will not be evaluated in this
report. The parameters will be acquired from other reports using the same
platform.

• The system model used was developed by another independent study and has
also been slight reduced, primarily removing the tether force applied on the
system.

• All added software and control will be executed on the topside computer since
these requires a lot of computational resources.

• The image enhancement algorithm and 3D-reconstruction algorithm will not
be developed in this project. Existing algorithms for this purpose will be
implemented. The implementation will be on the topside computer and not on
the BROV.

4

1.5 Readers Guide
This section provides an overview of the structure of the report.

The Introduction sets the stage for the report by presenting the background of
the project, outlining the problem and listing out the requirements. This section is
essential to understand the context in which the report was written and the main
focus of the project. Then comes the State Of The Art (SOTA) section, where
previous research and relevant background information are summarized. This section
focuses on providing the reader insight into key concepts used such as MPC as well
as image enhancement and reconstruction, which are essential for understanding the
report.

The Methodology section follows, detailing the approach used to carry out the
project. This includes, the engineering methods employed, as well as the group
organization and management. The section also includes the tools (hardware and
software) required to replicate the project. Then comes the main body of the report,
which goes in depth into the technical aspects of the project explaining how all the
work done was implemented to reach the goals set and satisfy the requirements of the
project. After which, the approach used to collect data, conduct experiment, verify
and validate the results are presented in the Verification and validation section.

The Results section then presents the findings of the study. Here, the data
collected from the conducted tests is provided without interpretation, allowing
the reader to see the outcomes of the work. Afterwards, in the Discussion and
Conclusions section, the results are analysed and interpreted by the team. This
section explores the implications of the findings, addresses any limitations of the
study and draws relevant conclusions.

Finally, there is a section dedicated to future work, where possible improvements
of the current project are proposed. The report then concludes with a References
section where all the sources cited throughout the report are listed, ensuring proper
attribution to prior research and materials used in the preparation of the document
and an Appendices section, which includes supplementary materials, not necessary
for understanding the report, but which can provide additional insight for the
interested reader.

5

2 State Of The Art

2.1 Model Predictive Control
Model Predictive Control or MPC is an optimal control strategy where, using a
model of the system and a current estimate of the state, the optimal control actions
can be calculated.

Unlike more traditional control methods, such as PID controllers, optimal
controllers focus on minimizing the cost of a certain function. A few of the advantages
of MPC is that it can explicitly handle constraints on inputs, states and time delays,
it can also easily handle Multi-Input Multi-Output (MIMO) systems. A general
formulation of the optimization problem can be seen in equation 2.1. This is however,
far from the only formulation that exists.[8]

min
xk,uk

T−1∑
k=0

ℓ(xk, uk) + ℓT (xT)

subject to:
xk+1 = f(xk, uk), k = 0, . . . , T − 1

xk ∈ X , uk ∈ U , k = 0, . . . , T − 1

xT ∈ XT

x0 = xt

(2.1)

Over a specified time horizon T , the problem is solved for the optimal sequence
of states x̂0, x̂1, . . . , x̂T and inputs û0, û1, . . . , ûT that minimize the accumulated cost
over the horizon defined by

∑T−1
k=0 ℓ(xk, uk) + ℓT (xT) and subject to the constraints

in equation 2.1.
Here, ℓ(xk, uk) is the stage cost, i.e. the cost at the specific time step, whereas

ℓT (xT) is the terminal cost or the cost of the state at the end of the prediction horizon
T . As for the constraints on the state x and input u they must belong to the domain
of allowable states and inputs, X and U respectively. Furthermore, xT belongs to a
terminal set, XT . Naturally, we also have that x0 must be equal to the state at the
start of the optimization (the estimated current state).

In standard form, the problem to be solved can be formulated as in equation 2.2,
where the system is assumed to have linear dynamics and constraints and the cost
function is chosen to be quadratic with semi-positive definite weight matrices Q, R,
QT . This formulation of the problem is convex quadratic and can be solved reliably
and quickly.

6

min
T−1∑
k=0

(
x⊤kQxk + u⊤k Ruk

)
+ x⊤TQTxT

subject to:
xk+1 = Axk +Buk, k = 0, . . . , T − 1

Mxxk ≤ mx, k = 0, . . . , T − 1

Muuk ≤ mu, k = 0, . . . , T − 1

xT ∈ X̄T

x0 = xt

(2.2)

At every time step, the optimization problem is solved and the optimal control
and state sequences are obtained after which, only the first control input, û0, will
be applied. This process is repeated for each time step and therefore results in a
feedback policy. In this case, the cost matrices Q and R can be tuned to achieve
desired behaviour. For example, increasing Q puts more emphasis on driving the
state xk to 0 which will result in a faster system response. Conversely, increasing R
makes inputs uk more expensive which will result in more conservative control.

2.1.1 MPC for Non-linear Systems

It is possible to extend the formulation in equation 2.1 for non-linear systems. Using
the non-linear model, the full system behaviour can be captured and the MPC will
be able to accurately predict future states. However, since the optimization problem
will now contain non-linear constraints, the problem will lose its convexity. This
drastically increases solving difficulty and makes the problem more computationally
heavy. Moreover, non-linear optimization problems are most commonly solved using
iterative methods such as the Sequential Quadratic Programming (SQP) method.
Methods of this kind require an initial guess, and if the choice of initial guess is bad
then the solver might converge to a local optimum. Global optimality can therefore
not be guaranteed.[9]

To combat these issues, a few alternatives exist [10]. For example, if the operating
point is known before hand, then simple linearization can be used to linearize the
model around the operating point and then formulate the problem as a convex
quadratic problem as in equation 2.2. In this case, A and B will instead represent the
linearized model around the chosen equilibrium point. This significantly simplifies
solving, but if the operating point changes drastically then the model can no longer
accurately describe the system.

7

Another method is what Matlab calls adaptive MPC [11]. This method is quite
common in the literature, but is usually referred to as successive linearization [12]
[13] [14]. The idea is to, at every time-step, linearize the model at the current
operating point and then use the linearized model to compute the optimal control
inputs over the prediction horizon. This method provides a better approximation
of the non-linear model than the simple linearization method described above, but
could also suffer from the same issues if the prediction horizon is too long, since the
model could end up far away from the linearization point.

This same concept could be taken a step further, if the operating points over
the prediction horizon are known beforehand, then the non-linear model can be
approximated over the prediction horizon as a sequence of linear models obtained
by linearizing the non-linear model around this so called "nominal trajectory". It
is then possible to formulate the MPC problem as a Linear Time Varying (LTV)
system where the model parameters A and B change over the prediction horizon.
This provides an even better representation of the non-linear system, but requires
that the operating points are known before hand. [15]

2.1.2 MPC for Reference Tracking

The MPC problem for reference tracking is typically formulated according to equation
2.3.

min
T−1∑
k=0

(
∆x̂⊤kQ∆x̂k +∆û⊤k R∆ûk

)
+∆x̂⊤TQT∆x̂T + σ(s)

subject to:
∆x̂k+1 = A∆x̂k +B∆ûk, k = 0, . . . , T − 1

Mx(∆x̂k + xref) ≤ mx, k = 0, . . . , T − 1

Mu(∆ûk + uref) ≤ mu, k = 0, . . . , T − 1

∆x̂T ∈ X̄T[
A I

B 0

][
xref

uref

]
=

[
0

r + s

]
∆x̂0 + xref = xt

(2.3)

Here the constraints represent the following: first the dynamic constraints, then
the state and input constraints, the terminal set constraint. Reference tracking
constraint, which optimizes uref and xref for the desired reference. And finally, a
variable transformation from ∆x to x.

8

The control input applied is defined as:

ut = ∆û0 + uref. (2.4)

An important observation here, is that using this formulation, if the reference will
change online, the terminal set will need to be recalculated online. The advantage
is that, with reasonable choices of the terminal weight and set, the problem can be
guaranteed to be recursively feasible and stable. For more information, the interested
reader is referred to other papers such as [8].

While this is a very rigorous formulation of the problem, it is difficult to
implement in practice since it is not possible to guarantee that the problem is feasible
for all references and initial states. Therefore, a more common and practical approach
is used in this project (see section 4.3.1).

2.2 Image Enhancement
For underwater robot exploration using a camera, a common problem is poor image
quality. This is mainly due to light absorption and scattering. The light absorption
occurs because of the different wavelengths in light. As visualized in Figure 2.1,
the light is gradually absorbed corresponding to its wavelength, red light being the
longest wavelength and blue the shortest. That is why blue and green are more
dominant in underwater images. [16]

In addition to this, scattering is another phenomenon that worsens the quality of
underwater images. It is a phenomenon where underwater particles are reflected into
the camera and creates blur and poor vision within the image. This is also visually
shown in Figure 2.1. Therefore, the purpose of image enhancement is to generate a
better quality image of a given image by de-noising and color-correcting for improved
visibility. [16]

9

Figure 2.1: Underwater light absorption and scattering

This can be done in many ways. To begin with, there exist physics-based methods
to solve this. However, while this physical process is well described theoretically,
the model depends on many parameters such as water characteristics, depth and
structure of the scene. These factors make recovery of these parameters difficult
without simplifying assumptions or field calibration; hence, restoration of underwater
images is a non-trivial problem. [17]

However, by using deep learning and only using a camera, this problem can be
solved to work in different water settings without the need to purchase additional
sensors. Deep learning for image enhancement is a state-of-the-art field, and
there exist different methods to approach it. The most popular approach in this
context is known as synthesis, which involves generating new content from the given
input. Within synthesises, the three most common types are Generative Adversarial
Network (GAN), auto-encoders, and diffusion models. All three of these can be used
for image enhancement. Their broad advantages and disadvantages can be visualised
in Figure 2.2. [18] For autonomous underwater vehicles (AUVs), the desired outcome
is for the image enhancement to run in real-time on the onboard computer. Fast
sampling is needed while providing high-quality samples, making GAN a common
choice for image enhancement for underwater robots. [19].

10

Figure 2.2: The generative learning trilemma

However, a disadvantage with GANs is mode coverage, meaning its ability to
adapt in new environments. To solve this, Zhisheng Xiao et al. has developed
a combined method with GAN and diffusion model that is claimed to solve the
generative learning trilemma. [18] Conclusively, using deep learning for underwater
image enhancement is SOTA within this field and can help with further underwater
tasks that require clear vision.

2.3 3D Image Reconstruction
In underwater archaeology, a central part is mapping the sites. The harsh underwater
environment combined with poor visibility makes mapping very difficult. In this
project, the main application of the computer vision is to map and get a clear view of
a site on the ocean floor using the BROV on-board camera. 3D image reconstruction
is a complex subject that can be solved in multiple ways, for example with stereo
cameras. Quite a lot of research has been conducted in reconstruction of smaller
indoor scenes and less in large scenes with worse conditions [20].

There are two main methods in the reconstruction from unstructured images,
Structure from Motion (SfM) and Multi-View Stereo (MVS). SfM is a photogrammetry
method that uses a series of images from different viewpoints and reconstructs the
position and viewpoints by matching points in the different images. MVS uses a
set of images of known positions and viewpoints to infer the 3D geometry of an
object[20].

The advancements in deep learning have come with great improvement for 3D
reconstruction from a single 2 dimensional camera without the need for prepossessing
to specify angles and distances to the object. These methods train Neural Radiance
Fields to find the point cloud representation of the object from unstructured
images.[21].

11

3 Methodology

3.1 Research Process
To conduct the project, the first step was to gather information about the state of
the art of the different subsystems for the project. The subsystems in this case being
the control algorithm MPC, underwater archaeology, and computer vision.

The second phase of the project consisted of sketching general ideas for the
different subsystems for the project. During this phase, the project work was also
more thoroughly planned throughout the period. Moreover, it was found that all
different subsystems for the project could have been made into their own project.
It was therefore decided that the project would mainly revolve around MPC and
its implementation on the ROV. For the other subsystems, it was decided to try to
implement something that would require less effort so that most of the effort could
be put on the MPC.

The third phase consisted of creating a more detailed design for the dropper
mechanism in Solid Edge, as well as trying out some open source computer vision
software. Since there was little knowledge about Model Predictive Control within
the group at the start of the project, the focus during this phase was on learning
about MPC and implementing some pre-made libraries in Matlab to get some initial
knowledge. An important part of the MPC is that it requires a good model of the
system dynamics to function properly; this was also investigated during this phase.
How this was solved is described in Section ??.

The fourth phase of the project consisted of creating a physical prototype of the
dropper mechanism. The computer vision part of the project was not worked on
during this phase as it required more data from real life driving with the BROV. For
the MPC, it was implemented in matlab/simulink to be tested. For simulation of the
Robot Operating System network along with the MPC, a simulation was developed
in Unity in which communication between the ROS network and a complete 3D
visualized and dynamically simulated BROV through the Unity game engine. This
was crucial for the development.

The fifth phase consisted of implementing the MPC in python for further testing.
Moreover, the ROS network was developed along side the MPC in python to be able
to integrate seemlessly at a later stage. The communication between ROS and the
Unity simulation was also set up and tested during this stage.

In the sixth phase, the MPC was implemented and tested in the unity simulation.
It was found that some path planner was needed. The path planner was created,
implemented and tested and was found to work well with some small tweaks.

12

It should be mentioned that these six phases mainly describe the MPC and
its implementation. Throughout all phases, great effort was put in integrating the
dropper mechanism and the Doppler Velocity Logger (DVL), as well as researching
how to manipulate the BROV in the way we wanted. All of these were crucial steps
in the project as a whole and it would not have been possible without them.

3.2 Project Management
The workflow and project management approach adopted encompassed several
methodologies and communication strategies to ensure efficiency and adaptability.
The team primarily utilized agile methodologies, implementing Jira for task
management and scheduling two-week sprints to facilitate regular progress checkpoints
and adaptive planning. The V-model was also an integral part of the project
management strategy, providing a structured approach to system development
that emphasizes the importance of verification and validation processes at each
development stage.

Regarding the group structure, a flat hierarchy was maintained, eliminating the
role of a traditional project manager. Instead, team members shifted roles depending
on the needs of various subsystems, promoting flexibility and comprehensive
understanding among team members. Communication within the team and with
external entities was strategically planned. Bi-weekly meetings with the stakeholder
were implemented, which ensured consistent and structured information exchange.
Communication with SMaRC was managed effectively using Slack, facilitating
real-time updates and discussions.

Overall, the combination of agile practices, strategic use of the V-model,
adaptable group structure, and targeted communication strategies effectively
supported the project’s goals by fostering an environment conducive to continuous
improvement and collaboration.

3.3 Required Hardware/Software
The robot platform on which this project is based is the BlueROV2 Heavy
Configuration. It is an open-source and modifiable underwater vehicle that is
created and developed by Blue Robotics. The following sections list the necessary
components to duplicate this project.

3.3.1 Hardware

The specific hardware specification for this project can be shown in table 3.1. One of

13

Figure 3.1: Standard BlueROV2 Heavy Configuration

the critical upgrades in this project to the BROV is the inclusion of the Waterlinked
DVL A50, which significantly enhances the vehicle’s navigational capabilities. It
estimates velocity relative to the seabed using acoustic waves. It emits signals from
four angled transducers, and by analysing the Doppler effect frequency shift between
transmitted and received echoes it can calculate the speed and direction of movement.
The used Waterlinked DVL A50 is provided with a built-in Inertial measurement unit
(IMU) that provides orientation data [22]. These measurements are combined in a
Kalman filter on the DVL to produce highly accurate velocity estimates, crucial for
precise positioning and control. The DVL also outputs a dead reckoning estimate of
the position. The DVL does not output angular velocities.

The BROV comes standard with a 6-Degrees of Freedom (DoF)IMU and a 3-DoF
magnetometer, enabling data gathering of angular rates and compass heading. The
BROV that was received from the stakeholder also came equipped with a Ping360
imaging sonar, however, it was deemed not worth using in the scope of this project.

Additionally, the thrusters’ configuration in the BROV Heavy enhances its
manoeuvrability, allowing for 6-DoF motion.[23] Control and computation are
divided between the Navigator Flight Controller and the Raspberry Pi 4B. The
Navigator handles low-level operations, such as sensor data acquisition and real-time
thruster control, while the Raspberry Pi is responsible for higher-level tasks such
as interfacing with external sensors, managing data logging, and coordinating
communication with the surface operator. Together, these systems ensure seamless

14

Table 3.1: BlueROV2 hardware components

Category Components

Computational devices
Navigator Flight Controller
Raspberry Pi 4B (2GB RAM)
Top-side computer: Dell Precision 3581 (i9 CPU)

Sensors

IMU 6-DoF (on Navigator)
Dual 3-DoF magnetometers (on Navigator)
Internal barometer (on Navigator)
Integrated leak sensor (on Navigator)
Waterlinked DVL A50
Camera (Low-Light HD USB Camera)
Pinger360 Sonar

Actuators Thrusters (8 Blue Robotics T200)
Battery Lithium-Ion Battery Pack (14.8V)

and efficient operation during complex underwater missions.

3.3.2 Software

The software suite used in this project for the BROV forms the backbone of its
operational and development capabilities. Each software component plays a critical
role in enabling seamless interaction between hardware and control systems, ensuring
the robot’s functionality across diverse missions. Table 3.2 categorizes the key
software components along with their versions, highlighting their respective purposes
within the project.

The firmware, ArduSub, serves as the core software running on the Navigator
flight controller. It provides the low-level control required for sensor integration,
thruster actuation, and basic operational stability.

The operating systems bridge the computational hardware with mission-specific
software. BlueOS, running on the Raspberry Pi, acts as the operational environment
for managing onboard systems, network interfaces, and real-time monitoring tools.
The top-side computer, Dell Precision 3581, running Ubuntu 22.04 LTS offers a
stable platform for executing control algorithms, simulation interfaces, and remote
telemetry.

For control and coordination, the ROS serves as a middleware framework,

15

Table 3.2: BlueROV2 software components

Category Software Version
Firmware ArduSub (BROV firmware) 4.5.0

Operating System BlueOS (for Raspberry Pi)
Ubuntu (for top-side computer)

1.3.1
22.04 LTS

Control Software ROS2
Mavros

Humble
2.9.0

Simulation Unity 2023.1.13

facilitating communication between subsystems. ROS2 Humble, combined with
MavROS, integrates MAVLink-based telemetry and control channels, ensuring
compatibility with ArduSub and other components. These software tools enable
a modular and scalable control architecture, supporting both current needs and
potential future expansions. An in-depth description of how these are used and
integrated will be explained in the implementation section.

In addition, simulation tools are indispensable for validating mission scenarios,
testing algorithms, and visualizing robot behaviour. Unity, a widely used
simulation and visualization software, allows the development of realistic underwater
environments to replicate operational conditions. This enables rigorous testing
and troubleshooting before deployment, minimizing the risk of errors during actual
missions.

The integration of these software tools not only ensures robust and reliable
operation but also supports flexibility in adapting the system for future requirements.
Continuous updates and compatibility improvements are vital to maintaining the
performance and expanding the capabilities of the BlueROV2 platform.

16

4 Implementation
To integrate all components of the project into a cohesive mission, the following
scenario was developed and is illustrated in Figure 4.1. The operator starts by
inputting a waypoint to a location of interest within an underwater site. The BROV
then generates a path to that waypoint and travels to that waypoint autonomously
using the MPC. Upon reaching the waypoint, the system will drop a pinger, then
proceed to the next given waypoint and repeat the process. During this mission, the
BROV records a video stream, which is later used for computer vision tasks. These
tasks are conducted post-mission due to their substantial computational demands.

Figure 4.1: Mission

This section begins with explaining the system architecture and then goes into
detail how all subsystems work. These are system model, control, path planning,
simulation, ULB deployment system and computer vision.

4.1 System Architecture
Before delving into the specifics of each subsystem, it is crucial to thoroughly
understand the overall system architecture to understand how everything works. This
is particularly vital for mechatronic systems, given the complexity and integration
required between numerous subsystems.

17

4.1.1 Information Modelling

The information model provides a detailed framework outlining the various elements
and communication pathways within the robot’s system. It highlights how data
flows between components, ensuring coherent interaction and coordination among
sensors, processors, and actuators. This visualization aids in understanding the
integration and functionality of different modules, crucial for both development and
troubleshooting.

Appendix A.1 illustrates the model, with added or modified components
highlighted in gray for clarity. Only components that are used for this project are
displayed. Hence it is a simplified version. The standard Ground Control Station
(GCS), QGroundControl, for the BlueROV2, proved inadequate for the project’s
low-level control and customization requirements. Therefore, a custom GCS was
developed utilizing MavROS. enabling the same Mavlink communication but with
lower level control. Mavlink is the communication protocol between the Navigator
and the Raspberry Pi on the BROV. The use of ROS facilitated seamless integration
and synchronization between all components of the project.

4.1.2 ROS Structure

The ROS network has the following structure, visualised in Figure 4.2. The robot
sends the DVL and IMU data over ROS to a node named state_estimator. The
state estimator converts the data from the DVL together with the data from the
IMU to create an estimate of the state of the robot in all 6-DoF both in terms
of position and velocity. The state estimator publishes the position and velocity
data on the topic /state_estimation which the mpc_publisher subscribes to. The
message on the topic is a self-developed simple message containing the 12 values
corresponding to positions and velocities in the 6-DoF. The mpc_publisher does all
calculations for the MPC, given the state-estimate and a reference waypoint. The
reference waypoint is given by the mission planner, described in detail in section
??. The MPC then outputs an 8 by 1 output vector consisting of the Pulse Width
Modulation (PWM) from -1 to 1 for each individual thruster. This output is sent
on the topic /BROV2/mpc to the motor_actuation node. The motor_actuation
node does a conversion described in section 4.3.3. This allows the ROS network to
publish to a topic named /mavros/rc/override which allows control of the robot
by controlling its forces and torques in its 6-DoF.

The mission planner acts as the Human Machine Interface (HMI) to input
reference waypoints to the ROS network. The mission planner also publishes directly
to the /mavros/rc/override to actuate the dropper. The mission planner is also

18

responsible for the arming and disarming of the robot to ensure it operates safely.

Figure 4.2: ROS structure overview

4.1.3 Mission Planner

A mission planner serves as the decision-making core of autonomous systems,
coordinating the tasks and behaviours required to achieve mission objectives. For
this project, the mission planner is responsible for determining waypoint navigation,
coordinating task execution, and adapting to environmental or system changes in
real time. Selecting an effective architecture for the mission planner is critical for
ensuring robust, flexible, and maintainable behaviour management.

Finite State Machine (FSM)s have historically been a popular choice for such
tasks, offering a straightforward structure of predefined states and transitions.
However, FSMs face significant limitations when applied to complex and dynamic
scenarios, such as underwater missions. The scalability of FSMs is impeded by
an exponential increase in the number of states, which complicates maintenance,
debugging, and scalability efforts. Their rigid design also limits flexibility, as
adapting to unexpected events or new requirements often necessitates extensive

19

redesign. Furthermore, the tightly coupled nature of states and transitions restricts
the reusability of components across different tasks or missions.

Behaviour Tree (BT)s overcome these challenges by employing a modular and
hierarchical structure. Unlike FSMs, BTs organize "behaviours" into reusable nodes,
which simplify development and facilitate scalability without exponential growth
in complexity. Their reactive execution model allows nodes to be reevaluated
dynamically, enabling real-time adaptability to changing conditions. BTs also
support parallel task execution, enabling the system to manage multiple objectives
simultaneously, such as navigation and sensor monitoring. These characteristics
make BTs particularly well-suited for this project and it is why it is the chosen
architecture, providing a robust, flexible, and scalable framework for mission planning
in complex underwater environments.

Figure 4.3: Mission planner - behaviour tree

Figure 4.3 illustrates the developed behaviour tree, which has been implemented
in Python using the py_trees and py_trees_ros libraries to ensure synchronization
with the ROS network. The initial layer operates in parallel, comprising three
distinct components. The first component is responsible for input aggregation,
including operator input and state estimation. The second component functions

20

as a disarm safeguard by subscribing to the MavROS topic /mavros/diagnostics,
where diagnostic data from the BROV is retrieved. In the event of any malfunction,
the system disarms the BROV to prevent actuation, serving as a constant safety
measure throughout the mission. The third component encompasses executable tasks
that begin by awaiting the initiation by the operator of the initialization process.
Upon command, the system arms itself and proceeds to execute the mission task. It
subsequently awaits a waypoint input from the operator and, once received, relays
the waypoint to the MPC to initiate robot navigation to the specified point. Upon
confirmation by the mission planner that the BROV has reached its waypoint, it
advances to the next task, which involves deploying a pinger if available. The mission
task then awaits the operator’s input for a new waypoint. An independent disarm
function was developed to bypass the mission planner in scenarios where the system
is unable to reach the specified waypoint.

21

4.2 System Model
A model of the system is essential for an MPC as it relies on simulating the system
to find the optimal control input. The accuracy of the model is also of the highest
importance as the wrong optimal control input might propagate and grow out of
proportion if the model does not match the real system. Any simulations created
would also rely on the system model, and a high model fidelity would narrow the
sim-to-real. The following chapter describes the system model and how it works.

4.2.1 Differential Equations

The initial model used for the MPC was taken directly from the report "An
Open-Source Benchmark Simulator: Control of a BlueROV2 Underwater Robot" by
von Benzon and Fogh Sørensen from Aalborg University [24]. The system is modified
to fit the need of the project and is using a simpler version. Equations 4.1 and 4.2
below are the main differential equations that describe the entire system.

η̇ = J(η)v (4.1)

Mv̇ + C(v)v +D(v)v + g(η) = τ + τtet (4.2)

The vector η = [x, y, z, ϕ, θ, ψ]T describes the absolute position and Euler
rotations of the rover related to the world frame, while the vector ν = [u, v, w, p, q, r]T

is the translational and rotational velocities in the body frame. The following table
4.1 contains the variables of the system and a description of what each part does.
The final column also describes what affects and changes each matrix as the system
is dependent on the state vectors making the system non-linear.

Figure 4.4: BlueROV2 Body and World Frame Reference [25]

22

Table 4.1: Equation Variables

Notation Description Depending
J(η) Velocity transform-matrix from

body to world velocity
Rotational position of rover

M Inertia Matrix of rover -
C(v) Corioliscentripetal Matrix Rotational and translational

velocities of rover
D(v) Damping matrix Rotational and translational

velocities of rover
g(η) Vector of gravitational and

buoyancy restoring forces
Rotational position of rover

τ Vector of input forces from
thrusters

Thruster input voltage

τtet Vector of tether forces -

The J matrix 4.3 is used to translate the body frame velocities v to the world
frame η which are used to integrate into the world positions and angles. The matrix
consists of two separate matrices, J1 4.4 and J2 4.5 which both depend on the current
rotation of the rover in the world frame. The J matrix is not specific for the BROV
but is simply only a geometric transformation of coordinate systems and is widely
used in similar situations.

J(η) =

[
J1(η) 03×3

03×3 J2(η)

]
(4.3)

J1(η) =

cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ cosϕ sin θ

sinψ cos θ cosψ cosϕ+ sinϕ sin θ sinψ − cosψ sinϕ+ sin θ sinψ cosϕ

− sin θ cos θ sinϕ cos θ cosϕ


(4.4)

J2(η) =

1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

 (4.5)

23

The matrices M, C and D all contain two separate parts, the rigid body and added
mass matrices according to equations 4.6 and 4.7 below, where RB stands for rigid
body and A for added mass. This is because the under water dynamics differ from
those in the atmosphere. The dynamics of the rover itself is not enough to describe
the system but rather requires that the additional mass of the water moving with
and around the vehicle be taken into account as well. Additionally, the Damping
coefficients are also describe using two sub components, one for low speeds where
the damping is considerer linear and one where the damping force is related to the
square of the velocity as seen in equation 4.8 making the damping non-linear.

M = MRB +MA (4.6)

C(v) = CRB(v) +CA(v) (4.7)

D(v) = D+Dn(v) (4.8)

The equations below show the composition of the system on matrix form.
Equations 4.9 and 4.10 show the rigid body and added mass matrices respectively,
where m is the mass of the rover and the I-terms are the inertia in the pitch, roll
and yaw directions respectively. The diagonal terms in the added mass matrix 4.10
are the added mass variables for each translational and rotational axis.

The skew-symmetric Coriolis matrices 4.11 and 4.12 describe how the mass and
inertia of the system combined with the velocity of the rover affect the Coriolis forces
applied on the system. Like the inertia matrix 4.6 has an added mass matrix 4.12
that describe how the water moving around the rover affects the system. Note that
the components of the rigid body and added mass Coriolis matrix are the same as
in the inertia matrices.

MRB =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ix 0 0

0 0 0 0 Iy 0

0 0 0 0 0 Iz


(4.9)

24

MA =



Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 0

0 0 Zẇ 0 0 0

0 0 0 Kṗ 0 0

0 0 0 0 Mq̇ 0

0 0 0 0 0 Nṙ


. (4.10)

CRB =



0 0 0 0 mw −mv
0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 mw −mv 0 −Izr −Iyq
−mw 0 mu Izr 0 Ixp

mv −mu 0 Iyq −Ixp 0


(4.11)

CA =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 0 −Yv̇v Xu̇u

0 0 −Zẇw Yv̇v 0 −Nṙr

Zẇw 0 −Xu̇u Nṙr 0 Mq̇q

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(4.12)

The damping matrices 4.13 and 4.14, as mentioned, describe both the linear and
non-linear damping of the system. Xu is the linear damping in the forward surge
direction, while Xu|u| is the non-linear damping in the same direction. The |u| of the
first element is the absolute value of the speed in the surge direction. This is so that
when the matrix multiplication D(v) ∗ v in the differential equation is performed so
the direction of the velocity remains in the resulting vector, applying the damping
force in the correct direction.

25

D =



Xu 0 0 0 0 0

0 Yv 0 0 0 0

0 0 Zw 0 0 0

0 0 0 Kp 0 0

0 0 0 0 Mq 0

0 0 0 0 0 Nr


(4.13)

Dn(ν) =



Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 0

0 0 Zw|w||w| 0 0 0

0 0 0 Kp|p||p| 0 0

0 0 0 0 Mq|q||q| 0

0 0 0 0 0 Nr|r||r|


(4.14)

4.2.2 Restoring Forces

The restoring forces are the gravitational force due to the mass of the rover and the
buoyancy due to the displacement of the water as a function of the rovers volume.
Both the buoyancy and gravity will have its effect in the world vertical axis which is
why the forces in equation 4.16 and 4.17 are multiplied with trigonometric functions
as the forces in the model must be represented in the body frame. The same goes
for the torques but as the gravity is always applied at the centre of mass it will not
have a moment arm and will therefore not apply any torque. The same cannot be
said about the buoyancy as it is applied at the centre of buoyancy which is offset
from the centre of mass. The moment arm for the buoyancy force is xb, yb and zb as
can be seen in equation 4.15.

G =



(W − B) sin θ

−(W − B) cos θ sinϕ

−(W − B) cos θ cosϕ

ybB cos θ cosϕ− zbB cos θ sinϕ

−zbB sin θ − xbB cos θ cosϕ

xbB cos θ sinϕ+ ybB sin θ


(4.15)

26

W = m · g (4.16)

B = ρ · g · δ (4.17)

4.2.3 Tether Forces

The final part of the model is the force applied on the rover caused by the tether
dragging in the water. This force is however very difficult to model as it depends on
a large amount of variables such as the amount of tether releases from the spool and
tension of the tether in the water. As this is difficult for both us and the rover to
measure it was simply excluded from the model and excluded from the project. This
is reasonable since most real world tests will be conducted in a small pool where a
tether will not have much effect.

4.2.4 Thrusters

The heavy configuration of the BROV has eight T200 thrusters that allow the robot
to actuate in all 6 degrees of freedom [23]. The orientation of the thruster can be
seen in figure 4.5.

Figure 4.5: BlueROV2 Heavy Configuration Thruster Orientation [26]

The T200 thrusters used on the rover are controlled by sending a PWM signal
in the form of 1100µs to 1900µs with zero thrust being 1500µs. To model the force

27

output from the thrusters, a ninth-order equation was used where the input is a
value Vi ∈ [−1, 1] representing full reverse to full forward thrust respectively. The
ninth-order equation returns a value F (Vi) ∈ [−30.4, 30.4] as thrust in Newtons. [24]

Fi(Vi) = −140.3V 9
i + 389.9V 7

i − 404.1V 5
i + 176.0V 3

i + 8.9Vi (4.18)

Equation 4.18 above represents each thruster and each control input Vi is applied
separately. To translate the thruster vector F(V) to force applied in the body frame
of the rover a T matrix was used. The T matrix uses the angle of the thruster relative
to the body frame to describe the thruster’s interaction to describe the forces applied
to the rover in the surge, sway and heave directions. The T matrix also describes the
moment arms to calculate the torque in the roll, pitch and yaw directions. The first
3 rows of the matrix are therefore only dependent on the angle of each motor in each
direction while the last three rows depend on both the angles and the distance to
the centre of mass of the rover. Equation 4.19 describes how the T matrix is applied
to the thruster vector F(V) and matrix 4.20 is the T matrix used in the model.

τ = T ∗ F(V) (4.19)

T =



0.7071 0.7071 −0.7071 −0.7071 0 0 0 0

−0.7071 0.7071 −0.7071 0.7071 0 0 0 0

0 0 0 0 −1 1 1 −1

0 0 0 0 0.218 0.218 −0.218 −0.218

0 0 0 0 0.12 −0.12 0.12 −0.12

−0.1888 0.1888 0.1888 −0.1888 0 0 0 0


(4.20)

4.2.5 Model Parameters

The model used is only as good as the parameters used to describe the system,
therefore it is important that the parameters used are as accurate to the real world
as possible. However, the verification process of inspecting every single variable on
every degree of freedom would have been an entire additional project which is outside
the scope of this project. The following table 4.2 is a short summary of each variable
and where they were obtained. Note that the notation "report" refers to the original
project that developed this model. [24]

28

Figure 4.6: Thruster force in newtons as a function of input value

Table 4.2: Model Parameters

Notation Description Origin
MRB Rigid body inertia matrix Report and CAD
MA Added mass inertia matrix Report

CRB(v) Rigid body Coriolis matrix Report
CA(v) Added mass Coriolis matrix Report
D Linear damping matrix Report

Dn(v) Non-Linear damping matrix Report
g(η) Restoring forces Report
F (V) Thruster force equation Report and testing
T Thruster to body frame matrix Report

All variables are in some way extracted from the previously mentioned report
whilst a few have been slightly modified and improved to match our system. The
Added mass inertia matrix, Coriolis and Damping matrices are very difficult to
verify as they contain multiple variables each and would require real world testing
or advanced simulations to determine. However, the restoring forces vector g(η) and

29

Thruster matrix T should have been modified to account for changes to the system
in regards to the centre of mass as it changes gravity and buoyancy forces as well as
the torque vector in the T matrix.

4.3 Control
This section outlines the primary components involved in controlling the AUV. First,
the MPC problem formulation is presented and explained. Then, the use of sensors to
estimate the state vector is described. And finally, control allocation, a challenging
problem when working with AUVs due to the difficulty of modelling thrusters, is
examined [27].

4.3.1 MPC

As can be seen in section 4.2, the BROV is a highly non-linear system. Therefore,
a MPC framework that works for non-linear systems needs to be used. In this case,
the BROV was controlled using an adaptive MPC framework. This is more accurate
than linearizing around an equilibrium point, but also keeps the implementation and
solving simple by keeping the problem quadratic and removing the need for a good
initial guess.

MPC model, linearization and discretization

This section describes the model used for the Adaptive MPC scheme. This includes
linearization and discretization. While linearization is often performed around
equilibrium points, this method generalizes the approach to linearizing around an
arbitrary operating point. Such a point may not necessarily satisfy the steady-state
conditions of the system.[12]

Before that however, the non-linear system described by equations 4.1 and 4.2
have to combined into one. This is done by defining the state vector x = [ν,η]T ,
where η and ν are defined as in section 4.2.

Now, consider the non-linear system:

ẋ = f(x,u), (4.21)

where x ∈ Rn represents the state vector, u ∈ Rm represents the input vector, and
f(·, ·) is a non-linear function.

Let (xo,uo) denote the arbitrary operating point around which the system is
linearized. Using a first-order Taylor series expansion, the non-linear system can be

30

approximated as:

ẋ ≈ f(xo,uo) +
∂f

∂x

∣∣∣∣
xo,uo

(x− xo) +
∂f

∂u

∣∣∣∣
xo,uo

(u− uo), (4.22)

where
A =

∂f

∂x

∣∣∣∣
xo,uo

, B =
∂f

∂u

∣∣∣∣
xo,uo

, (4.23)

are the Jacobian matrices evaluated at the chosen operating point.
The term f(xo,uo) captures the dynamics at the operating point. If the operating

point is not an equilibrium (i.e., f(xo,uo) ̸= 0), this term introduces a constant offset
into the system. The linearized dynamics then take the form:

ẋ = f(xo,uo) +A(x− xo) +B(u− uo). (4.24)

Defining κ = f(xo,uo)−Axo −Buo we get:

ẋ = Ax+Bu+ κ. (4.25)

In order to use this in the MPC it needs to be discretized, but first, MPC
is computationally heavy and can add a considerable computational delay to the
system. This can negatively affect stability, hence this delay is modelled as part of
the problem.

The extended linearized model in continuous time with a time delay, τdelay, is
expressed as:

ẋ(t) = Acx(t) +Bc(u(t− τdelay)) + κc. (4.26)

Here Ac and Bc emphasize the fact that these matrices are in continuous time.
Finally, assuming Zero-Order hold (ZOH) sampling, i.e. constant inputs during each
time step, together with a sampling time, h, that is longer than the delay, τdelay, the
discretized model can be expressed as:

xk+1 = Axk +Buk +Bdelayuk−1 + κ. (4.27)

where:

A = eAch, B =

∫ h

s=τdelay

eAcsBc ds, Bdelay =

∫ τdelay

s=0

eAcsBc ds, κ =

∫ h

s=0

eAcsκc ds,

(4.28)

31

Problem formulation

The MPC problem for reference tracking is typically formulated according to equation
2.3. For the purpose of this project, the problem is instead formulated according
to 4.29, which is a simplified formulation. Since no terminal weight or set is used,
recursive feasibility and stability are not guaranteed. But the problem is significantly
simplified and the implementation is much easier. This is therefore a common
approach in practice [28], [29].

min
N−1∑
k=0

(Cx̂k − rk)
⊤Q(Cx̂k − rk) + δû⊤k Rδûk

subject to:
x̂k+1 = Atx̂k +Btûk−1 +Btδûk +Kt +Bdelay,tûk−1, k = 0, . . . , N − 1

ûk = ûk−1 + δûk

Mxx̂k ≤ mx, k = 0, . . . , N − 1

Mu(ûk−1 + δûk) ≤ mu, k = 0, . . . , N − 1

u−1 = ut

x0 = xt

(4.29)

Here the constraints are as follows; first there are the dynamic constraints defined
by the linearized model. At, Bt and Kt are the linearized discrete-time model
parameters at the operating point at time t, which are held constant over the
prediction horizon. Then there is the definition of δûk followed by the state and
input constraints, and finally the initial value constraints on the state and input.

At every sampling instance k the Finite Horizon Optimal Control Problem
(FHOCP) is solved to obtain the optimal variables x̂∗k, δû∗k and û∗k−1. Then, the
optimal input to be applied is ût = u−1 + δû∗0 where û∗t denotes the optimal control
input at time t according to the controller. Over the prediction horizon N , the
controller aims to minimize the difference between the outputs yk = Cx̂k, where C
is the output matrix and x̂k is the predicted state at time step k, and the references
rk. At the same time, it also tries to keep the control increment δûk to a minimum,
in order to achieve a smoother control signal. Analogous to the MPC problem
formulation in equation 2.1, the Q and R matrices can be tuned in order to achieve
desired behaviour. However, now increasing Q will minimize reference tracking error
while increasing R will penalize control increments.

In order to take low-level constraints into account, the MPC output will be the
8x1 thruster vector forces. This will prevent the MPC from computing force and

32

torque effects that are impossible to achieve with the thruster configuration.
As can be seen, the problem formulation does not include a terminal constraint,

this implies that we do not require perfect tracking of the reference. This will
however keep the problem feasible regardless of the desired reference and also allow
the prediction horizon to be kept short, which is beneficial for the adaptive MPC
since the solution will degrade if the current state deviates from the linearization
point.

Nevertheless, the optimization problem in equation 4.29 is implemented in Python
and solved using cvxpy with the MOSEK solver.

33

4.3.2 State Estimation

In order for the controller to actuate the system, it first has to be sensed or perceived,
in order to feed something into the regulator that will generate an output. The MPC
formulation is subject to different constraints, one of which describes the system
dynamics. In order to correctly predict the next state of the BROV there’s a need
to acquire information used to describe the system dynamics. In this case recall the
state vector xt which is also displayed in 4.30.

xt = [νt,ηt]
T (4.30)

Two approaches were taken to estimate the state vector. The first approach was
using the built-in dead reckoning that was calculated by the DVL and published over
the ROS network from the DVL driver used in this project. The Waterlinked A50
DVL provides firstly a highly accurate velocity estimate at a refresh rate between 5−
12Hz and then provides linear and angular positional estimates using dead reckoning,
claimed to have an distance error of 0.13 percent over a distance of 295 meters
[22]. The angular rates were taken from the onboard IMU of the BROV. These
measurements were all combined in the state estimator node of the ROS network
and published as a custom positional message.

The second approach was similar but had some differences in how the
computations were made. The linear velocities were received from the DVL and the
angular rates from the onboard IMU. All seemingly erroneous velocity measurements
were dropped from processing. The absolute angles were taken from the DVL
dead reckoning, but the linear positional estimates were calculated from the linear
velocities and absolute angles in the state estimator node, as seen below in equations
4.31-4.33. This approach was implemented in response to the DVL behaving
erratically towards the end of the project, for more details, see discussion.

In the first approach, handling different frames of reference was straightforward,
as the DVL dead reckoning provided the positional estimate relative to the "origin",
what is referred to as the odom frame where the BROV was powered on or whenever
the DVL was rebooted or reset through the web interface tool. As the to global
state estimate of the BROV was interesting, the built-in tf2 ROS library was used
in order to handle static and dynamic coordinate conversions. As the DVL is not
mounted in the Centre of Gravity (CoG) of the BROV, linear velocities were also
transformed using equations for rigid body kinematics, seen in equation 4.34, where
RDVLdisplacement is the distance from CoG to the DVL.

For the second approach, as the velocities were given in the body frame from the
DVL, the linear positions were transformed with the tf2 library.

34

x = xsum+∆t·
(
vx + vx−1

2
·
(
cosψ+cos θ

)
+
vz + vz−1

2
·sin θ−vy + vy−1

2
·sinψ

)
(4.31)

y = ysum+∆t·
(
vy + vy−1

2
·
(
cosψ+cosϕ

)
+
vx + vx−1

2
·sinψ−vz + vz−1

2
·sinϕ

)
(4.32)

z = zsum+∆t·
(
vz + vz−1

2
·
(
cosϕ+cos θ

)
+
vy + vy−1

2
·sinϕ− vx + vx−1

2
·sin θ

)
(4.33)

vbody = vDVL −RDVLdisplacement × ω (4.34)

4.3.3 Control Allocation

The BlueROV2 was built to be driven by a standard Xbox controller, steering the
6-DoF using the two joysticks and the triggers. Ardusub, the firmware controlling
the rover, was therefore built according to this and has a complicated control scheme
to drive the multiple thrusters at the same time to achieve the desired movement.
Steering the rover is done by sending PWM on the form PWM ∈ [1100, 1900](µs)
where 1900µs corresponds to full thrust, 1100µs full reverse thrust and 1500µs zero
thrust. This signal is sent to each degree of freedom and Ardusub will automatically
compute the signal to pass to the individual thrusters. Here is how.

T̂ =



1 −1 0 0 0 −1

1 1 0 0 0 1

−1 −1 0 0 0 1

−1 1 0 0 0 −1

0 0 −1 1 1 0

0 0 1 1 −1 0

0 0 1 −1 1 0

0 0 −1 −1 −1 0


(4.35)

Matrix 4.35 is Ardusub’s thruster allocation matrix, or T̂ , which is used to actuate
the thrusters. The matrix has the same shape, only transposed, as the T matrix 4.20
from earlier, where all the previous values have been replaced by ones only retaining
the sign to keep the direction of the thruster. Ardusub translates the PWM signals
to the form Signal ∈ [−1, 1] using equation 4.36 below. This new 6x1 signal vector
is then multiplied with the T̂ matrix to output the individual thruster control values

35

on an 8x1 vector [−1, 1] which are then mapped to the PWM values [1100, 1900] for
each thruster to use.

Understanding how Ardusub allocates control signals to the thrusters is necessary
to understand how the output signals from the MPC are sent to the rover. Since the
only way the rover accepts inputs is on this 6x1 PWM vector the 8x1 thruster output
vector needs to be translated to this form. The solution is to do what Ardusub does
in reverse.

Taking the inverse of T̂ allows the output vector to be reversed to the form of
the 6x1 vector but since T̂ has more rows than columns and is not full rank this is
not possible. However a pseudo inverse of T̂ approximates this. Using equation 4.37,
the new 6x1 output signals can be translated to the PWM form.

sig = (pwm− 1500)/400 (4.36)

pwm = sig ∗ 400 + 1500 (4.37)

This is not, however, a perfect solution since there are multiple thruster force
combinations that can have the same effects on the rover. This means that when the
MPC has chosen a specific thruster output this translation can cause a different set
of thrusters to be actuated. This should not be an issue since the same effect is put
on the system, however, the constraints set on the MPC to not create outputs other
than [−1, 1] might not be fulfilled. The translation can cause control inputs to be
larger or smaller than the allowed inputs which then does not have the desired effect
that the MPC wants.

The Ardusub system is however prepared for this and can normalize illegal control
actions so the same action is taken but with a smaller amplitude. The overall result
of this is a system that won’t outright break if the wrong action is sent but might not
always actuate as desired. This is an issue with Ardusub and has not been looked
at in further detail in this project.

4.4 Path Planning
Since an AUV exhibits coupled motions under various disturbances, it can face
challenges in following a certain reference point [28]. To combat this, a guidance
system can be used to update the AUV’s desired trajectory in real-time based on an
estimate of its current position. Furthermore, the MPC formulation in equation 4.29
assumes that a known trajectory is being followed and because of this a path planning
system needs to be implemented, which can be done in different ways. In this paper,

36

the SOTA guidance system Line-of-Sight (LOS) and another simple method, where
a trajectory planner, that assumes constant acceleration and deceleration phases, is
combined with a simple guidance system, are implemented and compared.

4.4.1 Line-of-Sight (LOS) Guidance System

The guidance system generates reference points to the control system as the ROV
progresses along the path to the desired way point, rather than having a single static
reference point. The system used in this case is a Line-of-Sight (LOS) guidance
system, as this is the most commonly used system for marine vehicles [28]. This is
illustrated in figure 4.7 below.

ψlos

•
(xp, yp)

•

(xlos, ylos)

ρL

ρs

(a) System initiated

ρL

ψlos

•
(xp, yp)

•

(xlos, ylos)

ρs

(b) Yaw angle adjusted

ρs
•

(xp, yp)

•

ψlos
(xlos, ylos)

ρL

(c) Approaching way point
Figure 4.7: LOS guidance system

The input reference to the ROV is given by the so-called LOS-coordinate. The
LOS-coordinate is determined based on the ROV’s current position x, the desired

37

way point xp and a so-called LOS-sphere with radius ρL that encircles the ROV. The
LOS-coordinate (xlos, ylos) is given by the intersection between the LOS-sphere and
the straight line connecting the ROV and the way point. To make the ROV head
"face first" to the target, its desired yaw angle is set to ψlos. By trigonometry, these
coordinates are given by:

ψlos = tan−1

(
yp − y

xp − x

)
(4.38)

xlos = x+
ρc√

1 + tan2 ψlos

(4.39)

ylos = y + tanψlos(xlos − x) (4.40)
Since the ROV is moving in 3D, its depth coordinate zlos must also be determined.
Analogously to the 2D LOS-coordinate, zlos is given by the intersection between the
LOS-sphere and the path towards the way point. Formally, zlos is proportional to
the radius ρL with a factor of θ, which is the angle between the xy-plane and the
desired depth zp [28] – as illustrated in figure 4.8 below.

x

y

z

xp

xp
yp

zp

ψlos

θ

Figure 4.8: LOS guidance system in 3D

By trigonometry, the angle θ is given by:

θ = tan−1

(
zp − z√

(xp − x)2 + (yp − y)2

)
, (4.41)

resulting in the LOS-coordinate

zlos = z + ρL tan θ (4.42)

38

When the controller is initialized, the guidance system gives the initial
LOS-coordinate to the ROV. As the ROV has a new position in the next time step,
it gets a new LOS-coordinate, since the LOS-sphere follows the ROV along the path.
Therefore, this algorithm forces the ROV to chase a coordinate it cannot reach, until
it enters the so-called sphere of acceptance. This sphere, with radius ρs, indicates the
volume which is "close enough" to the way point, and acts as a conditional volume
for the ROV to either switch to a new way point or to stay at the current one.

Compared to the 3D LOS guidance system implemented in [28], this system has
an adaptive yaw angle ψlos, rather than a static one that is computed at the start
of the mission. This enables the ROV to adjust its heading angle in case it drifts
away from the path, rather than solely controlling its surge and sway. Furthermore,
this guidance system tries to minimize the ROV’s pitch, since the testing was done
in rather shallow depths and due to the DVL’s operating range. This approach
differs from another implementation, which adjusts the vehicle’s pitch to move in
the z-direction [28]. In addition to not use the pitch angle in the path planner, the
roll angle is not considered either. Therefore, ϕlos = 0 and θlos = 0.

The path planner stores the 6 reference states for linear and angular position in
a vector described as

xref = [xlos, ylos, zlos, ϕlos, θlos, ψlos] (4.43)

where ϕlos = 0 and θlos = 0. The MPC uses a certain reference for each step in the
prediction horizon. This is done in order to keep the reference up to date with the
current position of the BROV. Therefore, the reference vectors need to be stored in
a matrix with a size of 6 x N , where N is the number of steps in the prediction
horizon.

4.4.2 Simple Trajectory Planner and Guidance

The second method used is a more traditional version, where an acceleration profile
is first built assuming constant, equal acceleration and deceleration phases and a
constant velocity phase, this profile is then integrated twice to obtain the desired
trajectory. The angles and angular velocities are assumed to be zero at all times and
therefore the robot will always move towards the reference in a straight line while
keeping it’s orientation. The acceleration and velocities can be tuned to achieve
specific performance but must be kept within the realm of feasibility for the robot’s
dynamics. An example of the motion profile can be seen in figure 4.9.

Next, the MPC will need to pick out the part of the trajectory that it will use over

39

Figure 4.9: Motion profile example for the trajectory planner

it’s prediction horizon. Therefore, some sort of guidance system is also necessary. A
complete overview of the system can be seen in figure 4.10.

Figure 4.10: System architecture diagram for trajectory planner

For every new reference, rs, a full trajectory is planned consisting of position
r(t), velocity v(t) and acceleration a(t) profiles. Then, a guidance system working
in tandem with the MPC at every time step, will check the current position of the
robot, xt, and extract a part of the full trajectory for the MPC to follow over its
prediction horizon, denoted rk. This is simply chosen by taking the point on the
trajectory closest to the current position and then feeding it, as well as the next few
points, to the MPC.

40

4.5 Simulation
There were multiple simulations made for the project in order to be able to develop
the MPC at a more rapid pace as compared to if all testing had to have been done
on the physical robot.

The Unity simulation, as seen in figure 4.11, serves as the primary testing
environment for both the system model and the MPC. This simulation was developed
in collaboration with the Swedish Maritime Robotics Centre (SMaRC). Within
the Unity simulation, the BlueROV2 is modelled and simulated based on the
system dynamics, enabling a realistic testing and evaluation platform for the system
performance.

Figure 4.11: A screenshot of the Unity simulation

4.5.1 System Model Implementation

The implementation of the model follows Equation 4.2, with the exclusion of τtet.
The system model is then visualized by applying the force and torque outputs of the
model to the centre of mass of an articulated body, which, within the scope of this
simulation, acts as a rigid body.

41

The usage of articulation bodies is to enable joints within the body and thus
movement of the body relative to itself. By redistributing the inertia and mass of
all the articulation bodies to one main articulation body, a process often known as
mass lumping, the main body can be treated as a rigid body while also allowing the
inertia and mass of any moving parts to be as close to zero as Unity allows. This
means that when they move, any forces that arise can be neglected. In this way, the
main body on which the model forces act can still be considered a rigid body, despite
having parts that move independently, which is important for the accuracy of the
system model. In order to apply the system model to the main body, a unity script,
BlueROV2ForceModel, was attached to it. This enables interaction with the main
body during simulation runtime. The main part of the code relevant to this report
lies is executed by, FixedUpdate() at a frequency of 50Hz during runtime. In this
method the current state of the main body is read at the start of every iteration.
The state of the main body is then converted from unity’s Right, Up, Forward
(RUF) left-handed coordinate system to the North, East, Down (NED) right-handed
coordinate system used in the system model as well as to the appropriate reference
frame, before being used to calculate the actuating forces. The forces are then
converted back into the Unity coordinate system and applied to the main body’s
centre of mass using methods from the articulation body class. The two methods used
for this are AddRelativeForce(), which adds a force at the centre of mass relative
to the local coordinate system of the articulation body, and AddRelativeTorque(),
which adds a torque relative to the local coordinate system at the origin. For this
reason, it is important to ensure that the origin of the articulation body’s local
coordinate system is aligned with its centre of mass. In addition to the forces
generated by the system model, input forces and torques are added to the body,
which move it according to either the user input or controller input.

In Unity, when forces are applied to an articulation body, it uses the defined
inertia vector and mass of the body to calculate the resulting movement. However,
an articulation body in Unity only accepts a single mass value, unlike the system
model. The inertia matrix used in the system model is a combination of two different
matrices: the rigid body matrix and the added mass matrix. The added mass matrix,
in particular, includes directional masses along the cardinal directions (see equations
4.9 and 4.10). To address this, the equation of motion was restructured so that
the added mass and rigid body inertia matrices are separated. A negative force,
equivalent to the impact of the added mass matrix, is added to both sides of the
equation, effectively cancelling out the added mass matrix from the left-hand side and
allowing Unity to handle the applied forces appropriately. The rewritten equation

42

used in Unity is as follows:

MRB v̇ = τ − C(v)v −D(v)v − g(η)−MAM
−1(τ − C(v)v −D(v)v − g(η)) (4.44)

4.5.2 Actuators and Sensors Integration

In the simulation, the Unity scene was structured to closely resemble the one used by
SMaRC for their simulations. This approach allowed the simulation to be extended
beyond the previously discussed system model, incorporating additional features
such as ROS2 communication and simulated actuators and sensors, through the
use of the corresponding scripts [30]. Among these extended features, two key
scripts were used to enhance the functionality of the simulation: the subscriber
script PropellerCommand_Sub and the publisher script Odometry_Pub. As previously
discussed, the main body is composed of articulation bodies, allowing it to contain
moving parts. In the simulation, these moving parts include eight different propellers,
one for each thruster. By configuring each propeller as an actuator and adding
the PropellerCommand_Sub script, you can set the RPMs for each propeller via
ROS. The RPMs of each propeller are visually observable during runtime and can
be read by the BlueROV2ForceModel script. When read by the script, the RPMs
are processed and converted into the corresponding PWM values, which are then
transformed into the input forces and torques used in the system model, following
equations 4.20 and 4.18 in sequence. The other Odometry_Pub script is used to, at a
variable frequency, publish the state of the main body.

4.5.3 Peripherals

In addition, several new features not present in the SMaRC repository were added.
One of these is the referencePoint object. This object is a collision-less red sphere
that is both subscribed to the ROS2 node handling the controller’s reference value
and publishes to it. This means that whenever the reference value for the controller
is updated, the red sphere will appear at that location in the simulation. Moving the
sphere will also update the reference value, allowing the reference to be visualized
and intuitively adjusted during runtime. The sphere can be moved using the W, A,
S, D, Shift, and Space keys. Another addition is the ULBdropper object, which acts
as a spawning point for ULB objects during runtime. This object is connected to
the mission planner via a ROS service but can also be activated by pressing the U
key. Lastly, a user interface element was added in the form of a checkbox to the
simulation. When ticked, the simulation enters "controller mode", where user inputs
control the reference point, which the main body follows using the MPC controller.

43

When unticked, the input forces received from the controller are no longer applied
to the main body, and the user can manually control the body.

4.5.4 ROS Integration

In order for the Unity simulation to work seamlessly with the Model Predictive
Controller developed for the physical robot, some of the ROS nodes made for the
physical robot were replaced with nodes tailored to the simulation, this is visualized in
Figure 4.12. Specifically the state-estimator was replaced by a simulation odometry
listener which was named sim_odom_listener. The motor actuation node was
replaced with a node named sim thruster control that published Revolutions Per
Minute (RPM) values on 8 different topics, corresponding to each and every thruster
on the simulated BlueROV2 (BROV). The conversion between this RPM and the
force on the ROV in the simulation was handled in unity.

For the communication to work between the Robot Operating System (ROS)
network and the Unity simulation, a node named ros_tcp_endpoint has to be
running on the same computer running the Unity simulation.[31]

Figure 4.12: Robot Operating System (ROS) Structure for Simulation

44

4.5.5 Matlab and Python Simulations

The first model of the system was implemented in Matlab Simulink. The purpose
of the model was to do some initial testing of the model described earlier to verify
that the model and the expected result of the model were equal. A screenshot of the
Simulink model can be viewed below in Appendix B where the thruster inputs are
visible on the left and the output position on the right.

Using the model of the system some preliminary tests of an MPC were made using
the built in MPC library on Matlab. This confirmed that any basic Model Predictive
Control could not satisfy the non-linearity of the model and a more complex system
would be required. Additionally, the model was used to verify all future simulation
models used for the MPC and that the additional simulations were accurate.

Also during development, an intermediate Python simulation was used for testing
the system as it grew. It was used to test the models, the path-planning algorithms
and the early and mid stages of the MPC.

4.6 ULB Deployment System
The deployment system for the underwater locator beacons (ULB) was designed as
a rotating magazine that holds three (replica) ULBs, in cylindrical cutouts that can
rotate inside of a cylindrical shell that has an opening towards the bottom. The
ULBs is released through the opening in the bottom. The mechanism is actuated by
a waterproof servo motor placed at the back of the deployment system. The output
axis of the servo is then connected to a transmission with a gear ratio of n = 1

2
.

This enables a regular 180° servo motor to rotate the magazine 360° – thus making
it possible to make a full revolution and release all three ULBs. The output gear
of the transmission is mounted on an axle, which the rotating magazine is attached.
The mechanical design of the drop mechanism is illustrated in figure 4.13 below.

45

Figure 4.13: ULB deployment design

The servo motor was connected to the Navigator on the BROV. The signal line
was connected to pin 12 on the Navigator, which supplies the servo motor with PWM
signals. The motor is actuated via the MavROS message OverrideRCIn, which sets
the specified PWM signal on the Navigator’s pin.

4.7 Computer Vision
Image enhancement was performed on frames extracted from three test videos, see
figure 4.14.

(a) Traffic cone in
Brunnsviken.

(b) Life-saving dummy in
GIH-badet.

(c) Bottle with pingers in
babypool.

Figure 4.14: Example frames from videos used for computer vision.

A pre-existing GAN model was evaluated for this purpose, namely funie-GAN
[32]. No additional training was performed to the model. The model was employed
by inputting the images from this study, and the outputs were then evaluated. For
3D reconstruction from unstructured images, two SfM & MVSpipelines; Colmap and
AliceVision were tested using the same frames [33].

46

5 Verification and Validation

5.1 Planned Testing Methods
To validate the system, each component and the system as a whole underwent testing.

• MPC Validation:
The MPC was initially implemented in Python to verify its stand-alone
functionality. This phase evaluated its performance i.e. (reference tracking)
and stability when applied to the model. cvxpy, which is an open source python
package for convex optimization problems, was used to solve the optimization
problem. The chosen solver was MOSEK.

• Simulation Testing in Unity:
The MPC was integrated into a Unity simulation of the BlueROV2. This
stage tested the communication pipeline and the overall system performance,
including state estimation and mission planning. The system was provided
with reference inputs, and its stability, speed and deviation from the reference
were measured to assess performance.

• Real-World Deployment:
The MPC was then deployed on the physical BROV to observe its behaviour
in real-world conditions. This step was done to determine if the system model
was accurate enough for practical application.

• State Estimator Testing:
The state estimator’s performance was verified by comparing its estimated
position against ground truth data obtained from a motion capture system.

• Model Validation:
To ensure the accuracy of the simulation and the model, tests were conducted
by actuating the BROV using the simulation. These tests were running the
simulation and simultaneously actuating the BROV with the same inputs.

• ULB Deployment System Testing:
The ULB mechanism was evaluated through drop tests conducted in a pool
environment.

47

• Image Processing and 3D Reconstruction:
Image enhancement techniques were assessed visually for improvements in
clarity, while the 3D reconstruction output was compared against the actual
subject.

5.2 Reliability and Validity of Testing Methods
The project was guided by soft requirements, as seen in section 1.3, rather than strict
measurable benchmarks, as the primary objective was to deliver a proof of concept
demonstrating the practical implementation of the system.

The testing was not done to produce statistically significant results but to provide
a qualitative measure of system performance. Due to the many different subsystems
and interdisciplinary nature of the project, some limitations in the reliability and
validity of the testing was inevitable.

To minimise these problems, individual components were tested independently to
identify issues. This approach enhanced the reliability of the results and improved
confidence in the integrated system’s functionality. By isolating and validating
components where possible the robustness of the overall system evaluation was
improved.

48

6 Results
This section presents the performance results of the MPC, both from simulations
and from real-world tests. Further, the results of the state estimation, deployment
system and computer vision are also presented.

6.1 MPC in Python
In order to evaluate the performance and viability of the proposed controller scheme,
it was first tested in Python. The controller is simulated for the non-linear system
with different parameters using CasADi, which is an open source symbolic tool for
algorithmic differentiation and optimal control. This is done for both the LOS and
the simple trajectory planner. The effect of computational delay on model stability
is also studied.

The MPC was tested for varying initial conditions and references, as well as
different parameters. For all tests presented below, unless otherwise specified, the
sampling time, h, was chosen to be 0.1s and the weight matrices Q and R were set to
the identity matrices. The system response was compared for two choices of horizon
lengths N , for a travel from the initial position at x0 = (0, 0, 0) to the reference
xs = (2, 2, 1).

6.1.1 LOS Guidance System

The results using the LOS guidance system in the python simulations are visualized
in 6.1. Here, the LOS parameters are chosen as: ρL = 0.03 and ρs = 0.03. A
comparison of the computational time for the different horizon lengths can also be
found in table 6.1.

49

(a) Horizon length N = 15

(b) Horizon length N = 8

Figure 6.1: Line-of-sight (LOS) in Python simulation for different horizon lengths.

Table 6.1: Average solving times for different horizon lengths.

Horizon Length (N) Average Solving Time (s) Percentage Decrease (%)
15 0.069 —
8 0.056 18.8

6.1.2 Trajectory Planner

The results for the Trajectory planner are presented in figure 6.2. The parameters
for the trajectory planner was chosen as: vmax = 0.3 m/s and amax = 0.4 m/s2. A
comparison of the computation time for the different horizon lengths can also be seen
in table 6.2.

50

(a) Horizon length N = 15

(b) Horizon length N = 8

Figure 6.2: Trajectory planner in Python simulation for different horizon lengths.

Table 6.2: Average solving times for different horizon lengths.

Horizon Length (N) Average Solving Time (s) Percentage Decrease (%)
15 0.066 —
8 0.052 21.2

6.1.3 Computational Delay

Last but not least, a computational delay is simulated in Python and MPCs that do
and do not take delay into account are compared. This can be seen in figure 6.3 and
6.4. Where all parameters are kept as above but N = 15 and Q is varied.

51

(a) MPC with modelling of computational delay

(b) MPC without modelling of computational delay
Figure 6.3: System response with τdelay = 0.09 and Q = I for MPC with and

without modelling of delay, the reference trajectory is also plotted for comparison

52

(a) MPC with modelling of computational delay

(b) MPC without modelling of computational delay

Figure 6.4: System response with τdelay = 0.09 and Q = 10I for MPC with and
without modelling of delay, the reference trajectory is also plotted for comparison

6.2 MPC in Unity
The following figures illustrates the control performance in Unity simulations, using
both the LOS guidance system and the trajectory planner.

6.2.1 Trajectory Planner

In figure 6.5 and 6.6 below, the step responses of the MPC are illustrated for different
references. The upmost plots of the respective figures illustrate the robot’s position
over time, including the step input. The downmost plots represent the control inputs
to each thruster over the same time horizon.

53

Figure 6.5: Step response to (xref , yref) = (1, 0) using trajectory planner

Figure 6.6: Step response to (xref , yref) = (1, 1) using trajectory planner

For the reference (xref , yref) = (1, 0), the system has a rise time of 2.2s and 2%
overshoot. Further, the system has a rise time of 3.1s for the reference (xref , yref) =
(1, 1). It has an overshoot in y of 2%, whereas the overshoot in x is negligible.

54

6.2.2 LOS Guidance System

In figure 6.7 and 6.8 below, the step response for the LOS guidance system for a
reference (xref , yref) = (1, 1) is presented. In addition to illustrating the position
(x, y) over time, as in figure 6.7, the robot’s yaw angle over time is depicted in figure
6.8. This is included because the LOS system generates an adaptive yaw angle, unlike
the trajectory planner, which maintains a static yaw angle of zero.

Figure 6.7: Step response to (xref , yref) = (1, 1) using LOS system

Figure 6.8: Step response of yaw angle to (xref , yref) = (1, 1) using LOS system

The position in (x, y) has a rise time of 11.8s and an overshoot of 0.9% and 1.8%
in x and y respectively. The yaw angle has an overshoot of 49.1% and a settling time
of approximately 13s.

55

6.2.3 Thrusters

Figure 6.9 below show the thruster actuation with a reference of xref = 1. Note that
none of the inputs exceed the values [−1, 1] and while thrusters t1−4 are symmetric
around 0 thrusters t5−8 are not. Comparing the thrusters with the T matrix 4.20
and figure 4.5 indicate the resulting force is in the surge direction as expected.

Figure 6.9: Thruster response xref = 1 in unity

6.3 MPC Pool Test
In figure 6.10 below, the step response result of a pool test is illustrated. The
reference to the robot is to go diagonally to the coordinate (xref , yref) = (1, 1). The
graphs represent the estimated states (x, y) of the robot over time. In this case, the
trajectory planner was used. No performance data was collected of the LOS guidance
system due to unreliable state estimation data (see subsection 7.5).

56

Figure 6.10: Step response to (xref , yref) = (1, 1) in pool using trajectory planner

6.4 State Estimation
Seen below in figure 6.11 the first approach to state estimation is displayed and
compared to the references and the motion capture data (note that motion capture
y coordinate equals state estimator x coordinate and vice versa due to differences
in coordinate setup for the systems). Its observed how the ROV first goes towards
its reference point and how the state estimator follows the true motion capture
positional value. However, the positional estimate from the state estimator gives
out an erroneous sudden jump, which makes the control system believe it needs to
correct more than it should, leading to the true position of the ROV drifting from
the reference.

Figure 6.11: Motion capture and state estimator comparison

57

The second approach had limited testing time, as it was trialled very late into
the project and thus, no data is presented.

6.5 Computer Vision
In Figure 6.12 the result of the image enhancement of the three videos can be seen.
The first row displays the taken images and the second row shows their enhanced
result.

(a) Traffic cone in
Brunnsviken.

(b) Life-saving dummy in
GIH-badet.

(c) Bottle with pingers in
babypool.

Figure 6.12: Comparison of original & enhanced frames of the three videos

In Figure 6.13 the result of the 3D reconstruction of Life-saving dummy in
GIH-badet can be seen. The other videos did not produce a point cloud.

58

(a) Colmap (b) AliceVision
Figure 6.13: Point cloud from 3D reconstruction of dummy in GIH-badet.

59

7 Discussion and conclusions

7.1 System Model
The system model of the BlueROV2 as previously stated multiple times was not
developed during this study, but was directly taken from an independent study. That
study developed the model as a testing platform for evaluating control algorithms,
the decision was made to not use their Matlab program since the software was not
easily adaptable, therefore an independent software was developed to run the MPC
on an actual BROV. The decision was also made to slightly simplify the model by
removing the tether forces on the system as it by far is the most difficult part of the
system to model properly. This resulted in a system that was, although complicated,
not difficult to understand and most of all was easy to implement in both Python
and Unity.

Currently, the model used for the MPC is the same model used to evaluate the
system in the Unity model, making the virtual sim-to-real gap close to zero since
there is nearly no model error of the system. This is good in regards to testing that
the Model Predictive Control system and algorithm is working properly and outputs
control action that move the rover to the desired reference. However, part of the task
was to implement and test the controller on a real system, and if the model now is
not accurate, the ROV might become unstable despite the system working properly.
Future work would be to test and evaluate the model error on both the digital and
real system, more about that in chapter 8.1.

7.2 Simulation
When implementing the system model in the simulation, certain modifications had to
be made, as shown in equation 4.44. These changes were necessary for compatibility
with the simulation framework but did not alter the core functionality of the model.
Consequently, the differences in testing results between Python and Unity have
become an area of interest. As demonstrated by the results, similar tests in both
environments yield slightly different outcomes, with Unity consistently exhibiting
more oscillatory behaviour.

One potential reason for the observed differences is delays in communication
between the MPC and the Unity simulation, particularly varying delays, which
are inherently challenging to model or account for accurately. Moreover, the
simulation operates at a strict actuation interval of 50Hz, independent of the MPC’s
calculations. This discrepancy introduces additional delay, as the simulation cannot
actuate immediately upon receiving new control signals; instead, it waits until the

60

next actuation interval. Another contributing factor could be the performance
of the computer running the simulation. If the computers battery level is low,
the system may enter a power-saving mode, reducing performance. This leads to
the simulation running visually slower and exhibiting increased oscillations. In
prolonged low-performance states, the simulated BROV can appear unstable. This
correlation between slower simulation and more pronounced oscillations suggests that
the actuation interval plays a significant role in the systems dynamic response as it
is very likely to be impacted.

Differences in the solvers used between Unity and Python might also contribute
to the observed variations. While this difference is presumed to be minimal and has
been neglected in this analysis, as is the case for other smaller errors such as floating
point precision. Regarding state feedback during simulation, the states in Unity
are close to ideal because the simulated sensors are bypassed, and the exact state
of the BROV is used directly. This approach is similar to the Python simulation,
where the solvers output is used as the state. However, a small difference arises
in the timing of state calculations. In Python, states are sampled at the exact
time the MPC requires them, ensuring minimal delay. In Unity, however, the state
is updated at a fixed frequency of 10Hz, which means the MPC may operate on
slightly outdated state information. While this is a minor difference, it mimics the
behaviour of a real-world state estimator and contributes to the system’s overall
realism. Adjusting the Unity simulation to align more closely with Pythons timing
would improve accuracy compared to the Python simulation but reduce realism in
terms of mimicking real-world scenarios.

Comparing simulation data to real-world test results is difficult due to the poor
quality of the real-world data. Ideally, the differences between simulation and
real-world performance would be analysed to reduce the sim-to-real gap. However,
since the real-world data is not reliable, this analysis focuses on the discrepancies
between the Python and Unity simulations. By understanding these differences, we
can gain insights into how similar issues might affect real-world performance and find
ways to improve the overall accuracy and reliability.

In conclusion, the key factors contributing to the differences between Unity and
Python simulations include communication delays, actuation intervals, variations
in computational performance, and state feedback timing. Further investigation
into these factors could provide deeper insights into minimizing discrepancies while
maintaining the simulation’s applicability to real-world scenarios.

61

7.3 MPC
Judging from the results in section 6.1, the controller is capable of tracking the
reference trajectory while maintaining stability and fulfilling system constraints. It’s
stability is however dependant on the horizon length N , more specifically, stability
improves for larger values of N which is expected. To improve the results even further
and either reduce tracking error or get smoother control signals, time could be spent
tuning Q and R to achieve desired response.

As for the computational delay, it is evident from figures 6.3 and 6.4 that long
time delays τdelay can severely affect stability. In figure 6.3 this is not as evident but
it can be seen that delays induce oscillations in the states. Increasing the weight
matrix Q to 10I has a significant affect on behaviour and the controller turns out to
be unstable. This is important as increasing Q will improve tracking (it increases the
cost on the reference error) and this will be very relevant if the controller is tuned in
the future.

It is also important to highlight the effects of the choice of trajectory planner
on the controller. The reference trajectory has to be feasible given the dynamics of
the system or else perfect tracking will not be possible. Furthermore, if complicated
motions are generated, then it might also be difficult to guarantee stability.

As previously mentioned adaptive MPC keeps the linearized model constant
over the prediction horizon, this simplifies implementation but can negatively affect
behaviour if the prediction horizon is long and the real system changes drastically
over the prediction horizon. Since it is known (see section 4.2) that the non-linear
behaviour is a function of the angles and velocities. Keeping those constant over
the trajectory is beneficial. This is exactly what the trajectory planners deployed
do, although the LOS version does require a heading angle. It can be observed
that they both maintain a long constant velocity phase for which the linearized
model becomes equivalent to the non-linear model, this is beneficial. If instead,
trajectories with quickly varying velocities and angles are generated, the prediction
horizon might need to be kept short in order tof keep the linearized model an accurate
approximation, but a balance has to be found since, as previously seen, the prediction
horizon needs to be relatively long to maintain stability. This could potentially make
tuning the controller quite difficult, but needs to be studied more thoroughly and it
is nonetheless safe to say that the controller works quite well for simpler paths and
missions.

A little has to also be said about the choice of control input. The MPC is
configured to output the eight thruster PWM signals directly. As mentioned in
section 4.3.1 this was done to ensure that the MPC does not send illegal control
actions by taking constraints set by the thruster configuration into account. This

62

will however increase the computational load, which is detrimental when trying to
run the controller in real-time. It could be preferable to translate the constraints on
the thrusters to constraints on the forces, if possible, and keep the controller output
as the 6x1 body-fixed forces and moments.

In unity, the controller works quite similarly but with some oscillations, the
reason for this is discussed in section 7.2. Currently, the controller only takes the
computation delay in the ROS python node into account, but there is also delay
induced by the computation done in unity and the communication time between all
the different nodes in ROS.

In real life, countless problems were encountered, the biggest of which was the
state estimation using the DVL, more on this in section 7.5. There is also a lot to
be said about the effects of the ArduSub software on the performance of the MPC.
As mentioned in section 4.3.3, because of the way that ArduSub handles inputs, the
resulting forces on the BROV will not necessarily be equal to the forces computed by
the controller although the robot will always move in the correct direction.The effect
of this discrepancy has not been studied and is unknown but it is safe to assume that
it will affect the overall behaviour of the system.

7.4 Guidance System
Two different guidance systems were tested and evaluated. The LOS guidance system
and the trajectory planner. They were used to either generate a path or trajectory for
the BlueROV2 to follow, both with their own characteristics. The main drawbacks
of the LOS system was that it always accelerated in the end just before deceleration
and it was hard to select the desired maximum velocity for the BROV. Furthermore,
this system resulted in oscillations in the robot’s yaw angle when travelling both in
x and y. This is probably due to the fact that this system always tries to maintain
the heading angle towards the final way point. This could probably have been solved
with some tuning of the MPC and troubleshooting of the guidance system.

The trajectory planner had the drawbacks of not being able to rotate and only
travel along the translational axis. It also needed to have a acceleration and velocity
specified to be functional. The choices of acceleration and velocity were chosen
heuristically, based on the limitations on the BROV and reasonableness. Another
approach would have been to solve for the acceleration from the dynamical model
rather than specify a fixed value for the acceleration.

The big difference in rise time between the two systems originates from the
algorithms themselves. For the LOS system, the surge speed is mainly determined
implicitly by the radius of the LOS-sphere and the sampling frequency. Since the

63

algorithm prompts the BROV to go to the sphere’s edge at each time step, the speed
is proportional to the radius and inversely proportional to the sampling frequency. A
larger radius "forces" the BROV to reach that specific coordinate in each time step,
resulting in a faster surge speed. The main drawback of this logic is that the MPC
must be able to find an optimal solution for a reference that is located "one radius
away". When the LOS system was tuned, it was clear that the radius had to be
rather small, since the MPC failed to solve the optimization problem for larger radii.

7.5 State Estimation
At times, the state estimation initially passed the eye test. The first approach
described in chapter 4.3.2 was used for the majority of testing. However, no proper
data gathering was conducted until the final tests as the verification method for the
state estimator was not ready and work on implementation was prioritized.

As testing hours increased, more erratic behaviour was observed from the state
estimation. The yaw angle would drift spontaneously and unfortunately the linear
positions would sometimes jerk and shift, something which was observed in the
results, see figure 7.1.

64

Figure 7.1: DVL user interface state estimation in x & y going 2 laps around a
square pool.

The results of the state estimation implementation were not fully satisfactory.
It was not possible to replicate the positional accuracy that Waterlinked claim the
DVL has during operation. The velocity measurements were orders of magnitude
more reliable and therefore an approach in which dead reckoning is performed on
data from the DVL and a separate and better performing IMU could be preferable.
As mentioned in chapter 4.3.2 this approach was trialled briefly with promising
behaviour, but ultimately time ran out before the implementation was fully fleshed
out.

While conducting research about localization, it was understood that within the
time limitations of the project and constraints given the sensors available, dead
reckoning would be the best option available. Unfortunately quite a lot of time was

65

spent working with the built in dead reckoning, but given the supposed accuracy, it
did look like the best approach to state estimation.

During a testing session, the DVL unfortunately heated up past its operating
temperature. The manufacturer claims their software includes a thermal protection
feature which will turn the acoustics of the sensor off when reaching beyond standard
operational temperatures and the DVL was quickly put in the water to cool down.
It is not known if this damaged the internals of the sensor, however it is something
worth to be considered as a possible source of error.

7.6 Computer Vision
As the computer vision component of this project was not the primary focus, the
results were suboptimal. The image enhancement made a slight visual improvement
of the images but not as much as anticipated. A suspected reason for this is the
established property of GAN having poor mode coverage as the model was trained
in a different environment then in this project. The result of the 3D reconstruction
did not yield any usable material that was similar to the subject and the image
enhancement did not improve the reconstruction.

The challenges faced in the computer vision tasks underscore the inherent
difficulties of using cameras in underwater environments. Limited visibility due to
low light levels and murky water significantly complicates image-based operations.
Interestingly, even under improved visibility conditions during pool tests, the 3D
reconstruction did not yield better results. This could be attributed to factors such
as light refraction and the lack of distinct, unique features in the underwater scenes,
which are essential for effective reconstruction.

7.7 Project Management
The project was challenging due to frequent changes, making the use of agile project
management a good decision. Even though the focus of the project and various
technical decisions changed along the project, the agile approach enabled the project
to be somewhat deliverable over a long time. Responsibilities shifted at times, but
this proved beneficial as it allowed everyone to gain a better understanding of the
project as a whole. Communication was effective with sprint meetings, but the fast
pace made it difficult to maintain the quality of the report and final results. While
the project was completed, the data collection was affected by the implementation
challenges faced at the end of the project.

66

7.8 Ethics and Sustainability
This project incorporates several ethical and sustainability considerations in line with
good engineering practice. The primary ethical and sustainability goals were centred
around improving safety, minimizing environmental impact, and promoting resource
efficiency.

The implementation of Model Predictive Control enables a sustainability
approach towards automatic control. While in this project, a trajectory following
problem was formulated, the optimization problem can be extended to minimize the
energy usage of the BlueROV2. By using predictive control, the system can minimize
unnecessary movements, reducing power consumption and extending operational
time. This approach supports the broader goal of resource-efficient underwater
exploration.

Of course, it goes without saying that usage of AUV/ROVs are inherently less
resource intensive than manned underwater exploration. This is the result of being
able to scale down the size and dimensioning of underwater vessels, due to different
size and safety constraints.

Underwater robots provide an alternative to human divers for underwater
archaeological missions, eliminating the need for people to operate in dangerous
underwater environments. This decreases the risk of archaeological exploration,
associated with high-pressure, low-visibility underwater operations which can be
problematic to keep safe enough for human exploration.

In alignment with sustainability and ethical testing practices, extensive simulations
were conducted prior to real-world deployment. This ensured that the system’s
functionality could be validated in a virtual environment, minimizing the risk of
hardware damage or environmental disturbance. Furthermore, almost all physical
tests were performed in a controlled pool environment, which allowed for careful
monitoring of the system while reducing the potential impact on natural ecosystems.

By focusing on controlled testing and enabling tools for both energy efficiency
and safety for underwater exploration, the project aligns with the principles of
sustainable engineering and responsible innovation. These measures demonstrate a
commitment to leveraging technology for the benefit of society and the environment
while minimizing risks and resource usage.

67

8 Future work

8.1 Parameter Uncertainty
As mentioned earlier in chapter 4.2.5 it is critical to have an accurate model of
the system to achieve a functioning MPC. Developing that model is, however, very
difficult and takes a long time, and additionally the model might change over time
and during different operations and environments, making it critical to have a
good understanding of the system and ideally a structure on how to calculate and
determine model parameters as the system changes during development. Future work
to obtain a functioning system therefore includes verification of the current system
model and development of a pipeline for verification of the model when it changes.

Achieving a perfect system is however impossible. Hard work can achieve a very
accurate model but given that the system can change over time it could be necessary
to study the robustness of the MPC in regards to model error. One possibility is to
use an accurate model of the system on the MPC and apply the control input on a
model that is slightly changed. An analysis can then be made comparing the model
error to the stability of the controller to determine how accurate the system needs
to be to achieve stability.

8.2 Disturbance Modelling
Developing the model of the BROV to include disturbances would enhance the
accuracy of the MPC and simulations, allowing them to account for forces and
conditions encountered in realistic testing environments. Modelling underwater
currents, wave dynamics, and discrepancies in water density could all prove crucial
for real-world testing scenarios. If further testing with the BlueROV2 as an ROV is
conducted, it will also be important to model the forces exerted by the tether.

8.3 Simulation
To significantly reduce the sim-to-real gap, a more comprehensive and detailed system
model is crucial. A refined model would enable the simulation to more accurately
reflect real-world conditions, enhancing its overall reliability and applicability. In
addition to improving the system model, there are several aspects of the simulation
itself that could be optimized to increase both accuracy and usability. One
enhancement involves improving the simulation’s state feedback by incorporating
data derived from simulated sensors. By doing so, the simulation’s state estimation
would closely align with that of the real-world system, creating a more realistic

68

testing environment. Furthermore, adding noise to these simulated sensors would
further enhance the fidelity of the simulation, allowing for a more accurate emulation
of real-world conditions. Another change to keep in mind is to make it so that
the frequency of the simulation, matches the actuation frequency of the real life
BROV. One could also simulate the delays of real world use, which would allow for
countermeasures to be taken based on the simulation.

When using ArduSub, its core functionality could be simulated within the main
Unity force script. This approach would enable a more precise replication of the
control and feedback mechanisms of the real-world vehicle. Consequently, the test
results obtained from the simulation would be more representative of the real system,
ensuring greater relevance and reliability of the data.

8.4 MPC
As mentioned in section 7.3, the MPC is configured to output the eight thruster PWM
signals directly. A proposed modification involves shifting the MPC to operate at a
higher abstraction level by calculating the six actuating forces instead. This approach
would, theoretically, enable the controller to be divided into two components: a
high-level MPC operating at a lower frequency and a low-level controller running
at a higher frequency to manage the thruster PWM signals. This decoupling would
reduce the computational load on the MPC and enhance responsiveness by delegating
the real-time control of thruster PWM signals to the low-level controller.

To implement this change, the constraints currently tied to the normalized nature
of the PWM signals, such as their bounded range, must be somehow reformulated
in terms of forces. This ensures that the output forces remain within the feasible
operational range of the BROV, preserving system performance and physical realism.

Moreover, during the project, tuning was limited to ensuring the system’s basic
functionality, without focusing on optimizing performance beyond the required
operational thresholds. Future work could involve tuning the controller to optimize
its performance for the specific use case, both in simulation and within a real-world
testing environment. This would allow for further improvements to the MPC
performance.

As for the proposed controller scheme, changing from adaptive to LTV or
non-linear MPC could also be necessary in the future, if more complicated trajectories
need to be tracked. However, more data and tests need to be conducted first to
evaluate the performance of the proposed controller. Moreover, if the trajectories
are kept simple then adaptive MPC will work quite well as evident by the results in
sections 6.1 and 6.2.

69

It is also important to note that, since no model is perfect, a robust MPC
framework should be considered in the future to handle model error. Offset-free
MPC should also be implemented in order to compensate for disturbances.

8.5 Guidance System
A further developed guidance system would be desired for the BROV. A system that
both enables angles and velocities to be specified at each point generated by the
guidance system towards the reference point. The LOS did not have the ability to
specify velocities and the trajectory planner was not able to rotate.

An interesting development would be to solve for the accelerations in the BROVs
dynamical model and calculate the trajectories based on those accelerations rather
than use constant accelerations. In that way, non-linearities can be considered and
a more feasible trajectory can be generated.

Another development would be to implement obstacle avoidance for the guidance
system. None of the systems developed can handle it, even though it is beneficial for
motions in the underwater environment.

8.6 Computer Vision
The results of the computer vision part in this project highlight the need for
specialized techniques and robust algorithms designed to address the unique
challenges of underwater imaging. A deep dive in these algorithms, continued tuning
or development of novel models could be tested to improve the results.

8.7 Ardusub Modifications
As previously mentioned, there is a discrepancy between the PWM signals that the
MPC sends to ArduSub and the PWM signals actuating the system. One potential
solution to this problem is to modify the
AP_Motors6DOF::output_armed_stabilizing_vectored_6dof() function in the
AP_Motors6DOF.cpp file in ArduSub, as outlined by Ng and Krieg (2024) in their
study on improving BlueROV software in the loop accuracy and the design of a
hybrid autopilot [34]. Alternatively, you could also directly control the PWM signals
of the BlueROV2, but at a cost of a lot of the functionality provided by Ardusub.

70

8.8 State Estimation
As mentioned in the discussion and evident from the results, the state estimation
implementation is subpar in performance. The brief amount of testing using a custom
dead reckoning solution displayed as mentioned, promising results while not being
flawless. Needless to say, as no proper data was gathered, it could not be concluded
to be a superior approach in the grasp of this project. However, the promising tests
make it a reasonable place to start the continued work.

Navigation underwater is not a trivial task and is more often than not quite costly
and requires advanced technical approaches to the problem. A common approach
is using probabilistic filtering algorithms like the extended Kalman filter, coupled
with usage of DVL, underwater Global Positioning System (GPS) or GPS fixes at
resurfacing and expensive Inertial measurement unit (IMU)s. Research has also been
conducted on using unscented kalman filters as outlined in [35] where GPS was only
used at resurfacing. A possible solution given that you only have a DVL sensor
and IMUs avaliable is using extended kalman filters and fusing the measured data
together with dynamic motion model estimates of where the ROV/AUV should end
up given the previous control input. An attempt at something similar was made in
[36] which investigated how to handle GPS outages in underwater navigation.

Of course, adding more sensors would enable other possibilities regarding
navigation, underwater GPS is as mentioned common within high accuracy
ROV/AUV applications [22]. The built in IMU on the BROV comes standard with
the Navigator flight controller and is quite cheap, unfortunately it is also prone to
drifting in the angular and linear measurements. It would be wise to conduct further
research with a higher precision IMU.

For modern robotic systems operating on land, utilizing Simultaneous localization
and mapping (SLAM) methods are key for highly accurate localization and of course
also for mapping purposes. Underwater SLAM is a rapidly developing research field
which aims at improving AUV operation, specificity aiming at navigation underwater.
In order to enable the use of SLAM, more sensors are needed as SLAM fuses
proprioceptive and exteroceptive measurements in order to create a map and converge
to a highly accurate localization estimate. Examples of sensors that could be used in
underwater environments are stereo and monocular cameras, multi-beam sonars and
side-scan sonars. Underwater SLAM would be an interesting avenue to investigate
the implementation of in order to increase the underwater navigation capabilities.
[37]

71

8.9 AUV
Currently, the BlueROV2 operates as a ROV. However, as its hardware and software
capabilities are further developed, transitioning to an AUV represents a logical next
step for this project. Achieving this transition will require internalizing the topside
computer by either upgrading the existing internal computer or integrating a more
advanced one. In the current setup, the tether primarily facilitates data transmission
between the topside and internal computers. Incorporating a more powerful internal
computer would enable the BROV to perform all necessary calculations onboard,
eliminating the need for a tether and allowing fully untethered operation. To fully
leverage this increased autonomy, enhancing the functionality of the mission planning
software will also be critical. This advancement will ensure the vehicle can execute
more complex and adaptive missions independently.

72

References
[1] Geoffrey N. Bailey, Jan Harff, and Dimitris Sakellariou, eds. Under the

Sea: Archaeology and Palaeolandscapes of the Continental Shelf. en. Vol. 20.
Coastal Research Library. Cham: Springer International Publishing, 2017. isbn:
978-3-319-53158-8 978-3-319-53160-1. doi: 10.1007/978- 3- 319- 53160- 1.
url: http://link.springer.com/10.1007/978-3-319-53160-1 (visited on
04/15/2024).

[2] International Handbook of Underwater Archaeology. en. url: https://link-
springer-com.focus.lib.kth.se/book/10.1007/978-1-4615-0535-8
(visited on 04/05/2024).

[3] Li-Ying Hao et al. “Trajectory Tracking Control of Autonomous Underwater
Vehicles Using Improved Tube-Based Model Predictive Control Approach”. In:
IEEE Transactions on Industrial Informatics 20.4 (Apr. 2024). Conference
Name: IEEE Transactions on Industrial Informatics, pp. 5647–5657. issn:
1941-0050. doi: 10.1109/TII.2023.3331772. url: https://ieeexplore.
ieee . org / document / 10352935 / ?arnumber = 10352935 (visited on
12/03/2024).

[4] Moritz Schulze Darup, Gerrit Book, and Pontus Giselsson. “Towards real-time
ADMM for linear MPC: 18th European Control Conference, ECC 2019”. In:
2019 18th European Control Conference, ECC 2019 (2019). Publisher: IEEE
- Institute of Electrical and Electronics Engineers Inc., pp. 4276–4282. doi:
10.23919/ECC.2019.8796239.

[5] Khai Nguyen et al. TinyMPC: Model-Predictive Control on Resource-Constrained
Microcontrollers. arXiv:2310.16985 [cs]. May 2024. doi: 10.48550/arXiv.2310.
16985. url: http://arxiv.org/abs/2310.16985 (visited on 12/15/2024).

[6] Pablo Krupa et al. “Real-time implementation of MPC for tracking in
embedded systems: Application to a two-wheeled inverted pendulum”. In: 2021
European Control Conference (ECC). June 2021, pp. 669–674. doi: 10.23919/
ECC54610.2021.9654899. url: https://ieeexplore.ieee.org/document/
9654899 (visited on 12/15/2024).

[7] SAABmarine project. en. url: https://github.com/SAABmarine-project
(visited on 12/15/2024).

73

https://doi.org/10.1007/978-3-319-53160-1
http://link.springer.com/10.1007/978-3-319-53160-1
https://link-springer-com.focus.lib.kth.se/book/10.1007/978-1-4615-0535-8
https://link-springer-com.focus.lib.kth.se/book/10.1007/978-1-4615-0535-8
https://doi.org/10.1109/TII.2023.3331772
https://ieeexplore.ieee.org/document/10352935/?arnumber=10352935
https://ieeexplore.ieee.org/document/10352935/?arnumber=10352935
https://doi.org/10.23919/ECC.2019.8796239
https://doi.org/10.48550/arXiv.2310.16985
https://doi.org/10.48550/arXiv.2310.16985
http://arxiv.org/abs/2310.16985
https://doi.org/10.23919/ECC54610.2021.9654899
https://doi.org/10.23919/ECC54610.2021.9654899
https://ieeexplore.ieee.org/document/9654899
https://ieeexplore.ieee.org/document/9654899
https://github.com/SAABmarine-project

[8] Daniel Simon, Johan Lofberg, and Torkel Glad. “Reference Tracking MPC
Using Dynamic Terminal Set Transformation”. en. In: IEEE Transactions
on Automatic Control 59.10 (Oct. 2014), pp. 2790–2795. issn: 0018-9286,
1558-2523. doi: 10.1109/TAC.2014.2313767. url: http://ieeexplore.
ieee.org/document/6778075/ (visited on 12/15/2024).

[9] “(PDF) Sequential Quadratic Programming”. en. In: ResearchGate (Oct. 2024).
doi: 10.1017/S0962492900002518. url: https://www.researchgate.net/
publication/230872679_Sequential_Quadratic_Programming (visited on
12/13/2024).

[10] What Is Model Predictive Control? url: https://se.mathworks.com/help/
mpc/gs/what-is-mpc.html (visited on 12/13/2024).

[11] Adaptive MPC. url: https://se.mathworks.com/help/mpc/ug/adaptive-
mpc.html (visited on 12/13/2024).

[12] “(PDF) Successive Linearization Based Model Predictive Control of Variable
Stiffness Actuated Robots”. en. In: ResearchGate. doi: 10.1109/AIM.2017.
8014275. url: https://www.researchgate.net/publication/319122854_
Successive _ Linearization _ Based _ Model _ Predictive _ Control _ of _
Variable_Stiffness_Actuated_Robots (visited on 12/13/2024).

[13] (PDF) Model predictive control with on-line optimal linearisation. en. doi:
10 . 1109 / ISIC . 2014 . 6967645. url: https : / / www . researchgate . net /
publication / 289162831 _ Model _ predictive _ control _ with _ on - line _
optimal_linearisation (visited on 12/13/2024).

[14] “A linear model predictive control algorithm for nonlinear largescale distributed
parameter systems | Request PDF”. en. In: ResearchGate (Oct. 2024). doi:
10.1002/aic.12626. url: https://www.researchgate.net/publication/
230174167 _ A _ linear _ model _ predictive _ control _ algorithm _ for _
nonlinear _ large - scale _ distributed _ parameter _ systems (visited on
12/13/2024).

[15] Time-Varying MPC. url: https://se.mathworks.com/help/mpc/ug/time-
varying-mpc.html (visited on 12/13/2024).

[16] Yidan Liu et al. “An Underwater Image Enhancement Method for Different
Illumination Conditions Based on Color Tone Correction and Fusion-Based
Descattering”. en. In: Sensors 19.24 (Dec. 2019), p. 5567. issn: 1424-8220. doi:
10.3390/s19245567. url: https://www.mdpi.com/1424-8220/19/24/5567
(visited on 05/20/2024).

74

https://doi.org/10.1109/TAC.2014.2313767
http://ieeexplore.ieee.org/document/6778075/
http://ieeexplore.ieee.org/document/6778075/
https://doi.org/10.1017/S0962492900002518
https://www.researchgate.net/publication/230872679_Sequential_Quadratic_Programming
https://www.researchgate.net/publication/230872679_Sequential_Quadratic_Programming
https://se.mathworks.com/help/mpc/gs/what-is-mpc.html
https://se.mathworks.com/help/mpc/gs/what-is-mpc.html
https://se.mathworks.com/help/mpc/ug/adaptive-mpc.html
https://se.mathworks.com/help/mpc/ug/adaptive-mpc.html
https://doi.org/10.1109/AIM.2017.8014275
https://doi.org/10.1109/AIM.2017.8014275
https://www.researchgate.net/publication/319122854_Successive_Linearization_Based_Model_Predictive_Control_of_Variable_Stiffness_Actuated_Robots
https://www.researchgate.net/publication/319122854_Successive_Linearization_Based_Model_Predictive_Control_of_Variable_Stiffness_Actuated_Robots
https://www.researchgate.net/publication/319122854_Successive_Linearization_Based_Model_Predictive_Control_of_Variable_Stiffness_Actuated_Robots
https://doi.org/10.1109/ISIC.2014.6967645
https://www.researchgate.net/publication/289162831_Model_predictive_control_with_on-line_optimal_linearisation
https://www.researchgate.net/publication/289162831_Model_predictive_control_with_on-line_optimal_linearisation
https://www.researchgate.net/publication/289162831_Model_predictive_control_with_on-line_optimal_linearisation
https://doi.org/10.1002/aic.12626
https://www.researchgate.net/publication/230174167_A_linear_model_predictive_control_algorithm_for_nonlinear_large-scale_distributed_parameter_systems
https://www.researchgate.net/publication/230174167_A_linear_model_predictive_control_algorithm_for_nonlinear_large-scale_distributed_parameter_systems
https://www.researchgate.net/publication/230174167_A_linear_model_predictive_control_algorithm_for_nonlinear_large-scale_distributed_parameter_systems
https://se.mathworks.com/help/mpc/ug/time-varying-mpc.html
https://se.mathworks.com/help/mpc/ug/time-varying-mpc.html
https://doi.org/10.3390/s19245567
https://www.mdpi.com/1424-8220/19/24/5567

[17] Jie Li et al. “WaterGAN: Unsupervised Generative Network to Enable
Real-time Color Correction of Monocular Underwater Images”. In: IEEE
Robotics and Automation Letters (2017), pp. 1–1. issn: 2377-3766, 2377-3774.
doi: 10.1109/LRA.2017.2730363. url: http://ieeexplore.ieee.org/
document/7995024/ (visited on 05/20/2024).

[18] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the Generative
Learning Trilemma with Denoising Diffusion GANs. en. arXiv:2112.07804 [cs,
stat]. Apr. 2022. url: http : / / arxiv . org / abs / 2112 . 07804 (visited on
05/20/2024).

[19] Hong-Gi Kim, Jung-Min Seo, and Soo Mee Kim. “Comparison of GAN
Deep Learning Methods for Underwater Optical Image Enhancement”. en. In:
Journal of Ocean Engineering and Technology 36.1 (Feb. 2022), pp. 32–40.
issn: 1225-0767, 2287-6715. doi: 10 . 26748 / KSOE . 2021 . 095. url: http :
//joet.org/journal/view.php?doi=10.26748/KSOE.2021.095 (visited on
05/20/2024).

[20] Haitao Luo et al. “Large-Scale 3D Reconstruction from Multi-View Imagery: A
Comprehensive Review”. en. In: Remote Sensing 16.5 (Jan. 2024), p. 773. issn:
2072-4292. doi: 10.3390/rs16050773. url: https://www.mdpi.com/2072-
4292/16/5/773 (visited on 04/25/2024).

[21] Yang Fu et al. COLMAP-Free 3D Gaussian Splatting. arXiv:2312.07504 [cs].
Dec. 2023. doi: 10.48550/arXiv.2312.07504. url: http://arxiv.org/abs/
2312.07504 (visited on 04/25/2024).

[22] Doppler Velocity Log. en-US. url: https://waterlinked.com/dvl (visited
on 12/15/2024).

[23] BlueROV2 Heavy Configuration Retrofit Kit. en-US. url: https://bluerobotics.
com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/ (visited
on 11/24/2024).

[24] Malte von Benzon et al. “An Open-Source Benchmark Simulator: Control of a
BlueROV2 Underwater Robot”. In: Journal of Marine Science and Engineering
10 (Dec. 2022), p. 1898. doi: 10.3390/jmse10121898.

[25] Fig. 2. The reference frame used for analysis of BlueROV2 CC. en. url: https:
/ / www . researchgate . net / figure / The - reference - frame - used - for -
analysis-of-BlueROV2-CC_fig2_353013107 (visited on 11/24/2024).

[26] Building a Vehicle Frame ů GitBook. url: https://www.ardusub.com/quick-
start/vehicle-frame.html (visited on 11/24/2024).

75

https://doi.org/10.1109/LRA.2017.2730363
http://ieeexplore.ieee.org/document/7995024/
http://ieeexplore.ieee.org/document/7995024/
http://arxiv.org/abs/2112.07804
https://doi.org/10.26748/KSOE.2021.095
http://joet.org/journal/view.php?doi=10.26748/KSOE.2021.095
http://joet.org/journal/view.php?doi=10.26748/KSOE.2021.095
https://doi.org/10.3390/rs16050773
https://www.mdpi.com/2072-4292/16/5/773
https://www.mdpi.com/2072-4292/16/5/773
https://doi.org/10.48550/arXiv.2312.07504
http://arxiv.org/abs/2312.07504
http://arxiv.org/abs/2312.07504
https://waterlinked.com/dvl
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
https://doi.org/10.3390/jmse10121898
https://www.researchgate.net/figure/The-reference-frame-used-for-analysis-of-BlueROV2-CC_fig2_353013107
https://www.researchgate.net/figure/The-reference-frame-used-for-analysis-of-BlueROV2-CC_fig2_353013107
https://www.researchgate.net/figure/The-reference-frame-used-for-analysis-of-BlueROV2-CC_fig2_353013107
https://www.ardusub.com/quick-start/vehicle-frame.html
https://www.ardusub.com/quick-start/vehicle-frame.html

[27] https://flex.flinders.edu.au/file/27aa0064-9de2-441c-8a17-655405d5fc2e/1/ThesisWu2018.pdf.
url: https://flex.flinders.edu.au/file/27aa0064-9de2-441c-8a17-
655405d5fc2e/1/ThesisWu2018.pdf (visited on 09/16/2024).

[28] Isah A. Jimoh and Hong Yue. “Path Following Model Predictive Control of
a Coupled Autonomous Underwater Vehicle”. In: IFAC-PapersOnLine. 15th
IFAC Conference on Control Applications in Marine Systems, Robotics and
Vehicles CAMS 2024 58.20 (Jan. 2024), pp. 183–188. issn: 2405-8963. doi:
10.1016/j.ifacol.2024.10.052. url: https://www.sciencedirect.com/
science/article/pii/S240589632401807X (visited on 11/21/2024).

[29] Huixuan Fu et al. “Trajectory Tracking Predictive Control for Unmanned
Surface Vehicles with Improved Nonlinear Disturbance Observer”. en. In:
Journal of Marine Science and Engineering 11.10 (Oct. 2023). Number:
10 Publisher: Multidisciplinary Digital Publishing Institute, p. 1874. issn:
2077-1312. doi: 10.3390/jmse11101874. url: https://www.mdpi.com/2077-
1312/11/10/1874 (visited on 12/13/2024).

[30] martkartasev. martkartasev/SMARCUnityAssets. original-date: 2023-11-01T13:18:30Z.
Dec. 2024. url: https://github.com/martkartasev/SMARCUnityAssets
(visited on 12/13/2024).

[31] Unity-Robotics-Hub/tutorials/ros_unity_integration/setup.md at main ů Unity-Technologies/Unity-Robotics-Hub.
url: https://github.com/Unity-Technologies/Unity-Robotics-Hub/
blob / main / tutorials / ros _ unity _ integration / setup . md (visited on
11/21/2024).

[32] Md Jahidul Islam, Youya Xia, and Junaed Sattar. “Fast Underwater Image
Enhancement for Improved Visual Perception”. In: IEEE Robotics and
Automation Letters 5.2 (Apr. 2020). Conference Name: IEEE Robotics and
Automation Letters, pp. 3227–3234. issn: 2377-3766. doi: 10.1109/LRA.2020.
2974710. url: https://ieeexplore.ieee.org/document/9001231 (visited
on 12/15/2024).

[33] Carsten Griwodz et al. “AliceVision Meshroom: An open-source 3D reconstruction
pipeline”. In: MMSys ’21: Proceedings of the 12th ACM Multimedia Systems
Conference : ISBN: 978-1-4503-8434-6. Istanbul, Turkey: ACM: Association
for Computing Machinery, Sept. 2021, pp. 241–247. doi: 10.1145/3458305.
3478443. url: https://hal.science/hal-03351139 (visited on 12/15/2024).

76

https://flex.flinders.edu.au/file/27aa0064-9de2-441c-8a17-655405d5fc2e/1/ThesisWu2018.pdf
https://flex.flinders.edu.au/file/27aa0064-9de2-441c-8a17-655405d5fc2e/1/ThesisWu2018.pdf
https://doi.org/10.1016/j.ifacol.2024.10.052
https://www.sciencedirect.com/science/article/pii/S240589632401807X
https://www.sciencedirect.com/science/article/pii/S240589632401807X
https://doi.org/10.3390/jmse11101874
https://www.mdpi.com/2077-1312/11/10/1874
https://www.mdpi.com/2077-1312/11/10/1874
https://github.com/martkartasev/SMARCUnityAssets
https://github.com/Unity-Technologies/Unity-Robotics-Hub/blob/main/tutorials/ros_unity_integration/setup.md
https://github.com/Unity-Technologies/Unity-Robotics-Hub/blob/main/tutorials/ros_unity_integration/setup.md
https://doi.org/10.1109/LRA.2020.2974710
https://doi.org/10.1109/LRA.2020.2974710
https://ieeexplore.ieee.org/document/9001231
https://doi.org/10.1145/3458305.3478443
https://doi.org/10.1145/3458305.3478443
https://hal.science/hal-03351139

[34] Patrick Ng and Michael Krieg. “Modifications to ArduSub That Improve
BlueROV SITL Accuracy and Design of Hybrid Autopilot”. en. In: Applied
Sciences 14.17 (Aug. 2024), p. 7453. issn: 2076-3417. doi: 10 . 3390 /
app14177453. url: https://www.mdpi.com/2076-3417/14/17/7453 (visited
on 11/25/2024).

[35] B. Allotta et al. “An unscented Kalman filter based navigation algorithm
for autonomous underwater vehicles”. In: Mechatronics 39 (Nov. 2016),
pp. 185–195. issn: 0957-4158. doi: 10 . 1016 / j . mechatronics . 2016 . 05 .
007. url: https : / / www . sciencedirect . com / science / article / pii /
S095741581630037X (visited on 12/15/2024).

[36] Mohammad Taghi Sabet et al. “A Low-Cost Dead Reckoning Navigation
System for an AUV Using a Robust AHRS: Design and Experimental Analysis”.
In: IEEE Journal of Oceanic Engineering 43.4 (Oct. 2018). Conference Name:
IEEE Journal of Oceanic Engineering, pp. 927–939. issn: 1558-1691. doi: 10.
1109/JOE.2017.2769838. url: https://ieeexplore.ieee.org/document/
8126797 (visited on 12/15/2024).

[37] Xiaotian Wang et al. “An Overview of Key SLAM Technologies for Underwater
Scenes”. en. In: Remote Sensing 15.10 (Jan. 2023). Number: 10 Publisher:
Multidisciplinary Digital Publishing Institute, p. 2496. issn: 2072-4292. doi:
10.3390/rs15102496. url: https://www.mdpi.com/2072-4292/15/10/2496
(visited on 12/15/2024).

77

https://doi.org/10.3390/app14177453
https://doi.org/10.3390/app14177453
https://www.mdpi.com/2076-3417/14/17/7453
https://doi.org/10.1016/j.mechatronics.2016.05.007
https://doi.org/10.1016/j.mechatronics.2016.05.007
https://www.sciencedirect.com/science/article/pii/S095741581630037X
https://www.sciencedirect.com/science/article/pii/S095741581630037X
https://doi.org/10.1109/JOE.2017.2769838
https://doi.org/10.1109/JOE.2017.2769838
https://ieeexplore.ieee.org/document/8126797
https://ieeexplore.ieee.org/document/8126797
https://doi.org/10.3390/rs15102496
https://www.mdpi.com/2072-4292/15/10/2496

A Information modelling
[Back to information modelling section 4.1.1.]

Figure A.1: Information model

78

B Simulink Model

79

	Introduction
	Background
	Project Description
	Requirements
	Stakeholder Requirements
	Technical Requirements

	Delimitations
	Readers Guide

	sota
	mpc
	mpc for Non-linear Systems
	mpc for Reference Tracking

	Image Enhancement
	3d Image Reconstruction

	Methodology
	Research Process
	Project Management
	Required Hardware/Software
	Hardware
	Software

	Implementation
	System Architecture
	Information Modelling
	ros Structure
	Mission Planner

	System Model
	Differential Equations
	Restoring Forces
	Tether Forces
	Thrusters
	Model Parameters

	Control
	mpc
	State Estimation
	Control Allocation

	Path Planning
	los Guidance System
	Simple Trajectory Planner and Guidance

	Simulation
	System Model Implementation
	Actuators and Sensors Integration
	Peripherals
	ros Integration
	Matlab and Python Simulations

	ulb Deployment System
	Computer Vision

	Verification and Validation
	Planned Testing Methods
	Reliability and Validity of Testing Methods

	Results
	mpc in Python
	los Guidance System
	Trajectory Planner
	Computational Delay

	mpc in Unity
	Trajectory Planner
	los Guidance System
	Thrusters

	mpc Pool Test
	State Estimation
	Computer Vision

	Discussion and conclusions
	System Model
	Simulation
	mpc
	Guidance System
	State Estimation
	Computer Vision
	Project Management
	Ethics and Sustainability

	Future work
	Parameter Uncertainty
	Disturbance Modelling
	Simulation
	MPC
	Guidance System
	Computer Vision
	Ardusub Modifications
	State Estimation
	auv

	References
	Information modelling
	Simulink Model

